~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/virt/kvm/arm/arm.c

Version: ~ [ linux-6.6-rc1 ] ~ [ linux-6.5.2 ] ~ [ linux-6.4.15 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.52 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.131 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.194 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.256 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.294 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.325 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  4  *
  5  * This program is free software; you can redistribute it and/or modify
  6  * it under the terms of the GNU General Public License, version 2, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This program is distributed in the hope that it will be useful,
 10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12  * GNU General Public License for more details.
 13  *
 14  * You should have received a copy of the GNU General Public License
 15  * along with this program; if not, write to the Free Software
 16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 17  */
 18 
 19 #include <linux/cpu_pm.h>
 20 #include <linux/errno.h>
 21 #include <linux/err.h>
 22 #include <linux/kvm_host.h>
 23 #include <linux/list.h>
 24 #include <linux/module.h>
 25 #include <linux/vmalloc.h>
 26 #include <linux/fs.h>
 27 #include <linux/mman.h>
 28 #include <linux/sched.h>
 29 #include <linux/kvm.h>
 30 #include <trace/events/kvm.h>
 31 #include <kvm/arm_pmu.h>
 32 
 33 #define CREATE_TRACE_POINTS
 34 #include "trace.h"
 35 
 36 #include <linux/uaccess.h>
 37 #include <asm/ptrace.h>
 38 #include <asm/mman.h>
 39 #include <asm/tlbflush.h>
 40 #include <asm/cacheflush.h>
 41 #include <asm/virt.h>
 42 #include <asm/kvm_arm.h>
 43 #include <asm/kvm_asm.h>
 44 #include <asm/kvm_mmu.h>
 45 #include <asm/kvm_emulate.h>
 46 #include <asm/kvm_coproc.h>
 47 #include <asm/kvm_psci.h>
 48 #include <asm/sections.h>
 49 
 50 #ifdef REQUIRES_VIRT
 51 __asm__(".arch_extension        virt");
 52 #endif
 53 
 54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
 55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
 56 
 57 /* Per-CPU variable containing the currently running vcpu. */
 58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
 59 
 60 /* The VMID used in the VTTBR */
 61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
 62 static u32 kvm_next_vmid;
 63 static unsigned int kvm_vmid_bits __read_mostly;
 64 static DEFINE_SPINLOCK(kvm_vmid_lock);
 65 
 66 static bool vgic_present;
 67 
 68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
 69 
 70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
 71 {
 72         BUG_ON(preemptible());
 73         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
 74 }
 75 
 76 /**
 77  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 78  * Must be called from non-preemptible context
 79  */
 80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
 81 {
 82         BUG_ON(preemptible());
 83         return __this_cpu_read(kvm_arm_running_vcpu);
 84 }
 85 
 86 /**
 87  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 88  */
 89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
 90 {
 91         return &kvm_arm_running_vcpu;
 92 }
 93 
 94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 95 {
 96         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
 97 }
 98 
 99 int kvm_arch_hardware_setup(void)
100 {
101         return 0;
102 }
103 
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106         *(int *)rtn = 0;
107 }
108 
109 
110 /**
111  * kvm_arch_init_vm - initializes a VM data structure
112  * @kvm:        pointer to the KVM struct
113  */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116         int ret, cpu;
117 
118         if (type)
119                 return -EINVAL;
120 
121         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122         if (!kvm->arch.last_vcpu_ran)
123                 return -ENOMEM;
124 
125         for_each_possible_cpu(cpu)
126                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127 
128         ret = kvm_alloc_stage2_pgd(kvm);
129         if (ret)
130                 goto out_fail_alloc;
131 
132         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133         if (ret)
134                 goto out_free_stage2_pgd;
135 
136         kvm_vgic_early_init(kvm);
137 
138         /* Mark the initial VMID generation invalid */
139         kvm->arch.vmid_gen = 0;
140 
141         /* The maximum number of VCPUs is limited by the host's GIC model */
142         kvm->arch.max_vcpus = vgic_present ?
143                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144 
145         return ret;
146 out_free_stage2_pgd:
147         kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149         free_percpu(kvm->arch.last_vcpu_ran);
150         kvm->arch.last_vcpu_ran = NULL;
151         return ret;
152 }
153 
154 bool kvm_arch_has_vcpu_debugfs(void)
155 {
156         return false;
157 }
158 
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160 {
161         return 0;
162 }
163 
164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166         return VM_FAULT_SIGBUS;
167 }
168 
169 
170 /**
171  * kvm_arch_destroy_vm - destroy the VM data structure
172  * @kvm:        pointer to the KVM struct
173  */
174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176         int i;
177 
178         free_percpu(kvm->arch.last_vcpu_ran);
179         kvm->arch.last_vcpu_ran = NULL;
180 
181         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182                 if (kvm->vcpus[i]) {
183                         kvm_arch_vcpu_free(kvm->vcpus[i]);
184                         kvm->vcpus[i] = NULL;
185                 }
186         }
187 
188         kvm_vgic_destroy(kvm);
189 }
190 
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193         int r;
194         switch (ext) {
195         case KVM_CAP_IRQCHIP:
196                 r = vgic_present;
197                 break;
198         case KVM_CAP_IOEVENTFD:
199         case KVM_CAP_DEVICE_CTRL:
200         case KVM_CAP_USER_MEMORY:
201         case KVM_CAP_SYNC_MMU:
202         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203         case KVM_CAP_ONE_REG:
204         case KVM_CAP_ARM_PSCI:
205         case KVM_CAP_ARM_PSCI_0_2:
206         case KVM_CAP_READONLY_MEM:
207         case KVM_CAP_MP_STATE:
208         case KVM_CAP_IMMEDIATE_EXIT:
209                 r = 1;
210                 break;
211         case KVM_CAP_ARM_SET_DEVICE_ADDR:
212                 r = 1;
213                 break;
214         case KVM_CAP_NR_VCPUS:
215                 r = num_online_cpus();
216                 break;
217         case KVM_CAP_MAX_VCPUS:
218                 r = KVM_MAX_VCPUS;
219                 break;
220         case KVM_CAP_NR_MEMSLOTS:
221                 r = KVM_USER_MEM_SLOTS;
222                 break;
223         case KVM_CAP_MSI_DEVID:
224                 if (!kvm)
225                         r = -EINVAL;
226                 else
227                         r = kvm->arch.vgic.msis_require_devid;
228                 break;
229         case KVM_CAP_ARM_USER_IRQ:
230                 /*
231                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
232                  * (bump this number if adding more devices)
233                  */
234                 r = 1;
235                 break;
236         default:
237                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238                 break;
239         }
240         return r;
241 }
242 
243 long kvm_arch_dev_ioctl(struct file *filp,
244                         unsigned int ioctl, unsigned long arg)
245 {
246         return -EINVAL;
247 }
248 
249 
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
251 {
252         int err;
253         struct kvm_vcpu *vcpu;
254 
255         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
256                 err = -EBUSY;
257                 goto out;
258         }
259 
260         if (id >= kvm->arch.max_vcpus) {
261                 err = -EINVAL;
262                 goto out;
263         }
264 
265         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
266         if (!vcpu) {
267                 err = -ENOMEM;
268                 goto out;
269         }
270 
271         err = kvm_vcpu_init(vcpu, kvm, id);
272         if (err)
273                 goto free_vcpu;
274 
275         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276         if (err)
277                 goto vcpu_uninit;
278 
279         return vcpu;
280 vcpu_uninit:
281         kvm_vcpu_uninit(vcpu);
282 free_vcpu:
283         kmem_cache_free(kvm_vcpu_cache, vcpu);
284 out:
285         return ERR_PTR(err);
286 }
287 
288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
289 {
290         kvm_vgic_vcpu_early_init(vcpu);
291 }
292 
293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
294 {
295         kvm_mmu_free_memory_caches(vcpu);
296         kvm_timer_vcpu_terminate(vcpu);
297         kvm_vgic_vcpu_destroy(vcpu);
298         kvm_pmu_vcpu_destroy(vcpu);
299         kvm_vcpu_uninit(vcpu);
300         kmem_cache_free(kvm_vcpu_cache, vcpu);
301 }
302 
303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
304 {
305         kvm_arch_vcpu_free(vcpu);
306 }
307 
308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
309 {
310         return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
311                kvm_timer_should_fire(vcpu_ptimer(vcpu));
312 }
313 
314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
315 {
316         kvm_timer_schedule(vcpu);
317 }
318 
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
320 {
321         kvm_timer_unschedule(vcpu);
322 }
323 
324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
325 {
326         /* Force users to call KVM_ARM_VCPU_INIT */
327         vcpu->arch.target = -1;
328         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
329 
330         /* Set up the timer */
331         kvm_timer_vcpu_init(vcpu);
332 
333         kvm_arm_reset_debug_ptr(vcpu);
334 
335         return kvm_vgic_vcpu_init(vcpu);
336 }
337 
338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
339 {
340         int *last_ran;
341 
342         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
343 
344         /*
345          * We might get preempted before the vCPU actually runs, but
346          * over-invalidation doesn't affect correctness.
347          */
348         if (*last_ran != vcpu->vcpu_id) {
349                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
350                 *last_ran = vcpu->vcpu_id;
351         }
352 
353         vcpu->cpu = cpu;
354         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
355 
356         kvm_arm_set_running_vcpu(vcpu);
357 
358         kvm_vgic_load(vcpu);
359 }
360 
361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
362 {
363         kvm_vgic_put(vcpu);
364 
365         vcpu->cpu = -1;
366 
367         kvm_arm_set_running_vcpu(NULL);
368         kvm_timer_vcpu_put(vcpu);
369 }
370 
371 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
372                                     struct kvm_mp_state *mp_state)
373 {
374         if (vcpu->arch.power_off)
375                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
376         else
377                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
378 
379         return 0;
380 }
381 
382 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
383                                     struct kvm_mp_state *mp_state)
384 {
385         switch (mp_state->mp_state) {
386         case KVM_MP_STATE_RUNNABLE:
387                 vcpu->arch.power_off = false;
388                 break;
389         case KVM_MP_STATE_STOPPED:
390                 vcpu->arch.power_off = true;
391                 break;
392         default:
393                 return -EINVAL;
394         }
395 
396         return 0;
397 }
398 
399 /**
400  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
401  * @v:          The VCPU pointer
402  *
403  * If the guest CPU is not waiting for interrupts or an interrupt line is
404  * asserted, the CPU is by definition runnable.
405  */
406 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
407 {
408         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
409                 && !v->arch.power_off && !v->arch.pause);
410 }
411 
412 /* Just ensure a guest exit from a particular CPU */
413 static void exit_vm_noop(void *info)
414 {
415 }
416 
417 void force_vm_exit(const cpumask_t *mask)
418 {
419         preempt_disable();
420         smp_call_function_many(mask, exit_vm_noop, NULL, true);
421         preempt_enable();
422 }
423 
424 /**
425  * need_new_vmid_gen - check that the VMID is still valid
426  * @kvm: The VM's VMID to check
427  *
428  * return true if there is a new generation of VMIDs being used
429  *
430  * The hardware supports only 256 values with the value zero reserved for the
431  * host, so we check if an assigned value belongs to a previous generation,
432  * which which requires us to assign a new value. If we're the first to use a
433  * VMID for the new generation, we must flush necessary caches and TLBs on all
434  * CPUs.
435  */
436 static bool need_new_vmid_gen(struct kvm *kvm)
437 {
438         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
439 }
440 
441 /**
442  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
443  * @kvm The guest that we are about to run
444  *
445  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
446  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
447  * caches and TLBs.
448  */
449 static void update_vttbr(struct kvm *kvm)
450 {
451         phys_addr_t pgd_phys;
452         u64 vmid;
453 
454         if (!need_new_vmid_gen(kvm))
455                 return;
456 
457         spin_lock(&kvm_vmid_lock);
458 
459         /*
460          * We need to re-check the vmid_gen here to ensure that if another vcpu
461          * already allocated a valid vmid for this vm, then this vcpu should
462          * use the same vmid.
463          */
464         if (!need_new_vmid_gen(kvm)) {
465                 spin_unlock(&kvm_vmid_lock);
466                 return;
467         }
468 
469         /* First user of a new VMID generation? */
470         if (unlikely(kvm_next_vmid == 0)) {
471                 atomic64_inc(&kvm_vmid_gen);
472                 kvm_next_vmid = 1;
473 
474                 /*
475                  * On SMP we know no other CPUs can use this CPU's or each
476                  * other's VMID after force_vm_exit returns since the
477                  * kvm_vmid_lock blocks them from reentry to the guest.
478                  */
479                 force_vm_exit(cpu_all_mask);
480                 /*
481                  * Now broadcast TLB + ICACHE invalidation over the inner
482                  * shareable domain to make sure all data structures are
483                  * clean.
484                  */
485                 kvm_call_hyp(__kvm_flush_vm_context);
486         }
487 
488         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
489         kvm->arch.vmid = kvm_next_vmid;
490         kvm_next_vmid++;
491         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
492 
493         /* update vttbr to be used with the new vmid */
494         pgd_phys = virt_to_phys(kvm->arch.pgd);
495         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
496         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
497         kvm->arch.vttbr = pgd_phys | vmid;
498 
499         spin_unlock(&kvm_vmid_lock);
500 }
501 
502 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
503 {
504         struct kvm *kvm = vcpu->kvm;
505         int ret = 0;
506 
507         if (likely(vcpu->arch.has_run_once))
508                 return 0;
509 
510         vcpu->arch.has_run_once = true;
511 
512         /*
513          * Map the VGIC hardware resources before running a vcpu the first
514          * time on this VM.
515          */
516         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
517                 ret = kvm_vgic_map_resources(kvm);
518                 if (ret)
519                         return ret;
520         }
521 
522         ret = kvm_timer_enable(vcpu);
523 
524         return ret;
525 }
526 
527 bool kvm_arch_intc_initialized(struct kvm *kvm)
528 {
529         return vgic_initialized(kvm);
530 }
531 
532 void kvm_arm_halt_guest(struct kvm *kvm)
533 {
534         int i;
535         struct kvm_vcpu *vcpu;
536 
537         kvm_for_each_vcpu(i, vcpu, kvm)
538                 vcpu->arch.pause = true;
539         kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
540 }
541 
542 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
543 {
544         vcpu->arch.pause = true;
545         kvm_vcpu_kick(vcpu);
546 }
547 
548 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
549 {
550         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
551 
552         vcpu->arch.pause = false;
553         swake_up(wq);
554 }
555 
556 void kvm_arm_resume_guest(struct kvm *kvm)
557 {
558         int i;
559         struct kvm_vcpu *vcpu;
560 
561         kvm_for_each_vcpu(i, vcpu, kvm)
562                 kvm_arm_resume_vcpu(vcpu);
563 }
564 
565 static void vcpu_sleep(struct kvm_vcpu *vcpu)
566 {
567         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
568 
569         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
570                                        (!vcpu->arch.pause)));
571 }
572 
573 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
574 {
575         return vcpu->arch.target >= 0;
576 }
577 
578 /**
579  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
580  * @vcpu:       The VCPU pointer
581  * @run:        The kvm_run structure pointer used for userspace state exchange
582  *
583  * This function is called through the VCPU_RUN ioctl called from user space. It
584  * will execute VM code in a loop until the time slice for the process is used
585  * or some emulation is needed from user space in which case the function will
586  * return with return value 0 and with the kvm_run structure filled in with the
587  * required data for the requested emulation.
588  */
589 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
590 {
591         int ret;
592         sigset_t sigsaved;
593 
594         if (unlikely(!kvm_vcpu_initialized(vcpu)))
595                 return -ENOEXEC;
596 
597         ret = kvm_vcpu_first_run_init(vcpu);
598         if (ret)
599                 return ret;
600 
601         if (run->exit_reason == KVM_EXIT_MMIO) {
602                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
603                 if (ret)
604                         return ret;
605         }
606 
607         if (run->immediate_exit)
608                 return -EINTR;
609 
610         if (vcpu->sigset_active)
611                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
612 
613         ret = 1;
614         run->exit_reason = KVM_EXIT_UNKNOWN;
615         while (ret > 0) {
616                 /*
617                  * Check conditions before entering the guest
618                  */
619                 cond_resched();
620 
621                 update_vttbr(vcpu->kvm);
622 
623                 if (vcpu->arch.power_off || vcpu->arch.pause)
624                         vcpu_sleep(vcpu);
625 
626                 /*
627                  * Preparing the interrupts to be injected also
628                  * involves poking the GIC, which must be done in a
629                  * non-preemptible context.
630                  */
631                 preempt_disable();
632 
633                 kvm_pmu_flush_hwstate(vcpu);
634 
635                 kvm_timer_flush_hwstate(vcpu);
636                 kvm_vgic_flush_hwstate(vcpu);
637 
638                 local_irq_disable();
639 
640                 /*
641                  * If we have a singal pending, or need to notify a userspace
642                  * irqchip about timer or PMU level changes, then we exit (and
643                  * update the timer level state in kvm_timer_update_run
644                  * below).
645                  */
646                 if (signal_pending(current) ||
647                     kvm_timer_should_notify_user(vcpu) ||
648                     kvm_pmu_should_notify_user(vcpu)) {
649                         ret = -EINTR;
650                         run->exit_reason = KVM_EXIT_INTR;
651                 }
652 
653                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
654                         vcpu->arch.power_off || vcpu->arch.pause) {
655                         local_irq_enable();
656                         kvm_pmu_sync_hwstate(vcpu);
657                         kvm_timer_sync_hwstate(vcpu);
658                         kvm_vgic_sync_hwstate(vcpu);
659                         preempt_enable();
660                         continue;
661                 }
662 
663                 kvm_arm_setup_debug(vcpu);
664 
665                 /**************************************************************
666                  * Enter the guest
667                  */
668                 trace_kvm_entry(*vcpu_pc(vcpu));
669                 guest_enter_irqoff();
670                 vcpu->mode = IN_GUEST_MODE;
671 
672                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
673 
674                 vcpu->mode = OUTSIDE_GUEST_MODE;
675                 vcpu->stat.exits++;
676                 /*
677                  * Back from guest
678                  *************************************************************/
679 
680                 kvm_arm_clear_debug(vcpu);
681 
682                 /*
683                  * We may have taken a host interrupt in HYP mode (ie
684                  * while executing the guest). This interrupt is still
685                  * pending, as we haven't serviced it yet!
686                  *
687                  * We're now back in SVC mode, with interrupts
688                  * disabled.  Enabling the interrupts now will have
689                  * the effect of taking the interrupt again, in SVC
690                  * mode this time.
691                  */
692                 local_irq_enable();
693 
694                 /*
695                  * We do local_irq_enable() before calling guest_exit() so
696                  * that if a timer interrupt hits while running the guest we
697                  * account that tick as being spent in the guest.  We enable
698                  * preemption after calling guest_exit() so that if we get
699                  * preempted we make sure ticks after that is not counted as
700                  * guest time.
701                  */
702                 guest_exit();
703                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
704 
705                 /*
706                  * We must sync the PMU and timer state before the vgic state so
707                  * that the vgic can properly sample the updated state of the
708                  * interrupt line.
709                  */
710                 kvm_pmu_sync_hwstate(vcpu);
711                 kvm_timer_sync_hwstate(vcpu);
712 
713                 kvm_vgic_sync_hwstate(vcpu);
714 
715                 preempt_enable();
716 
717                 ret = handle_exit(vcpu, run, ret);
718         }
719 
720         /* Tell userspace about in-kernel device output levels */
721         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
722                 kvm_timer_update_run(vcpu);
723                 kvm_pmu_update_run(vcpu);
724         }
725 
726         if (vcpu->sigset_active)
727                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
728         return ret;
729 }
730 
731 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
732 {
733         int bit_index;
734         bool set;
735         unsigned long *ptr;
736 
737         if (number == KVM_ARM_IRQ_CPU_IRQ)
738                 bit_index = __ffs(HCR_VI);
739         else /* KVM_ARM_IRQ_CPU_FIQ */
740                 bit_index = __ffs(HCR_VF);
741 
742         ptr = (unsigned long *)&vcpu->arch.irq_lines;
743         if (level)
744                 set = test_and_set_bit(bit_index, ptr);
745         else
746                 set = test_and_clear_bit(bit_index, ptr);
747 
748         /*
749          * If we didn't change anything, no need to wake up or kick other CPUs
750          */
751         if (set == level)
752                 return 0;
753 
754         /*
755          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
756          * trigger a world-switch round on the running physical CPU to set the
757          * virtual IRQ/FIQ fields in the HCR appropriately.
758          */
759         kvm_vcpu_kick(vcpu);
760 
761         return 0;
762 }
763 
764 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
765                           bool line_status)
766 {
767         u32 irq = irq_level->irq;
768         unsigned int irq_type, vcpu_idx, irq_num;
769         int nrcpus = atomic_read(&kvm->online_vcpus);
770         struct kvm_vcpu *vcpu = NULL;
771         bool level = irq_level->level;
772 
773         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
774         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
775         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
776 
777         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
778 
779         switch (irq_type) {
780         case KVM_ARM_IRQ_TYPE_CPU:
781                 if (irqchip_in_kernel(kvm))
782                         return -ENXIO;
783 
784                 if (vcpu_idx >= nrcpus)
785                         return -EINVAL;
786 
787                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
788                 if (!vcpu)
789                         return -EINVAL;
790 
791                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
792                         return -EINVAL;
793 
794                 return vcpu_interrupt_line(vcpu, irq_num, level);
795         case KVM_ARM_IRQ_TYPE_PPI:
796                 if (!irqchip_in_kernel(kvm))
797                         return -ENXIO;
798 
799                 if (vcpu_idx >= nrcpus)
800                         return -EINVAL;
801 
802                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
803                 if (!vcpu)
804                         return -EINVAL;
805 
806                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
807                         return -EINVAL;
808 
809                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
810         case KVM_ARM_IRQ_TYPE_SPI:
811                 if (!irqchip_in_kernel(kvm))
812                         return -ENXIO;
813 
814                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
815                         return -EINVAL;
816 
817                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
818         }
819 
820         return -EINVAL;
821 }
822 
823 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
824                                const struct kvm_vcpu_init *init)
825 {
826         unsigned int i;
827         int phys_target = kvm_target_cpu();
828 
829         if (init->target != phys_target)
830                 return -EINVAL;
831 
832         /*
833          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
834          * use the same target.
835          */
836         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
837                 return -EINVAL;
838 
839         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
840         for (i = 0; i < sizeof(init->features) * 8; i++) {
841                 bool set = (init->features[i / 32] & (1 << (i % 32)));
842 
843                 if (set && i >= KVM_VCPU_MAX_FEATURES)
844                         return -ENOENT;
845 
846                 /*
847                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
848                  * use the same feature set.
849                  */
850                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
851                     test_bit(i, vcpu->arch.features) != set)
852                         return -EINVAL;
853 
854                 if (set)
855                         set_bit(i, vcpu->arch.features);
856         }
857 
858         vcpu->arch.target = phys_target;
859 
860         /* Now we know what it is, we can reset it. */
861         return kvm_reset_vcpu(vcpu);
862 }
863 
864 
865 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
866                                          struct kvm_vcpu_init *init)
867 {
868         int ret;
869 
870         ret = kvm_vcpu_set_target(vcpu, init);
871         if (ret)
872                 return ret;
873 
874         /*
875          * Ensure a rebooted VM will fault in RAM pages and detect if the
876          * guest MMU is turned off and flush the caches as needed.
877          */
878         if (vcpu->arch.has_run_once)
879                 stage2_unmap_vm(vcpu->kvm);
880 
881         vcpu_reset_hcr(vcpu);
882 
883         /*
884          * Handle the "start in power-off" case.
885          */
886         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
887                 vcpu->arch.power_off = true;
888         else
889                 vcpu->arch.power_off = false;
890 
891         return 0;
892 }
893 
894 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
895                                  struct kvm_device_attr *attr)
896 {
897         int ret = -ENXIO;
898 
899         switch (attr->group) {
900         default:
901                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
902                 break;
903         }
904 
905         return ret;
906 }
907 
908 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
909                                  struct kvm_device_attr *attr)
910 {
911         int ret = -ENXIO;
912 
913         switch (attr->group) {
914         default:
915                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
916                 break;
917         }
918 
919         return ret;
920 }
921 
922 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
923                                  struct kvm_device_attr *attr)
924 {
925         int ret = -ENXIO;
926 
927         switch (attr->group) {
928         default:
929                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
930                 break;
931         }
932 
933         return ret;
934 }
935 
936 long kvm_arch_vcpu_ioctl(struct file *filp,
937                          unsigned int ioctl, unsigned long arg)
938 {
939         struct kvm_vcpu *vcpu = filp->private_data;
940         void __user *argp = (void __user *)arg;
941         struct kvm_device_attr attr;
942 
943         switch (ioctl) {
944         case KVM_ARM_VCPU_INIT: {
945                 struct kvm_vcpu_init init;
946 
947                 if (copy_from_user(&init, argp, sizeof(init)))
948                         return -EFAULT;
949 
950                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
951         }
952         case KVM_SET_ONE_REG:
953         case KVM_GET_ONE_REG: {
954                 struct kvm_one_reg reg;
955 
956                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
957                         return -ENOEXEC;
958 
959                 if (copy_from_user(&reg, argp, sizeof(reg)))
960                         return -EFAULT;
961                 if (ioctl == KVM_SET_ONE_REG)
962                         return kvm_arm_set_reg(vcpu, &reg);
963                 else
964                         return kvm_arm_get_reg(vcpu, &reg);
965         }
966         case KVM_GET_REG_LIST: {
967                 struct kvm_reg_list __user *user_list = argp;
968                 struct kvm_reg_list reg_list;
969                 unsigned n;
970 
971                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
972                         return -ENOEXEC;
973 
974                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
975                         return -EFAULT;
976                 n = reg_list.n;
977                 reg_list.n = kvm_arm_num_regs(vcpu);
978                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
979                         return -EFAULT;
980                 if (n < reg_list.n)
981                         return -E2BIG;
982                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
983         }
984         case KVM_SET_DEVICE_ATTR: {
985                 if (copy_from_user(&attr, argp, sizeof(attr)))
986                         return -EFAULT;
987                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
988         }
989         case KVM_GET_DEVICE_ATTR: {
990                 if (copy_from_user(&attr, argp, sizeof(attr)))
991                         return -EFAULT;
992                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
993         }
994         case KVM_HAS_DEVICE_ATTR: {
995                 if (copy_from_user(&attr, argp, sizeof(attr)))
996                         return -EFAULT;
997                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
998         }
999         default:
1000                 return -EINVAL;
1001         }
1002 }
1003 
1004 /**
1005  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1006  * @kvm: kvm instance
1007  * @log: slot id and address to which we copy the log
1008  *
1009  * Steps 1-4 below provide general overview of dirty page logging. See
1010  * kvm_get_dirty_log_protect() function description for additional details.
1011  *
1012  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1013  * always flush the TLB (step 4) even if previous step failed  and the dirty
1014  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1015  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1016  * writes will be marked dirty for next log read.
1017  *
1018  *   1. Take a snapshot of the bit and clear it if needed.
1019  *   2. Write protect the corresponding page.
1020  *   3. Copy the snapshot to the userspace.
1021  *   4. Flush TLB's if needed.
1022  */
1023 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1024 {
1025         bool is_dirty = false;
1026         int r;
1027 
1028         mutex_lock(&kvm->slots_lock);
1029 
1030         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1031 
1032         if (is_dirty)
1033                 kvm_flush_remote_tlbs(kvm);
1034 
1035         mutex_unlock(&kvm->slots_lock);
1036         return r;
1037 }
1038 
1039 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1040                                         struct kvm_arm_device_addr *dev_addr)
1041 {
1042         unsigned long dev_id, type;
1043 
1044         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1045                 KVM_ARM_DEVICE_ID_SHIFT;
1046         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1047                 KVM_ARM_DEVICE_TYPE_SHIFT;
1048 
1049         switch (dev_id) {
1050         case KVM_ARM_DEVICE_VGIC_V2:
1051                 if (!vgic_present)
1052                         return -ENXIO;
1053                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1054         default:
1055                 return -ENODEV;
1056         }
1057 }
1058 
1059 long kvm_arch_vm_ioctl(struct file *filp,
1060                        unsigned int ioctl, unsigned long arg)
1061 {
1062         struct kvm *kvm = filp->private_data;
1063         void __user *argp = (void __user *)arg;
1064 
1065         switch (ioctl) {
1066         case KVM_CREATE_IRQCHIP: {
1067                 int ret;
1068                 if (!vgic_present)
1069                         return -ENXIO;
1070                 mutex_lock(&kvm->lock);
1071                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1072                 mutex_unlock(&kvm->lock);
1073                 return ret;
1074         }
1075         case KVM_ARM_SET_DEVICE_ADDR: {
1076                 struct kvm_arm_device_addr dev_addr;
1077 
1078                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1079                         return -EFAULT;
1080                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1081         }
1082         case KVM_ARM_PREFERRED_TARGET: {
1083                 int err;
1084                 struct kvm_vcpu_init init;
1085 
1086                 err = kvm_vcpu_preferred_target(&init);
1087                 if (err)
1088                         return err;
1089 
1090                 if (copy_to_user(argp, &init, sizeof(init)))
1091                         return -EFAULT;
1092 
1093                 return 0;
1094         }
1095         default:
1096                 return -EINVAL;
1097         }
1098 }
1099 
1100 static void cpu_init_hyp_mode(void *dummy)
1101 {
1102         phys_addr_t pgd_ptr;
1103         unsigned long hyp_stack_ptr;
1104         unsigned long stack_page;
1105         unsigned long vector_ptr;
1106 
1107         /* Switch from the HYP stub to our own HYP init vector */
1108         __hyp_set_vectors(kvm_get_idmap_vector());
1109 
1110         pgd_ptr = kvm_mmu_get_httbr();
1111         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1112         hyp_stack_ptr = stack_page + PAGE_SIZE;
1113         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1114 
1115         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1116         __cpu_init_stage2();
1117 
1118         kvm_arm_init_debug();
1119 }
1120 
1121 static void cpu_hyp_reset(void)
1122 {
1123         if (!is_kernel_in_hyp_mode())
1124                 __hyp_reset_vectors();
1125 }
1126 
1127 static void cpu_hyp_reinit(void)
1128 {
1129         cpu_hyp_reset();
1130 
1131         if (is_kernel_in_hyp_mode()) {
1132                 /*
1133                  * __cpu_init_stage2() is safe to call even if the PM
1134                  * event was cancelled before the CPU was reset.
1135                  */
1136                 __cpu_init_stage2();
1137                 kvm_timer_init_vhe();
1138         } else {
1139                 cpu_init_hyp_mode(NULL);
1140         }
1141 
1142         if (vgic_present)
1143                 kvm_vgic_init_cpu_hardware();
1144 }
1145 
1146 static void _kvm_arch_hardware_enable(void *discard)
1147 {
1148         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1149                 cpu_hyp_reinit();
1150                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1151         }
1152 }
1153 
1154 int kvm_arch_hardware_enable(void)
1155 {
1156         _kvm_arch_hardware_enable(NULL);
1157         return 0;
1158 }
1159 
1160 static void _kvm_arch_hardware_disable(void *discard)
1161 {
1162         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1163                 cpu_hyp_reset();
1164                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1165         }
1166 }
1167 
1168 void kvm_arch_hardware_disable(void)
1169 {
1170         _kvm_arch_hardware_disable(NULL);
1171 }
1172 
1173 #ifdef CONFIG_CPU_PM
1174 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1175                                     unsigned long cmd,
1176                                     void *v)
1177 {
1178         /*
1179          * kvm_arm_hardware_enabled is left with its old value over
1180          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1181          * re-enable hyp.
1182          */
1183         switch (cmd) {
1184         case CPU_PM_ENTER:
1185                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1186                         /*
1187                          * don't update kvm_arm_hardware_enabled here
1188                          * so that the hardware will be re-enabled
1189                          * when we resume. See below.
1190                          */
1191                         cpu_hyp_reset();
1192 
1193                 return NOTIFY_OK;
1194         case CPU_PM_EXIT:
1195                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1196                         /* The hardware was enabled before suspend. */
1197                         cpu_hyp_reinit();
1198 
1199                 return NOTIFY_OK;
1200 
1201         default:
1202                 return NOTIFY_DONE;
1203         }
1204 }
1205 
1206 static struct notifier_block hyp_init_cpu_pm_nb = {
1207         .notifier_call = hyp_init_cpu_pm_notifier,
1208 };
1209 
1210 static void __init hyp_cpu_pm_init(void)
1211 {
1212         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1213 }
1214 static void __init hyp_cpu_pm_exit(void)
1215 {
1216         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1217 }
1218 #else
1219 static inline void hyp_cpu_pm_init(void)
1220 {
1221 }
1222 static inline void hyp_cpu_pm_exit(void)
1223 {
1224 }
1225 #endif
1226 
1227 static void teardown_common_resources(void)
1228 {
1229         free_percpu(kvm_host_cpu_state);
1230 }
1231 
1232 static int init_common_resources(void)
1233 {
1234         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1235         if (!kvm_host_cpu_state) {
1236                 kvm_err("Cannot allocate host CPU state\n");
1237                 return -ENOMEM;
1238         }
1239 
1240         /* set size of VMID supported by CPU */
1241         kvm_vmid_bits = kvm_get_vmid_bits();
1242         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1243 
1244         return 0;
1245 }
1246 
1247 static int init_subsystems(void)
1248 {
1249         int err = 0;
1250 
1251         /*
1252          * Enable hardware so that subsystem initialisation can access EL2.
1253          */
1254         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1255 
1256         /*
1257          * Register CPU lower-power notifier
1258          */
1259         hyp_cpu_pm_init();
1260 
1261         /*
1262          * Init HYP view of VGIC
1263          */
1264         err = kvm_vgic_hyp_init();
1265         switch (err) {
1266         case 0:
1267                 vgic_present = true;
1268                 break;
1269         case -ENODEV:
1270         case -ENXIO:
1271                 vgic_present = false;
1272                 err = 0;
1273                 break;
1274         default:
1275                 goto out;
1276         }
1277 
1278         /*
1279          * Init HYP architected timer support
1280          */
1281         err = kvm_timer_hyp_init();
1282         if (err)
1283                 goto out;
1284 
1285         kvm_perf_init();
1286         kvm_coproc_table_init();
1287 
1288 out:
1289         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1290 
1291         return err;
1292 }
1293 
1294 static void teardown_hyp_mode(void)
1295 {
1296         int cpu;
1297 
1298         if (is_kernel_in_hyp_mode())
1299                 return;
1300 
1301         free_hyp_pgds();
1302         for_each_possible_cpu(cpu)
1303                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1304         hyp_cpu_pm_exit();
1305 }
1306 
1307 static int init_vhe_mode(void)
1308 {
1309         kvm_info("VHE mode initialized successfully\n");
1310         return 0;
1311 }
1312 
1313 /**
1314  * Inits Hyp-mode on all online CPUs
1315  */
1316 static int init_hyp_mode(void)
1317 {
1318         int cpu;
1319         int err = 0;
1320 
1321         /*
1322          * Allocate Hyp PGD and setup Hyp identity mapping
1323          */
1324         err = kvm_mmu_init();
1325         if (err)
1326                 goto out_err;
1327 
1328         /*
1329          * Allocate stack pages for Hypervisor-mode
1330          */
1331         for_each_possible_cpu(cpu) {
1332                 unsigned long stack_page;
1333 
1334                 stack_page = __get_free_page(GFP_KERNEL);
1335                 if (!stack_page) {
1336                         err = -ENOMEM;
1337                         goto out_err;
1338                 }
1339 
1340                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1341         }
1342 
1343         /*
1344          * Map the Hyp-code called directly from the host
1345          */
1346         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1347                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1348         if (err) {
1349                 kvm_err("Cannot map world-switch code\n");
1350                 goto out_err;
1351         }
1352 
1353         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1354                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1355         if (err) {
1356                 kvm_err("Cannot map rodata section\n");
1357                 goto out_err;
1358         }
1359 
1360         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1361                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1362         if (err) {
1363                 kvm_err("Cannot map bss section\n");
1364                 goto out_err;
1365         }
1366 
1367         /*
1368          * Map the Hyp stack pages
1369          */
1370         for_each_possible_cpu(cpu) {
1371                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1372                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1373                                           PAGE_HYP);
1374 
1375                 if (err) {
1376                         kvm_err("Cannot map hyp stack\n");
1377                         goto out_err;
1378                 }
1379         }
1380 
1381         for_each_possible_cpu(cpu) {
1382                 kvm_cpu_context_t *cpu_ctxt;
1383 
1384                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1385                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1386 
1387                 if (err) {
1388                         kvm_err("Cannot map host CPU state: %d\n", err);
1389                         goto out_err;
1390                 }
1391         }
1392 
1393         kvm_info("Hyp mode initialized successfully\n");
1394 
1395         return 0;
1396 
1397 out_err:
1398         teardown_hyp_mode();
1399         kvm_err("error initializing Hyp mode: %d\n", err);
1400         return err;
1401 }
1402 
1403 static void check_kvm_target_cpu(void *ret)
1404 {
1405         *(int *)ret = kvm_target_cpu();
1406 }
1407 
1408 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1409 {
1410         struct kvm_vcpu *vcpu;
1411         int i;
1412 
1413         mpidr &= MPIDR_HWID_BITMASK;
1414         kvm_for_each_vcpu(i, vcpu, kvm) {
1415                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1416                         return vcpu;
1417         }
1418         return NULL;
1419 }
1420 
1421 /**
1422  * Initialize Hyp-mode and memory mappings on all CPUs.
1423  */
1424 int kvm_arch_init(void *opaque)
1425 {
1426         int err;
1427         int ret, cpu;
1428 
1429         if (!is_hyp_mode_available()) {
1430                 kvm_err("HYP mode not available\n");
1431                 return -ENODEV;
1432         }
1433 
1434         for_each_online_cpu(cpu) {
1435                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1436                 if (ret < 0) {
1437                         kvm_err("Error, CPU %d not supported!\n", cpu);
1438                         return -ENODEV;
1439                 }
1440         }
1441 
1442         err = init_common_resources();
1443         if (err)
1444                 return err;
1445 
1446         if (is_kernel_in_hyp_mode())
1447                 err = init_vhe_mode();
1448         else
1449                 err = init_hyp_mode();
1450         if (err)
1451                 goto out_err;
1452 
1453         err = init_subsystems();
1454         if (err)
1455                 goto out_hyp;
1456 
1457         return 0;
1458 
1459 out_hyp:
1460         teardown_hyp_mode();
1461 out_err:
1462         teardown_common_resources();
1463         return err;
1464 }
1465 
1466 /* NOP: Compiling as a module not supported */
1467 void kvm_arch_exit(void)
1468 {
1469         kvm_perf_teardown();
1470 }
1471 
1472 static int arm_init(void)
1473 {
1474         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1475         return rc;
1476 }
1477 
1478 module_init(arm_init);
1479 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp