1 /* 2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 3 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License, version 2, as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 17 */ 18 19 #include <linux/cpu_pm.h> 20 #include <linux/errno.h> 21 #include <linux/err.h> 22 #include <linux/kvm_host.h> 23 #include <linux/list.h> 24 #include <linux/module.h> 25 #include <linux/vmalloc.h> 26 #include <linux/fs.h> 27 #include <linux/mman.h> 28 #include <linux/sched.h> 29 #include <linux/kvm.h> 30 #include <trace/events/kvm.h> 31 #include <kvm/arm_pmu.h> 32 33 #define CREATE_TRACE_POINTS 34 #include "trace.h" 35 36 #include <linux/uaccess.h> 37 #include <asm/ptrace.h> 38 #include <asm/mman.h> 39 #include <asm/tlbflush.h> 40 #include <asm/cacheflush.h> 41 #include <asm/virt.h> 42 #include <asm/kvm_arm.h> 43 #include <asm/kvm_asm.h> 44 #include <asm/kvm_mmu.h> 45 #include <asm/kvm_emulate.h> 46 #include <asm/kvm_coproc.h> 47 #include <asm/kvm_psci.h> 48 #include <asm/sections.h> 49 50 #ifdef REQUIRES_VIRT 51 __asm__(".arch_extension virt"); 52 #endif 53 54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state; 56 57 /* Per-CPU variable containing the currently running vcpu. */ 58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu); 59 60 /* The VMID used in the VTTBR */ 61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 62 static u32 kvm_next_vmid; 63 static unsigned int kvm_vmid_bits __read_mostly; 64 static DEFINE_SPINLOCK(kvm_vmid_lock); 65 66 static bool vgic_present; 67 68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); 69 70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu) 71 { 72 BUG_ON(preemptible()); 73 __this_cpu_write(kvm_arm_running_vcpu, vcpu); 74 } 75 76 /** 77 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU. 78 * Must be called from non-preemptible context 79 */ 80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void) 81 { 82 BUG_ON(preemptible()); 83 return __this_cpu_read(kvm_arm_running_vcpu); 84 } 85 86 /** 87 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. 88 */ 89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 90 { 91 return &kvm_arm_running_vcpu; 92 } 93 94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 95 { 96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 97 } 98 99 int kvm_arch_hardware_setup(void) 100 { 101 return 0; 102 } 103 104 void kvm_arch_check_processor_compat(void *rtn) 105 { 106 *(int *)rtn = 0; 107 } 108 109 110 /** 111 * kvm_arch_init_vm - initializes a VM data structure 112 * @kvm: pointer to the KVM struct 113 */ 114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 115 { 116 int ret, cpu; 117 118 if (type) 119 return -EINVAL; 120 121 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran)); 122 if (!kvm->arch.last_vcpu_ran) 123 return -ENOMEM; 124 125 for_each_possible_cpu(cpu) 126 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1; 127 128 ret = kvm_alloc_stage2_pgd(kvm); 129 if (ret) 130 goto out_fail_alloc; 131 132 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); 133 if (ret) 134 goto out_free_stage2_pgd; 135 136 kvm_vgic_early_init(kvm); 137 138 /* Mark the initial VMID generation invalid */ 139 kvm->arch.vmid_gen = 0; 140 141 /* The maximum number of VCPUs is limited by the host's GIC model */ 142 kvm->arch.max_vcpus = vgic_present ? 143 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 144 145 return ret; 146 out_free_stage2_pgd: 147 kvm_free_stage2_pgd(kvm); 148 out_fail_alloc: 149 free_percpu(kvm->arch.last_vcpu_ran); 150 kvm->arch.last_vcpu_ran = NULL; 151 return ret; 152 } 153 154 bool kvm_arch_has_vcpu_debugfs(void) 155 { 156 return false; 157 } 158 159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 160 { 161 return 0; 162 } 163 164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 165 { 166 return VM_FAULT_SIGBUS; 167 } 168 169 170 /** 171 * kvm_arch_destroy_vm - destroy the VM data structure 172 * @kvm: pointer to the KVM struct 173 */ 174 void kvm_arch_destroy_vm(struct kvm *kvm) 175 { 176 int i; 177 178 free_percpu(kvm->arch.last_vcpu_ran); 179 kvm->arch.last_vcpu_ran = NULL; 180 181 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 182 if (kvm->vcpus[i]) { 183 kvm_arch_vcpu_free(kvm->vcpus[i]); 184 kvm->vcpus[i] = NULL; 185 } 186 } 187 188 kvm_vgic_destroy(kvm); 189 } 190 191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 192 { 193 int r; 194 switch (ext) { 195 case KVM_CAP_IRQCHIP: 196 r = vgic_present; 197 break; 198 case KVM_CAP_IOEVENTFD: 199 case KVM_CAP_DEVICE_CTRL: 200 case KVM_CAP_USER_MEMORY: 201 case KVM_CAP_SYNC_MMU: 202 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 203 case KVM_CAP_ONE_REG: 204 case KVM_CAP_ARM_PSCI: 205 case KVM_CAP_ARM_PSCI_0_2: 206 case KVM_CAP_READONLY_MEM: 207 case KVM_CAP_MP_STATE: 208 case KVM_CAP_IMMEDIATE_EXIT: 209 r = 1; 210 break; 211 case KVM_CAP_ARM_SET_DEVICE_ADDR: 212 r = 1; 213 break; 214 case KVM_CAP_NR_VCPUS: 215 r = num_online_cpus(); 216 break; 217 case KVM_CAP_MAX_VCPUS: 218 r = KVM_MAX_VCPUS; 219 break; 220 case KVM_CAP_NR_MEMSLOTS: 221 r = KVM_USER_MEM_SLOTS; 222 break; 223 case KVM_CAP_MSI_DEVID: 224 if (!kvm) 225 r = -EINVAL; 226 else 227 r = kvm->arch.vgic.msis_require_devid; 228 break; 229 case KVM_CAP_ARM_USER_IRQ: 230 /* 231 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 232 * (bump this number if adding more devices) 233 */ 234 r = 1; 235 break; 236 default: 237 r = kvm_arch_dev_ioctl_check_extension(kvm, ext); 238 break; 239 } 240 return r; 241 } 242 243 long kvm_arch_dev_ioctl(struct file *filp, 244 unsigned int ioctl, unsigned long arg) 245 { 246 return -EINVAL; 247 } 248 249 250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 251 { 252 int err; 253 struct kvm_vcpu *vcpu; 254 255 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) { 256 err = -EBUSY; 257 goto out; 258 } 259 260 if (id >= kvm->arch.max_vcpus) { 261 err = -EINVAL; 262 goto out; 263 } 264 265 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 266 if (!vcpu) { 267 err = -ENOMEM; 268 goto out; 269 } 270 271 err = kvm_vcpu_init(vcpu, kvm, id); 272 if (err) 273 goto free_vcpu; 274 275 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); 276 if (err) 277 goto vcpu_uninit; 278 279 return vcpu; 280 vcpu_uninit: 281 kvm_vcpu_uninit(vcpu); 282 free_vcpu: 283 kmem_cache_free(kvm_vcpu_cache, vcpu); 284 out: 285 return ERR_PTR(err); 286 } 287 288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 289 { 290 kvm_vgic_vcpu_early_init(vcpu); 291 } 292 293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 294 { 295 kvm_mmu_free_memory_caches(vcpu); 296 kvm_timer_vcpu_terminate(vcpu); 297 kvm_vgic_vcpu_destroy(vcpu); 298 kvm_pmu_vcpu_destroy(vcpu); 299 kvm_vcpu_uninit(vcpu); 300 kmem_cache_free(kvm_vcpu_cache, vcpu); 301 } 302 303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 304 { 305 kvm_arch_vcpu_free(vcpu); 306 } 307 308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 309 { 310 return kvm_timer_should_fire(vcpu_vtimer(vcpu)) || 311 kvm_timer_should_fire(vcpu_ptimer(vcpu)); 312 } 313 314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 315 { 316 kvm_timer_schedule(vcpu); 317 } 318 319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 320 { 321 kvm_timer_unschedule(vcpu); 322 } 323 324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 325 { 326 /* Force users to call KVM_ARM_VCPU_INIT */ 327 vcpu->arch.target = -1; 328 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 329 330 /* Set up the timer */ 331 kvm_timer_vcpu_init(vcpu); 332 333 kvm_arm_reset_debug_ptr(vcpu); 334 335 return kvm_vgic_vcpu_init(vcpu); 336 } 337 338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 339 { 340 int *last_ran; 341 342 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran); 343 344 /* 345 * We might get preempted before the vCPU actually runs, but 346 * over-invalidation doesn't affect correctness. 347 */ 348 if (*last_ran != vcpu->vcpu_id) { 349 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu); 350 *last_ran = vcpu->vcpu_id; 351 } 352 353 vcpu->cpu = cpu; 354 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state); 355 356 kvm_arm_set_running_vcpu(vcpu); 357 358 kvm_vgic_load(vcpu); 359 } 360 361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 362 { 363 kvm_vgic_put(vcpu); 364 365 vcpu->cpu = -1; 366 367 kvm_arm_set_running_vcpu(NULL); 368 kvm_timer_vcpu_put(vcpu); 369 } 370 371 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 372 struct kvm_mp_state *mp_state) 373 { 374 if (vcpu->arch.power_off) 375 mp_state->mp_state = KVM_MP_STATE_STOPPED; 376 else 377 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 378 379 return 0; 380 } 381 382 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 383 struct kvm_mp_state *mp_state) 384 { 385 switch (mp_state->mp_state) { 386 case KVM_MP_STATE_RUNNABLE: 387 vcpu->arch.power_off = false; 388 break; 389 case KVM_MP_STATE_STOPPED: 390 vcpu->arch.power_off = true; 391 break; 392 default: 393 return -EINVAL; 394 } 395 396 return 0; 397 } 398 399 /** 400 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 401 * @v: The VCPU pointer 402 * 403 * If the guest CPU is not waiting for interrupts or an interrupt line is 404 * asserted, the CPU is by definition runnable. 405 */ 406 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 407 { 408 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v)) 409 && !v->arch.power_off && !v->arch.pause); 410 } 411 412 /* Just ensure a guest exit from a particular CPU */ 413 static void exit_vm_noop(void *info) 414 { 415 } 416 417 void force_vm_exit(const cpumask_t *mask) 418 { 419 preempt_disable(); 420 smp_call_function_many(mask, exit_vm_noop, NULL, true); 421 preempt_enable(); 422 } 423 424 /** 425 * need_new_vmid_gen - check that the VMID is still valid 426 * @kvm: The VM's VMID to check 427 * 428 * return true if there is a new generation of VMIDs being used 429 * 430 * The hardware supports only 256 values with the value zero reserved for the 431 * host, so we check if an assigned value belongs to a previous generation, 432 * which which requires us to assign a new value. If we're the first to use a 433 * VMID for the new generation, we must flush necessary caches and TLBs on all 434 * CPUs. 435 */ 436 static bool need_new_vmid_gen(struct kvm *kvm) 437 { 438 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen)); 439 } 440 441 /** 442 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs 443 * @kvm The guest that we are about to run 444 * 445 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the 446 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding 447 * caches and TLBs. 448 */ 449 static void update_vttbr(struct kvm *kvm) 450 { 451 phys_addr_t pgd_phys; 452 u64 vmid; 453 454 if (!need_new_vmid_gen(kvm)) 455 return; 456 457 spin_lock(&kvm_vmid_lock); 458 459 /* 460 * We need to re-check the vmid_gen here to ensure that if another vcpu 461 * already allocated a valid vmid for this vm, then this vcpu should 462 * use the same vmid. 463 */ 464 if (!need_new_vmid_gen(kvm)) { 465 spin_unlock(&kvm_vmid_lock); 466 return; 467 } 468 469 /* First user of a new VMID generation? */ 470 if (unlikely(kvm_next_vmid == 0)) { 471 atomic64_inc(&kvm_vmid_gen); 472 kvm_next_vmid = 1; 473 474 /* 475 * On SMP we know no other CPUs can use this CPU's or each 476 * other's VMID after force_vm_exit returns since the 477 * kvm_vmid_lock blocks them from reentry to the guest. 478 */ 479 force_vm_exit(cpu_all_mask); 480 /* 481 * Now broadcast TLB + ICACHE invalidation over the inner 482 * shareable domain to make sure all data structures are 483 * clean. 484 */ 485 kvm_call_hyp(__kvm_flush_vm_context); 486 } 487 488 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen); 489 kvm->arch.vmid = kvm_next_vmid; 490 kvm_next_vmid++; 491 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1; 492 493 /* update vttbr to be used with the new vmid */ 494 pgd_phys = virt_to_phys(kvm->arch.pgd); 495 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK); 496 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits); 497 kvm->arch.vttbr = pgd_phys | vmid; 498 499 spin_unlock(&kvm_vmid_lock); 500 } 501 502 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) 503 { 504 struct kvm *kvm = vcpu->kvm; 505 int ret = 0; 506 507 if (likely(vcpu->arch.has_run_once)) 508 return 0; 509 510 vcpu->arch.has_run_once = true; 511 512 /* 513 * Map the VGIC hardware resources before running a vcpu the first 514 * time on this VM. 515 */ 516 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) { 517 ret = kvm_vgic_map_resources(kvm); 518 if (ret) 519 return ret; 520 } 521 522 ret = kvm_timer_enable(vcpu); 523 524 return ret; 525 } 526 527 bool kvm_arch_intc_initialized(struct kvm *kvm) 528 { 529 return vgic_initialized(kvm); 530 } 531 532 void kvm_arm_halt_guest(struct kvm *kvm) 533 { 534 int i; 535 struct kvm_vcpu *vcpu; 536 537 kvm_for_each_vcpu(i, vcpu, kvm) 538 vcpu->arch.pause = true; 539 kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT); 540 } 541 542 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu) 543 { 544 vcpu->arch.pause = true; 545 kvm_vcpu_kick(vcpu); 546 } 547 548 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu) 549 { 550 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); 551 552 vcpu->arch.pause = false; 553 swake_up(wq); 554 } 555 556 void kvm_arm_resume_guest(struct kvm *kvm) 557 { 558 int i; 559 struct kvm_vcpu *vcpu; 560 561 kvm_for_each_vcpu(i, vcpu, kvm) 562 kvm_arm_resume_vcpu(vcpu); 563 } 564 565 static void vcpu_sleep(struct kvm_vcpu *vcpu) 566 { 567 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); 568 569 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) && 570 (!vcpu->arch.pause))); 571 } 572 573 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 574 { 575 return vcpu->arch.target >= 0; 576 } 577 578 /** 579 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 580 * @vcpu: The VCPU pointer 581 * @run: The kvm_run structure pointer used for userspace state exchange 582 * 583 * This function is called through the VCPU_RUN ioctl called from user space. It 584 * will execute VM code in a loop until the time slice for the process is used 585 * or some emulation is needed from user space in which case the function will 586 * return with return value 0 and with the kvm_run structure filled in with the 587 * required data for the requested emulation. 588 */ 589 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 590 { 591 int ret; 592 sigset_t sigsaved; 593 594 if (unlikely(!kvm_vcpu_initialized(vcpu))) 595 return -ENOEXEC; 596 597 ret = kvm_vcpu_first_run_init(vcpu); 598 if (ret) 599 return ret; 600 601 if (run->exit_reason == KVM_EXIT_MMIO) { 602 ret = kvm_handle_mmio_return(vcpu, vcpu->run); 603 if (ret) 604 return ret; 605 } 606 607 if (run->immediate_exit) 608 return -EINTR; 609 610 if (vcpu->sigset_active) 611 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 612 613 ret = 1; 614 run->exit_reason = KVM_EXIT_UNKNOWN; 615 while (ret > 0) { 616 /* 617 * Check conditions before entering the guest 618 */ 619 cond_resched(); 620 621 update_vttbr(vcpu->kvm); 622 623 if (vcpu->arch.power_off || vcpu->arch.pause) 624 vcpu_sleep(vcpu); 625 626 /* 627 * Preparing the interrupts to be injected also 628 * involves poking the GIC, which must be done in a 629 * non-preemptible context. 630 */ 631 preempt_disable(); 632 633 kvm_pmu_flush_hwstate(vcpu); 634 635 kvm_timer_flush_hwstate(vcpu); 636 kvm_vgic_flush_hwstate(vcpu); 637 638 local_irq_disable(); 639 640 /* 641 * If we have a singal pending, or need to notify a userspace 642 * irqchip about timer or PMU level changes, then we exit (and 643 * update the timer level state in kvm_timer_update_run 644 * below). 645 */ 646 if (signal_pending(current) || 647 kvm_timer_should_notify_user(vcpu) || 648 kvm_pmu_should_notify_user(vcpu)) { 649 ret = -EINTR; 650 run->exit_reason = KVM_EXIT_INTR; 651 } 652 653 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) || 654 vcpu->arch.power_off || vcpu->arch.pause) { 655 local_irq_enable(); 656 kvm_pmu_sync_hwstate(vcpu); 657 kvm_timer_sync_hwstate(vcpu); 658 kvm_vgic_sync_hwstate(vcpu); 659 preempt_enable(); 660 continue; 661 } 662 663 kvm_arm_setup_debug(vcpu); 664 665 /************************************************************** 666 * Enter the guest 667 */ 668 trace_kvm_entry(*vcpu_pc(vcpu)); 669 guest_enter_irqoff(); 670 vcpu->mode = IN_GUEST_MODE; 671 672 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); 673 674 vcpu->mode = OUTSIDE_GUEST_MODE; 675 vcpu->stat.exits++; 676 /* 677 * Back from guest 678 *************************************************************/ 679 680 kvm_arm_clear_debug(vcpu); 681 682 /* 683 * We may have taken a host interrupt in HYP mode (ie 684 * while executing the guest). This interrupt is still 685 * pending, as we haven't serviced it yet! 686 * 687 * We're now back in SVC mode, with interrupts 688 * disabled. Enabling the interrupts now will have 689 * the effect of taking the interrupt again, in SVC 690 * mode this time. 691 */ 692 local_irq_enable(); 693 694 /* 695 * We do local_irq_enable() before calling guest_exit() so 696 * that if a timer interrupt hits while running the guest we 697 * account that tick as being spent in the guest. We enable 698 * preemption after calling guest_exit() so that if we get 699 * preempted we make sure ticks after that is not counted as 700 * guest time. 701 */ 702 guest_exit(); 703 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 704 705 /* 706 * We must sync the PMU and timer state before the vgic state so 707 * that the vgic can properly sample the updated state of the 708 * interrupt line. 709 */ 710 kvm_pmu_sync_hwstate(vcpu); 711 kvm_timer_sync_hwstate(vcpu); 712 713 kvm_vgic_sync_hwstate(vcpu); 714 715 preempt_enable(); 716 717 ret = handle_exit(vcpu, run, ret); 718 } 719 720 /* Tell userspace about in-kernel device output levels */ 721 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 722 kvm_timer_update_run(vcpu); 723 kvm_pmu_update_run(vcpu); 724 } 725 726 if (vcpu->sigset_active) 727 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 728 return ret; 729 } 730 731 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 732 { 733 int bit_index; 734 bool set; 735 unsigned long *ptr; 736 737 if (number == KVM_ARM_IRQ_CPU_IRQ) 738 bit_index = __ffs(HCR_VI); 739 else /* KVM_ARM_IRQ_CPU_FIQ */ 740 bit_index = __ffs(HCR_VF); 741 742 ptr = (unsigned long *)&vcpu->arch.irq_lines; 743 if (level) 744 set = test_and_set_bit(bit_index, ptr); 745 else 746 set = test_and_clear_bit(bit_index, ptr); 747 748 /* 749 * If we didn't change anything, no need to wake up or kick other CPUs 750 */ 751 if (set == level) 752 return 0; 753 754 /* 755 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 756 * trigger a world-switch round on the running physical CPU to set the 757 * virtual IRQ/FIQ fields in the HCR appropriately. 758 */ 759 kvm_vcpu_kick(vcpu); 760 761 return 0; 762 } 763 764 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 765 bool line_status) 766 { 767 u32 irq = irq_level->irq; 768 unsigned int irq_type, vcpu_idx, irq_num; 769 int nrcpus = atomic_read(&kvm->online_vcpus); 770 struct kvm_vcpu *vcpu = NULL; 771 bool level = irq_level->level; 772 773 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 774 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 775 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 776 777 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 778 779 switch (irq_type) { 780 case KVM_ARM_IRQ_TYPE_CPU: 781 if (irqchip_in_kernel(kvm)) 782 return -ENXIO; 783 784 if (vcpu_idx >= nrcpus) 785 return -EINVAL; 786 787 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 788 if (!vcpu) 789 return -EINVAL; 790 791 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 792 return -EINVAL; 793 794 return vcpu_interrupt_line(vcpu, irq_num, level); 795 case KVM_ARM_IRQ_TYPE_PPI: 796 if (!irqchip_in_kernel(kvm)) 797 return -ENXIO; 798 799 if (vcpu_idx >= nrcpus) 800 return -EINVAL; 801 802 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 803 if (!vcpu) 804 return -EINVAL; 805 806 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 807 return -EINVAL; 808 809 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level); 810 case KVM_ARM_IRQ_TYPE_SPI: 811 if (!irqchip_in_kernel(kvm)) 812 return -ENXIO; 813 814 if (irq_num < VGIC_NR_PRIVATE_IRQS) 815 return -EINVAL; 816 817 return kvm_vgic_inject_irq(kvm, 0, irq_num, level); 818 } 819 820 return -EINVAL; 821 } 822 823 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 824 const struct kvm_vcpu_init *init) 825 { 826 unsigned int i; 827 int phys_target = kvm_target_cpu(); 828 829 if (init->target != phys_target) 830 return -EINVAL; 831 832 /* 833 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 834 * use the same target. 835 */ 836 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) 837 return -EINVAL; 838 839 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 840 for (i = 0; i < sizeof(init->features) * 8; i++) { 841 bool set = (init->features[i / 32] & (1 << (i % 32))); 842 843 if (set && i >= KVM_VCPU_MAX_FEATURES) 844 return -ENOENT; 845 846 /* 847 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 848 * use the same feature set. 849 */ 850 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && 851 test_bit(i, vcpu->arch.features) != set) 852 return -EINVAL; 853 854 if (set) 855 set_bit(i, vcpu->arch.features); 856 } 857 858 vcpu->arch.target = phys_target; 859 860 /* Now we know what it is, we can reset it. */ 861 return kvm_reset_vcpu(vcpu); 862 } 863 864 865 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 866 struct kvm_vcpu_init *init) 867 { 868 int ret; 869 870 ret = kvm_vcpu_set_target(vcpu, init); 871 if (ret) 872 return ret; 873 874 /* 875 * Ensure a rebooted VM will fault in RAM pages and detect if the 876 * guest MMU is turned off and flush the caches as needed. 877 */ 878 if (vcpu->arch.has_run_once) 879 stage2_unmap_vm(vcpu->kvm); 880 881 vcpu_reset_hcr(vcpu); 882 883 /* 884 * Handle the "start in power-off" case. 885 */ 886 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) 887 vcpu->arch.power_off = true; 888 else 889 vcpu->arch.power_off = false; 890 891 return 0; 892 } 893 894 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 895 struct kvm_device_attr *attr) 896 { 897 int ret = -ENXIO; 898 899 switch (attr->group) { 900 default: 901 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 902 break; 903 } 904 905 return ret; 906 } 907 908 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 909 struct kvm_device_attr *attr) 910 { 911 int ret = -ENXIO; 912 913 switch (attr->group) { 914 default: 915 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 916 break; 917 } 918 919 return ret; 920 } 921 922 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 923 struct kvm_device_attr *attr) 924 { 925 int ret = -ENXIO; 926 927 switch (attr->group) { 928 default: 929 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 930 break; 931 } 932 933 return ret; 934 } 935 936 long kvm_arch_vcpu_ioctl(struct file *filp, 937 unsigned int ioctl, unsigned long arg) 938 { 939 struct kvm_vcpu *vcpu = filp->private_data; 940 void __user *argp = (void __user *)arg; 941 struct kvm_device_attr attr; 942 943 switch (ioctl) { 944 case KVM_ARM_VCPU_INIT: { 945 struct kvm_vcpu_init init; 946 947 if (copy_from_user(&init, argp, sizeof(init))) 948 return -EFAULT; 949 950 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 951 } 952 case KVM_SET_ONE_REG: 953 case KVM_GET_ONE_REG: { 954 struct kvm_one_reg reg; 955 956 if (unlikely(!kvm_vcpu_initialized(vcpu))) 957 return -ENOEXEC; 958 959 if (copy_from_user(®, argp, sizeof(reg))) 960 return -EFAULT; 961 if (ioctl == KVM_SET_ONE_REG) 962 return kvm_arm_set_reg(vcpu, ®); 963 else 964 return kvm_arm_get_reg(vcpu, ®); 965 } 966 case KVM_GET_REG_LIST: { 967 struct kvm_reg_list __user *user_list = argp; 968 struct kvm_reg_list reg_list; 969 unsigned n; 970 971 if (unlikely(!kvm_vcpu_initialized(vcpu))) 972 return -ENOEXEC; 973 974 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 975 return -EFAULT; 976 n = reg_list.n; 977 reg_list.n = kvm_arm_num_regs(vcpu); 978 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 979 return -EFAULT; 980 if (n < reg_list.n) 981 return -E2BIG; 982 return kvm_arm_copy_reg_indices(vcpu, user_list->reg); 983 } 984 case KVM_SET_DEVICE_ATTR: { 985 if (copy_from_user(&attr, argp, sizeof(attr))) 986 return -EFAULT; 987 return kvm_arm_vcpu_set_attr(vcpu, &attr); 988 } 989 case KVM_GET_DEVICE_ATTR: { 990 if (copy_from_user(&attr, argp, sizeof(attr))) 991 return -EFAULT; 992 return kvm_arm_vcpu_get_attr(vcpu, &attr); 993 } 994 case KVM_HAS_DEVICE_ATTR: { 995 if (copy_from_user(&attr, argp, sizeof(attr))) 996 return -EFAULT; 997 return kvm_arm_vcpu_has_attr(vcpu, &attr); 998 } 999 default: 1000 return -EINVAL; 1001 } 1002 } 1003 1004 /** 1005 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1006 * @kvm: kvm instance 1007 * @log: slot id and address to which we copy the log 1008 * 1009 * Steps 1-4 below provide general overview of dirty page logging. See 1010 * kvm_get_dirty_log_protect() function description for additional details. 1011 * 1012 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1013 * always flush the TLB (step 4) even if previous step failed and the dirty 1014 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1015 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1016 * writes will be marked dirty for next log read. 1017 * 1018 * 1. Take a snapshot of the bit and clear it if needed. 1019 * 2. Write protect the corresponding page. 1020 * 3. Copy the snapshot to the userspace. 1021 * 4. Flush TLB's if needed. 1022 */ 1023 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 1024 { 1025 bool is_dirty = false; 1026 int r; 1027 1028 mutex_lock(&kvm->slots_lock); 1029 1030 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 1031 1032 if (is_dirty) 1033 kvm_flush_remote_tlbs(kvm); 1034 1035 mutex_unlock(&kvm->slots_lock); 1036 return r; 1037 } 1038 1039 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1040 struct kvm_arm_device_addr *dev_addr) 1041 { 1042 unsigned long dev_id, type; 1043 1044 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> 1045 KVM_ARM_DEVICE_ID_SHIFT; 1046 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> 1047 KVM_ARM_DEVICE_TYPE_SHIFT; 1048 1049 switch (dev_id) { 1050 case KVM_ARM_DEVICE_VGIC_V2: 1051 if (!vgic_present) 1052 return -ENXIO; 1053 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); 1054 default: 1055 return -ENODEV; 1056 } 1057 } 1058 1059 long kvm_arch_vm_ioctl(struct file *filp, 1060 unsigned int ioctl, unsigned long arg) 1061 { 1062 struct kvm *kvm = filp->private_data; 1063 void __user *argp = (void __user *)arg; 1064 1065 switch (ioctl) { 1066 case KVM_CREATE_IRQCHIP: { 1067 int ret; 1068 if (!vgic_present) 1069 return -ENXIO; 1070 mutex_lock(&kvm->lock); 1071 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1072 mutex_unlock(&kvm->lock); 1073 return ret; 1074 } 1075 case KVM_ARM_SET_DEVICE_ADDR: { 1076 struct kvm_arm_device_addr dev_addr; 1077 1078 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1079 return -EFAULT; 1080 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1081 } 1082 case KVM_ARM_PREFERRED_TARGET: { 1083 int err; 1084 struct kvm_vcpu_init init; 1085 1086 err = kvm_vcpu_preferred_target(&init); 1087 if (err) 1088 return err; 1089 1090 if (copy_to_user(argp, &init, sizeof(init))) 1091 return -EFAULT; 1092 1093 return 0; 1094 } 1095 default: 1096 return -EINVAL; 1097 } 1098 } 1099 1100 static void cpu_init_hyp_mode(void *dummy) 1101 { 1102 phys_addr_t pgd_ptr; 1103 unsigned long hyp_stack_ptr; 1104 unsigned long stack_page; 1105 unsigned long vector_ptr; 1106 1107 /* Switch from the HYP stub to our own HYP init vector */ 1108 __hyp_set_vectors(kvm_get_idmap_vector()); 1109 1110 pgd_ptr = kvm_mmu_get_httbr(); 1111 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page); 1112 hyp_stack_ptr = stack_page + PAGE_SIZE; 1113 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector); 1114 1115 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr); 1116 __cpu_init_stage2(); 1117 1118 kvm_arm_init_debug(); 1119 } 1120 1121 static void cpu_hyp_reset(void) 1122 { 1123 if (!is_kernel_in_hyp_mode()) 1124 __hyp_reset_vectors(); 1125 } 1126 1127 static void cpu_hyp_reinit(void) 1128 { 1129 cpu_hyp_reset(); 1130 1131 if (is_kernel_in_hyp_mode()) { 1132 /* 1133 * __cpu_init_stage2() is safe to call even if the PM 1134 * event was cancelled before the CPU was reset. 1135 */ 1136 __cpu_init_stage2(); 1137 kvm_timer_init_vhe(); 1138 } else { 1139 cpu_init_hyp_mode(NULL); 1140 } 1141 1142 if (vgic_present) 1143 kvm_vgic_init_cpu_hardware(); 1144 } 1145 1146 static void _kvm_arch_hardware_enable(void *discard) 1147 { 1148 if (!__this_cpu_read(kvm_arm_hardware_enabled)) { 1149 cpu_hyp_reinit(); 1150 __this_cpu_write(kvm_arm_hardware_enabled, 1); 1151 } 1152 } 1153 1154 int kvm_arch_hardware_enable(void) 1155 { 1156 _kvm_arch_hardware_enable(NULL); 1157 return 0; 1158 } 1159 1160 static void _kvm_arch_hardware_disable(void *discard) 1161 { 1162 if (__this_cpu_read(kvm_arm_hardware_enabled)) { 1163 cpu_hyp_reset(); 1164 __this_cpu_write(kvm_arm_hardware_enabled, 0); 1165 } 1166 } 1167 1168 void kvm_arch_hardware_disable(void) 1169 { 1170 _kvm_arch_hardware_disable(NULL); 1171 } 1172 1173 #ifdef CONFIG_CPU_PM 1174 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 1175 unsigned long cmd, 1176 void *v) 1177 { 1178 /* 1179 * kvm_arm_hardware_enabled is left with its old value over 1180 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 1181 * re-enable hyp. 1182 */ 1183 switch (cmd) { 1184 case CPU_PM_ENTER: 1185 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1186 /* 1187 * don't update kvm_arm_hardware_enabled here 1188 * so that the hardware will be re-enabled 1189 * when we resume. See below. 1190 */ 1191 cpu_hyp_reset(); 1192 1193 return NOTIFY_OK; 1194 case CPU_PM_EXIT: 1195 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1196 /* The hardware was enabled before suspend. */ 1197 cpu_hyp_reinit(); 1198 1199 return NOTIFY_OK; 1200 1201 default: 1202 return NOTIFY_DONE; 1203 } 1204 } 1205 1206 static struct notifier_block hyp_init_cpu_pm_nb = { 1207 .notifier_call = hyp_init_cpu_pm_notifier, 1208 }; 1209 1210 static void __init hyp_cpu_pm_init(void) 1211 { 1212 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 1213 } 1214 static void __init hyp_cpu_pm_exit(void) 1215 { 1216 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 1217 } 1218 #else 1219 static inline void hyp_cpu_pm_init(void) 1220 { 1221 } 1222 static inline void hyp_cpu_pm_exit(void) 1223 { 1224 } 1225 #endif 1226 1227 static void teardown_common_resources(void) 1228 { 1229 free_percpu(kvm_host_cpu_state); 1230 } 1231 1232 static int init_common_resources(void) 1233 { 1234 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t); 1235 if (!kvm_host_cpu_state) { 1236 kvm_err("Cannot allocate host CPU state\n"); 1237 return -ENOMEM; 1238 } 1239 1240 /* set size of VMID supported by CPU */ 1241 kvm_vmid_bits = kvm_get_vmid_bits(); 1242 kvm_info("%d-bit VMID\n", kvm_vmid_bits); 1243 1244 return 0; 1245 } 1246 1247 static int init_subsystems(void) 1248 { 1249 int err = 0; 1250 1251 /* 1252 * Enable hardware so that subsystem initialisation can access EL2. 1253 */ 1254 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); 1255 1256 /* 1257 * Register CPU lower-power notifier 1258 */ 1259 hyp_cpu_pm_init(); 1260 1261 /* 1262 * Init HYP view of VGIC 1263 */ 1264 err = kvm_vgic_hyp_init(); 1265 switch (err) { 1266 case 0: 1267 vgic_present = true; 1268 break; 1269 case -ENODEV: 1270 case -ENXIO: 1271 vgic_present = false; 1272 err = 0; 1273 break; 1274 default: 1275 goto out; 1276 } 1277 1278 /* 1279 * Init HYP architected timer support 1280 */ 1281 err = kvm_timer_hyp_init(); 1282 if (err) 1283 goto out; 1284 1285 kvm_perf_init(); 1286 kvm_coproc_table_init(); 1287 1288 out: 1289 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); 1290 1291 return err; 1292 } 1293 1294 static void teardown_hyp_mode(void) 1295 { 1296 int cpu; 1297 1298 if (is_kernel_in_hyp_mode()) 1299 return; 1300 1301 free_hyp_pgds(); 1302 for_each_possible_cpu(cpu) 1303 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 1304 hyp_cpu_pm_exit(); 1305 } 1306 1307 static int init_vhe_mode(void) 1308 { 1309 kvm_info("VHE mode initialized successfully\n"); 1310 return 0; 1311 } 1312 1313 /** 1314 * Inits Hyp-mode on all online CPUs 1315 */ 1316 static int init_hyp_mode(void) 1317 { 1318 int cpu; 1319 int err = 0; 1320 1321 /* 1322 * Allocate Hyp PGD and setup Hyp identity mapping 1323 */ 1324 err = kvm_mmu_init(); 1325 if (err) 1326 goto out_err; 1327 1328 /* 1329 * Allocate stack pages for Hypervisor-mode 1330 */ 1331 for_each_possible_cpu(cpu) { 1332 unsigned long stack_page; 1333 1334 stack_page = __get_free_page(GFP_KERNEL); 1335 if (!stack_page) { 1336 err = -ENOMEM; 1337 goto out_err; 1338 } 1339 1340 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 1341 } 1342 1343 /* 1344 * Map the Hyp-code called directly from the host 1345 */ 1346 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 1347 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 1348 if (err) { 1349 kvm_err("Cannot map world-switch code\n"); 1350 goto out_err; 1351 } 1352 1353 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 1354 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 1355 if (err) { 1356 kvm_err("Cannot map rodata section\n"); 1357 goto out_err; 1358 } 1359 1360 err = create_hyp_mappings(kvm_ksym_ref(__bss_start), 1361 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 1362 if (err) { 1363 kvm_err("Cannot map bss section\n"); 1364 goto out_err; 1365 } 1366 1367 /* 1368 * Map the Hyp stack pages 1369 */ 1370 for_each_possible_cpu(cpu) { 1371 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 1372 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, 1373 PAGE_HYP); 1374 1375 if (err) { 1376 kvm_err("Cannot map hyp stack\n"); 1377 goto out_err; 1378 } 1379 } 1380 1381 for_each_possible_cpu(cpu) { 1382 kvm_cpu_context_t *cpu_ctxt; 1383 1384 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu); 1385 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP); 1386 1387 if (err) { 1388 kvm_err("Cannot map host CPU state: %d\n", err); 1389 goto out_err; 1390 } 1391 } 1392 1393 kvm_info("Hyp mode initialized successfully\n"); 1394 1395 return 0; 1396 1397 out_err: 1398 teardown_hyp_mode(); 1399 kvm_err("error initializing Hyp mode: %d\n", err); 1400 return err; 1401 } 1402 1403 static void check_kvm_target_cpu(void *ret) 1404 { 1405 *(int *)ret = kvm_target_cpu(); 1406 } 1407 1408 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 1409 { 1410 struct kvm_vcpu *vcpu; 1411 int i; 1412 1413 mpidr &= MPIDR_HWID_BITMASK; 1414 kvm_for_each_vcpu(i, vcpu, kvm) { 1415 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 1416 return vcpu; 1417 } 1418 return NULL; 1419 } 1420 1421 /** 1422 * Initialize Hyp-mode and memory mappings on all CPUs. 1423 */ 1424 int kvm_arch_init(void *opaque) 1425 { 1426 int err; 1427 int ret, cpu; 1428 1429 if (!is_hyp_mode_available()) { 1430 kvm_err("HYP mode not available\n"); 1431 return -ENODEV; 1432 } 1433 1434 for_each_online_cpu(cpu) { 1435 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); 1436 if (ret < 0) { 1437 kvm_err("Error, CPU %d not supported!\n", cpu); 1438 return -ENODEV; 1439 } 1440 } 1441 1442 err = init_common_resources(); 1443 if (err) 1444 return err; 1445 1446 if (is_kernel_in_hyp_mode()) 1447 err = init_vhe_mode(); 1448 else 1449 err = init_hyp_mode(); 1450 if (err) 1451 goto out_err; 1452 1453 err = init_subsystems(); 1454 if (err) 1455 goto out_hyp; 1456 1457 return 0; 1458 1459 out_hyp: 1460 teardown_hyp_mode(); 1461 out_err: 1462 teardown_common_resources(); 1463 return err; 1464 } 1465 1466 /* NOP: Compiling as a module not supported */ 1467 void kvm_arch_exit(void) 1468 { 1469 kvm_perf_teardown(); 1470 } 1471 1472 static int arm_init(void) 1473 { 1474 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1475 return rc; 1476 } 1477 1478 module_init(arm_init); 1479
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.