~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/virt/kvm/arm/arm.c

Version: ~ [ linux-5.4-rc7 ] ~ [ linux-5.3.11 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.84 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.154 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.201 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.201 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.77 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  4  *
  5  * This program is free software; you can redistribute it and/or modify
  6  * it under the terms of the GNU General Public License, version 2, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This program is distributed in the hope that it will be useful,
 10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12  * GNU General Public License for more details.
 13  *
 14  * You should have received a copy of the GNU General Public License
 15  * along with this program; if not, write to the Free Software
 16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 17  */
 18 
 19 #include <linux/cpu_pm.h>
 20 #include <linux/errno.h>
 21 #include <linux/err.h>
 22 #include <linux/kvm_host.h>
 23 #include <linux/list.h>
 24 #include <linux/module.h>
 25 #include <linux/vmalloc.h>
 26 #include <linux/fs.h>
 27 #include <linux/mman.h>
 28 #include <linux/sched.h>
 29 #include <linux/kvm.h>
 30 #include <trace/events/kvm.h>
 31 #include <kvm/arm_pmu.h>
 32 
 33 #define CREATE_TRACE_POINTS
 34 #include "trace.h"
 35 
 36 #include <linux/uaccess.h>
 37 #include <asm/ptrace.h>
 38 #include <asm/mman.h>
 39 #include <asm/tlbflush.h>
 40 #include <asm/cacheflush.h>
 41 #include <asm/virt.h>
 42 #include <asm/kvm_arm.h>
 43 #include <asm/kvm_asm.h>
 44 #include <asm/kvm_mmu.h>
 45 #include <asm/kvm_emulate.h>
 46 #include <asm/kvm_coproc.h>
 47 #include <asm/kvm_psci.h>
 48 #include <asm/sections.h>
 49 
 50 #ifdef REQUIRES_VIRT
 51 __asm__(".arch_extension        virt");
 52 #endif
 53 
 54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
 55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
 56 
 57 /* Per-CPU variable containing the currently running vcpu. */
 58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
 59 
 60 /* The VMID used in the VTTBR */
 61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
 62 static u32 kvm_next_vmid;
 63 static unsigned int kvm_vmid_bits __read_mostly;
 64 static DEFINE_SPINLOCK(kvm_vmid_lock);
 65 
 66 static bool vgic_present;
 67 
 68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
 69 
 70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
 71 {
 72         BUG_ON(preemptible());
 73         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
 74 }
 75 
 76 /**
 77  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 78  * Must be called from non-preemptible context
 79  */
 80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
 81 {
 82         BUG_ON(preemptible());
 83         return __this_cpu_read(kvm_arm_running_vcpu);
 84 }
 85 
 86 /**
 87  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 88  */
 89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
 90 {
 91         return &kvm_arm_running_vcpu;
 92 }
 93 
 94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 95 {
 96         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
 97 }
 98 
 99 int kvm_arch_hardware_setup(void)
100 {
101         return 0;
102 }
103 
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106         *(int *)rtn = 0;
107 }
108 
109 
110 /**
111  * kvm_arch_init_vm - initializes a VM data structure
112  * @kvm:        pointer to the KVM struct
113  */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116         int ret, cpu;
117 
118         if (type)
119                 return -EINVAL;
120 
121         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122         if (!kvm->arch.last_vcpu_ran)
123                 return -ENOMEM;
124 
125         for_each_possible_cpu(cpu)
126                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127 
128         ret = kvm_alloc_stage2_pgd(kvm);
129         if (ret)
130                 goto out_fail_alloc;
131 
132         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133         if (ret)
134                 goto out_free_stage2_pgd;
135 
136         kvm_vgic_early_init(kvm);
137 
138         /* Mark the initial VMID generation invalid */
139         kvm->arch.vmid_gen = 0;
140 
141         /* The maximum number of VCPUs is limited by the host's GIC model */
142         kvm->arch.max_vcpus = vgic_present ?
143                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144 
145         return ret;
146 out_free_stage2_pgd:
147         kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149         free_percpu(kvm->arch.last_vcpu_ran);
150         kvm->arch.last_vcpu_ran = NULL;
151         return ret;
152 }
153 
154 bool kvm_arch_has_vcpu_debugfs(void)
155 {
156         return false;
157 }
158 
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160 {
161         return 0;
162 }
163 
164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166         return VM_FAULT_SIGBUS;
167 }
168 
169 
170 /**
171  * kvm_arch_destroy_vm - destroy the VM data structure
172  * @kvm:        pointer to the KVM struct
173  */
174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176         int i;
177 
178         free_percpu(kvm->arch.last_vcpu_ran);
179         kvm->arch.last_vcpu_ran = NULL;
180 
181         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182                 if (kvm->vcpus[i]) {
183                         kvm_arch_vcpu_free(kvm->vcpus[i]);
184                         kvm->vcpus[i] = NULL;
185                 }
186         }
187 
188         kvm_vgic_destroy(kvm);
189 }
190 
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193         int r;
194         switch (ext) {
195         case KVM_CAP_IRQCHIP:
196                 r = vgic_present;
197                 break;
198         case KVM_CAP_IOEVENTFD:
199         case KVM_CAP_DEVICE_CTRL:
200         case KVM_CAP_USER_MEMORY:
201         case KVM_CAP_SYNC_MMU:
202         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203         case KVM_CAP_ONE_REG:
204         case KVM_CAP_ARM_PSCI:
205         case KVM_CAP_ARM_PSCI_0_2:
206         case KVM_CAP_READONLY_MEM:
207         case KVM_CAP_MP_STATE:
208         case KVM_CAP_IMMEDIATE_EXIT:
209                 r = 1;
210                 break;
211         case KVM_CAP_ARM_SET_DEVICE_ADDR:
212                 r = 1;
213                 break;
214         case KVM_CAP_NR_VCPUS:
215                 r = num_online_cpus();
216                 break;
217         case KVM_CAP_MAX_VCPUS:
218                 r = KVM_MAX_VCPUS;
219                 break;
220         case KVM_CAP_NR_MEMSLOTS:
221                 r = KVM_USER_MEM_SLOTS;
222                 break;
223         case KVM_CAP_MSI_DEVID:
224                 if (!kvm)
225                         r = -EINVAL;
226                 else
227                         r = kvm->arch.vgic.msis_require_devid;
228                 break;
229         case KVM_CAP_ARM_USER_IRQ:
230                 /*
231                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
232                  * (bump this number if adding more devices)
233                  */
234                 r = 1;
235                 break;
236         default:
237                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238                 break;
239         }
240         return r;
241 }
242 
243 long kvm_arch_dev_ioctl(struct file *filp,
244                         unsigned int ioctl, unsigned long arg)
245 {
246         return -EINVAL;
247 }
248 
249 
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
251 {
252         int err;
253         struct kvm_vcpu *vcpu;
254 
255         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
256                 err = -EBUSY;
257                 goto out;
258         }
259 
260         if (id >= kvm->arch.max_vcpus) {
261                 err = -EINVAL;
262                 goto out;
263         }
264 
265         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
266         if (!vcpu) {
267                 err = -ENOMEM;
268                 goto out;
269         }
270 
271         err = kvm_vcpu_init(vcpu, kvm, id);
272         if (err)
273                 goto free_vcpu;
274 
275         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276         if (err)
277                 goto vcpu_uninit;
278 
279         return vcpu;
280 vcpu_uninit:
281         kvm_vcpu_uninit(vcpu);
282 free_vcpu:
283         kmem_cache_free(kvm_vcpu_cache, vcpu);
284 out:
285         return ERR_PTR(err);
286 }
287 
288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
289 {
290         kvm_vgic_vcpu_early_init(vcpu);
291 }
292 
293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
294 {
295         kvm_mmu_free_memory_caches(vcpu);
296         kvm_timer_vcpu_terminate(vcpu);
297         kvm_vgic_vcpu_destroy(vcpu);
298         kvm_pmu_vcpu_destroy(vcpu);
299         kvm_vcpu_uninit(vcpu);
300         kmem_cache_free(kvm_vcpu_cache, vcpu);
301 }
302 
303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
304 {
305         kvm_arch_vcpu_free(vcpu);
306 }
307 
308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
309 {
310         return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
311                kvm_timer_should_fire(vcpu_ptimer(vcpu));
312 }
313 
314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
315 {
316         kvm_timer_schedule(vcpu);
317 }
318 
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
320 {
321         kvm_timer_unschedule(vcpu);
322 }
323 
324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
325 {
326         /* Force users to call KVM_ARM_VCPU_INIT */
327         vcpu->arch.target = -1;
328         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
329 
330         /* Set up the timer */
331         kvm_timer_vcpu_init(vcpu);
332 
333         kvm_arm_reset_debug_ptr(vcpu);
334 
335         return kvm_vgic_vcpu_init(vcpu);
336 }
337 
338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
339 {
340         int *last_ran;
341 
342         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
343 
344         /*
345          * We might get preempted before the vCPU actually runs, but
346          * over-invalidation doesn't affect correctness.
347          */
348         if (*last_ran != vcpu->vcpu_id) {
349                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
350                 *last_ran = vcpu->vcpu_id;
351         }
352 
353         vcpu->cpu = cpu;
354         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
355 
356         kvm_arm_set_running_vcpu(vcpu);
357 
358         kvm_vgic_load(vcpu);
359 }
360 
361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
362 {
363         kvm_vgic_put(vcpu);
364 
365         vcpu->cpu = -1;
366 
367         kvm_arm_set_running_vcpu(NULL);
368         kvm_timer_vcpu_put(vcpu);
369 }
370 
371 static void vcpu_power_off(struct kvm_vcpu *vcpu)
372 {
373         vcpu->arch.power_off = true;
374         kvm_make_request(KVM_REQ_SLEEP, vcpu);
375         kvm_vcpu_kick(vcpu);
376 }
377 
378 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
379                                     struct kvm_mp_state *mp_state)
380 {
381         if (vcpu->arch.power_off)
382                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
383         else
384                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
385 
386         return 0;
387 }
388 
389 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
390                                     struct kvm_mp_state *mp_state)
391 {
392         switch (mp_state->mp_state) {
393         case KVM_MP_STATE_RUNNABLE:
394                 vcpu->arch.power_off = false;
395                 break;
396         case KVM_MP_STATE_STOPPED:
397                 vcpu_power_off(vcpu);
398                 break;
399         default:
400                 return -EINVAL;
401         }
402 
403         return 0;
404 }
405 
406 /**
407  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
408  * @v:          The VCPU pointer
409  *
410  * If the guest CPU is not waiting for interrupts or an interrupt line is
411  * asserted, the CPU is by definition runnable.
412  */
413 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
414 {
415         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
416                 && !v->arch.power_off && !v->arch.pause);
417 }
418 
419 /* Just ensure a guest exit from a particular CPU */
420 static void exit_vm_noop(void *info)
421 {
422 }
423 
424 void force_vm_exit(const cpumask_t *mask)
425 {
426         preempt_disable();
427         smp_call_function_many(mask, exit_vm_noop, NULL, true);
428         preempt_enable();
429 }
430 
431 /**
432  * need_new_vmid_gen - check that the VMID is still valid
433  * @kvm: The VM's VMID to check
434  *
435  * return true if there is a new generation of VMIDs being used
436  *
437  * The hardware supports only 256 values with the value zero reserved for the
438  * host, so we check if an assigned value belongs to a previous generation,
439  * which which requires us to assign a new value. If we're the first to use a
440  * VMID for the new generation, we must flush necessary caches and TLBs on all
441  * CPUs.
442  */
443 static bool need_new_vmid_gen(struct kvm *kvm)
444 {
445         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
446 }
447 
448 /**
449  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
450  * @kvm The guest that we are about to run
451  *
452  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
453  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
454  * caches and TLBs.
455  */
456 static void update_vttbr(struct kvm *kvm)
457 {
458         phys_addr_t pgd_phys;
459         u64 vmid;
460 
461         if (!need_new_vmid_gen(kvm))
462                 return;
463 
464         spin_lock(&kvm_vmid_lock);
465 
466         /*
467          * We need to re-check the vmid_gen here to ensure that if another vcpu
468          * already allocated a valid vmid for this vm, then this vcpu should
469          * use the same vmid.
470          */
471         if (!need_new_vmid_gen(kvm)) {
472                 spin_unlock(&kvm_vmid_lock);
473                 return;
474         }
475 
476         /* First user of a new VMID generation? */
477         if (unlikely(kvm_next_vmid == 0)) {
478                 atomic64_inc(&kvm_vmid_gen);
479                 kvm_next_vmid = 1;
480 
481                 /*
482                  * On SMP we know no other CPUs can use this CPU's or each
483                  * other's VMID after force_vm_exit returns since the
484                  * kvm_vmid_lock blocks them from reentry to the guest.
485                  */
486                 force_vm_exit(cpu_all_mask);
487                 /*
488                  * Now broadcast TLB + ICACHE invalidation over the inner
489                  * shareable domain to make sure all data structures are
490                  * clean.
491                  */
492                 kvm_call_hyp(__kvm_flush_vm_context);
493         }
494 
495         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
496         kvm->arch.vmid = kvm_next_vmid;
497         kvm_next_vmid++;
498         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
499 
500         /* update vttbr to be used with the new vmid */
501         pgd_phys = virt_to_phys(kvm->arch.pgd);
502         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
503         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
504         kvm->arch.vttbr = pgd_phys | vmid;
505 
506         spin_unlock(&kvm_vmid_lock);
507 }
508 
509 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
510 {
511         struct kvm *kvm = vcpu->kvm;
512         int ret = 0;
513 
514         if (likely(vcpu->arch.has_run_once))
515                 return 0;
516 
517         vcpu->arch.has_run_once = true;
518 
519         /*
520          * Map the VGIC hardware resources before running a vcpu the first
521          * time on this VM.
522          */
523         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
524                 ret = kvm_vgic_map_resources(kvm);
525                 if (ret)
526                         return ret;
527         }
528 
529         ret = kvm_timer_enable(vcpu);
530         if (ret)
531                 return ret;
532 
533         ret = kvm_arm_pmu_v3_enable(vcpu);
534 
535         return ret;
536 }
537 
538 bool kvm_arch_intc_initialized(struct kvm *kvm)
539 {
540         return vgic_initialized(kvm);
541 }
542 
543 void kvm_arm_halt_guest(struct kvm *kvm)
544 {
545         int i;
546         struct kvm_vcpu *vcpu;
547 
548         kvm_for_each_vcpu(i, vcpu, kvm)
549                 vcpu->arch.pause = true;
550         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
551 }
552 
553 void kvm_arm_resume_guest(struct kvm *kvm)
554 {
555         int i;
556         struct kvm_vcpu *vcpu;
557 
558         kvm_for_each_vcpu(i, vcpu, kvm) {
559                 vcpu->arch.pause = false;
560                 swake_up(kvm_arch_vcpu_wq(vcpu));
561         }
562 }
563 
564 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
565 {
566         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
567 
568         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
569                                        (!vcpu->arch.pause)));
570 
571         if (vcpu->arch.power_off || vcpu->arch.pause) {
572                 /* Awaken to handle a signal, request we sleep again later. */
573                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
574         }
575 }
576 
577 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
578 {
579         return vcpu->arch.target >= 0;
580 }
581 
582 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
583 {
584         if (kvm_request_pending(vcpu)) {
585                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
586                         vcpu_req_sleep(vcpu);
587 
588                 /*
589                  * Clear IRQ_PENDING requests that were made to guarantee
590                  * that a VCPU sees new virtual interrupts.
591                  */
592                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
593         }
594 }
595 
596 /**
597  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
598  * @vcpu:       The VCPU pointer
599  * @run:        The kvm_run structure pointer used for userspace state exchange
600  *
601  * This function is called through the VCPU_RUN ioctl called from user space. It
602  * will execute VM code in a loop until the time slice for the process is used
603  * or some emulation is needed from user space in which case the function will
604  * return with return value 0 and with the kvm_run structure filled in with the
605  * required data for the requested emulation.
606  */
607 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
608 {
609         int ret;
610         sigset_t sigsaved;
611 
612         if (unlikely(!kvm_vcpu_initialized(vcpu)))
613                 return -ENOEXEC;
614 
615         ret = kvm_vcpu_first_run_init(vcpu);
616         if (ret)
617                 return ret;
618 
619         if (run->exit_reason == KVM_EXIT_MMIO) {
620                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
621                 if (ret)
622                         return ret;
623         }
624 
625         if (run->immediate_exit)
626                 return -EINTR;
627 
628         if (vcpu->sigset_active)
629                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
630 
631         ret = 1;
632         run->exit_reason = KVM_EXIT_UNKNOWN;
633         while (ret > 0) {
634                 /*
635                  * Check conditions before entering the guest
636                  */
637                 cond_resched();
638 
639                 update_vttbr(vcpu->kvm);
640 
641                 check_vcpu_requests(vcpu);
642 
643                 /*
644                  * Preparing the interrupts to be injected also
645                  * involves poking the GIC, which must be done in a
646                  * non-preemptible context.
647                  */
648                 preempt_disable();
649 
650                 kvm_pmu_flush_hwstate(vcpu);
651 
652                 kvm_timer_flush_hwstate(vcpu);
653                 kvm_vgic_flush_hwstate(vcpu);
654 
655                 local_irq_disable();
656 
657                 /*
658                  * If we have a singal pending, or need to notify a userspace
659                  * irqchip about timer or PMU level changes, then we exit (and
660                  * update the timer level state in kvm_timer_update_run
661                  * below).
662                  */
663                 if (signal_pending(current) ||
664                     kvm_timer_should_notify_user(vcpu) ||
665                     kvm_pmu_should_notify_user(vcpu)) {
666                         ret = -EINTR;
667                         run->exit_reason = KVM_EXIT_INTR;
668                 }
669 
670                 /*
671                  * Ensure we set mode to IN_GUEST_MODE after we disable
672                  * interrupts and before the final VCPU requests check.
673                  * See the comment in kvm_vcpu_exiting_guest_mode() and
674                  * Documentation/virtual/kvm/vcpu-requests.rst
675                  */
676                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
677 
678                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
679                     kvm_request_pending(vcpu)) {
680                         vcpu->mode = OUTSIDE_GUEST_MODE;
681                         local_irq_enable();
682                         kvm_pmu_sync_hwstate(vcpu);
683                         kvm_timer_sync_hwstate(vcpu);
684                         kvm_vgic_sync_hwstate(vcpu);
685                         preempt_enable();
686                         continue;
687                 }
688 
689                 kvm_arm_setup_debug(vcpu);
690 
691                 /**************************************************************
692                  * Enter the guest
693                  */
694                 trace_kvm_entry(*vcpu_pc(vcpu));
695                 guest_enter_irqoff();
696 
697                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
698 
699                 vcpu->mode = OUTSIDE_GUEST_MODE;
700                 vcpu->stat.exits++;
701                 /*
702                  * Back from guest
703                  *************************************************************/
704 
705                 kvm_arm_clear_debug(vcpu);
706 
707                 /*
708                  * We may have taken a host interrupt in HYP mode (ie
709                  * while executing the guest). This interrupt is still
710                  * pending, as we haven't serviced it yet!
711                  *
712                  * We're now back in SVC mode, with interrupts
713                  * disabled.  Enabling the interrupts now will have
714                  * the effect of taking the interrupt again, in SVC
715                  * mode this time.
716                  */
717                 local_irq_enable();
718 
719                 /*
720                  * We do local_irq_enable() before calling guest_exit() so
721                  * that if a timer interrupt hits while running the guest we
722                  * account that tick as being spent in the guest.  We enable
723                  * preemption after calling guest_exit() so that if we get
724                  * preempted we make sure ticks after that is not counted as
725                  * guest time.
726                  */
727                 guest_exit();
728                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
729 
730                 /*
731                  * We must sync the PMU and timer state before the vgic state so
732                  * that the vgic can properly sample the updated state of the
733                  * interrupt line.
734                  */
735                 kvm_pmu_sync_hwstate(vcpu);
736                 kvm_timer_sync_hwstate(vcpu);
737 
738                 kvm_vgic_sync_hwstate(vcpu);
739 
740                 preempt_enable();
741 
742                 ret = handle_exit(vcpu, run, ret);
743         }
744 
745         /* Tell userspace about in-kernel device output levels */
746         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
747                 kvm_timer_update_run(vcpu);
748                 kvm_pmu_update_run(vcpu);
749         }
750 
751         if (vcpu->sigset_active)
752                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
753         return ret;
754 }
755 
756 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
757 {
758         int bit_index;
759         bool set;
760         unsigned long *ptr;
761 
762         if (number == KVM_ARM_IRQ_CPU_IRQ)
763                 bit_index = __ffs(HCR_VI);
764         else /* KVM_ARM_IRQ_CPU_FIQ */
765                 bit_index = __ffs(HCR_VF);
766 
767         ptr = (unsigned long *)&vcpu->arch.irq_lines;
768         if (level)
769                 set = test_and_set_bit(bit_index, ptr);
770         else
771                 set = test_and_clear_bit(bit_index, ptr);
772 
773         /*
774          * If we didn't change anything, no need to wake up or kick other CPUs
775          */
776         if (set == level)
777                 return 0;
778 
779         /*
780          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
781          * trigger a world-switch round on the running physical CPU to set the
782          * virtual IRQ/FIQ fields in the HCR appropriately.
783          */
784         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
785         kvm_vcpu_kick(vcpu);
786 
787         return 0;
788 }
789 
790 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
791                           bool line_status)
792 {
793         u32 irq = irq_level->irq;
794         unsigned int irq_type, vcpu_idx, irq_num;
795         int nrcpus = atomic_read(&kvm->online_vcpus);
796         struct kvm_vcpu *vcpu = NULL;
797         bool level = irq_level->level;
798 
799         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
800         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
801         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
802 
803         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
804 
805         switch (irq_type) {
806         case KVM_ARM_IRQ_TYPE_CPU:
807                 if (irqchip_in_kernel(kvm))
808                         return -ENXIO;
809 
810                 if (vcpu_idx >= nrcpus)
811                         return -EINVAL;
812 
813                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
814                 if (!vcpu)
815                         return -EINVAL;
816 
817                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
818                         return -EINVAL;
819 
820                 return vcpu_interrupt_line(vcpu, irq_num, level);
821         case KVM_ARM_IRQ_TYPE_PPI:
822                 if (!irqchip_in_kernel(kvm))
823                         return -ENXIO;
824 
825                 if (vcpu_idx >= nrcpus)
826                         return -EINVAL;
827 
828                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
829                 if (!vcpu)
830                         return -EINVAL;
831 
832                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
833                         return -EINVAL;
834 
835                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
836         case KVM_ARM_IRQ_TYPE_SPI:
837                 if (!irqchip_in_kernel(kvm))
838                         return -ENXIO;
839 
840                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
841                         return -EINVAL;
842 
843                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
844         }
845 
846         return -EINVAL;
847 }
848 
849 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
850                                const struct kvm_vcpu_init *init)
851 {
852         unsigned int i;
853         int phys_target = kvm_target_cpu();
854 
855         if (init->target != phys_target)
856                 return -EINVAL;
857 
858         /*
859          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
860          * use the same target.
861          */
862         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
863                 return -EINVAL;
864 
865         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
866         for (i = 0; i < sizeof(init->features) * 8; i++) {
867                 bool set = (init->features[i / 32] & (1 << (i % 32)));
868 
869                 if (set && i >= KVM_VCPU_MAX_FEATURES)
870                         return -ENOENT;
871 
872                 /*
873                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
874                  * use the same feature set.
875                  */
876                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
877                     test_bit(i, vcpu->arch.features) != set)
878                         return -EINVAL;
879 
880                 if (set)
881                         set_bit(i, vcpu->arch.features);
882         }
883 
884         vcpu->arch.target = phys_target;
885 
886         /* Now we know what it is, we can reset it. */
887         return kvm_reset_vcpu(vcpu);
888 }
889 
890 
891 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
892                                          struct kvm_vcpu_init *init)
893 {
894         int ret;
895 
896         ret = kvm_vcpu_set_target(vcpu, init);
897         if (ret)
898                 return ret;
899 
900         /*
901          * Ensure a rebooted VM will fault in RAM pages and detect if the
902          * guest MMU is turned off and flush the caches as needed.
903          */
904         if (vcpu->arch.has_run_once)
905                 stage2_unmap_vm(vcpu->kvm);
906 
907         vcpu_reset_hcr(vcpu);
908 
909         /*
910          * Handle the "start in power-off" case.
911          */
912         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
913                 vcpu_power_off(vcpu);
914         else
915                 vcpu->arch.power_off = false;
916 
917         return 0;
918 }
919 
920 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
921                                  struct kvm_device_attr *attr)
922 {
923         int ret = -ENXIO;
924 
925         switch (attr->group) {
926         default:
927                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
928                 break;
929         }
930 
931         return ret;
932 }
933 
934 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
935                                  struct kvm_device_attr *attr)
936 {
937         int ret = -ENXIO;
938 
939         switch (attr->group) {
940         default:
941                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
942                 break;
943         }
944 
945         return ret;
946 }
947 
948 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
949                                  struct kvm_device_attr *attr)
950 {
951         int ret = -ENXIO;
952 
953         switch (attr->group) {
954         default:
955                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
956                 break;
957         }
958 
959         return ret;
960 }
961 
962 long kvm_arch_vcpu_ioctl(struct file *filp,
963                          unsigned int ioctl, unsigned long arg)
964 {
965         struct kvm_vcpu *vcpu = filp->private_data;
966         void __user *argp = (void __user *)arg;
967         struct kvm_device_attr attr;
968 
969         switch (ioctl) {
970         case KVM_ARM_VCPU_INIT: {
971                 struct kvm_vcpu_init init;
972 
973                 if (copy_from_user(&init, argp, sizeof(init)))
974                         return -EFAULT;
975 
976                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
977         }
978         case KVM_SET_ONE_REG:
979         case KVM_GET_ONE_REG: {
980                 struct kvm_one_reg reg;
981 
982                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
983                         return -ENOEXEC;
984 
985                 if (copy_from_user(&reg, argp, sizeof(reg)))
986                         return -EFAULT;
987                 if (ioctl == KVM_SET_ONE_REG)
988                         return kvm_arm_set_reg(vcpu, &reg);
989                 else
990                         return kvm_arm_get_reg(vcpu, &reg);
991         }
992         case KVM_GET_REG_LIST: {
993                 struct kvm_reg_list __user *user_list = argp;
994                 struct kvm_reg_list reg_list;
995                 unsigned n;
996 
997                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
998                         return -ENOEXEC;
999 
1000                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1001                         return -EFAULT;
1002                 n = reg_list.n;
1003                 reg_list.n = kvm_arm_num_regs(vcpu);
1004                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1005                         return -EFAULT;
1006                 if (n < reg_list.n)
1007                         return -E2BIG;
1008                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1009         }
1010         case KVM_SET_DEVICE_ATTR: {
1011                 if (copy_from_user(&attr, argp, sizeof(attr)))
1012                         return -EFAULT;
1013                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1014         }
1015         case KVM_GET_DEVICE_ATTR: {
1016                 if (copy_from_user(&attr, argp, sizeof(attr)))
1017                         return -EFAULT;
1018                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1019         }
1020         case KVM_HAS_DEVICE_ATTR: {
1021                 if (copy_from_user(&attr, argp, sizeof(attr)))
1022                         return -EFAULT;
1023                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1024         }
1025         default:
1026                 return -EINVAL;
1027         }
1028 }
1029 
1030 /**
1031  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1032  * @kvm: kvm instance
1033  * @log: slot id and address to which we copy the log
1034  *
1035  * Steps 1-4 below provide general overview of dirty page logging. See
1036  * kvm_get_dirty_log_protect() function description for additional details.
1037  *
1038  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1039  * always flush the TLB (step 4) even if previous step failed  and the dirty
1040  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1041  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1042  * writes will be marked dirty for next log read.
1043  *
1044  *   1. Take a snapshot of the bit and clear it if needed.
1045  *   2. Write protect the corresponding page.
1046  *   3. Copy the snapshot to the userspace.
1047  *   4. Flush TLB's if needed.
1048  */
1049 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1050 {
1051         bool is_dirty = false;
1052         int r;
1053 
1054         mutex_lock(&kvm->slots_lock);
1055 
1056         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1057 
1058         if (is_dirty)
1059                 kvm_flush_remote_tlbs(kvm);
1060 
1061         mutex_unlock(&kvm->slots_lock);
1062         return r;
1063 }
1064 
1065 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1066                                         struct kvm_arm_device_addr *dev_addr)
1067 {
1068         unsigned long dev_id, type;
1069 
1070         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1071                 KVM_ARM_DEVICE_ID_SHIFT;
1072         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1073                 KVM_ARM_DEVICE_TYPE_SHIFT;
1074 
1075         switch (dev_id) {
1076         case KVM_ARM_DEVICE_VGIC_V2:
1077                 if (!vgic_present)
1078                         return -ENXIO;
1079                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1080         default:
1081                 return -ENODEV;
1082         }
1083 }
1084 
1085 long kvm_arch_vm_ioctl(struct file *filp,
1086                        unsigned int ioctl, unsigned long arg)
1087 {
1088         struct kvm *kvm = filp->private_data;
1089         void __user *argp = (void __user *)arg;
1090 
1091         switch (ioctl) {
1092         case KVM_CREATE_IRQCHIP: {
1093                 int ret;
1094                 if (!vgic_present)
1095                         return -ENXIO;
1096                 mutex_lock(&kvm->lock);
1097                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1098                 mutex_unlock(&kvm->lock);
1099                 return ret;
1100         }
1101         case KVM_ARM_SET_DEVICE_ADDR: {
1102                 struct kvm_arm_device_addr dev_addr;
1103 
1104                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1105                         return -EFAULT;
1106                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1107         }
1108         case KVM_ARM_PREFERRED_TARGET: {
1109                 int err;
1110                 struct kvm_vcpu_init init;
1111 
1112                 err = kvm_vcpu_preferred_target(&init);
1113                 if (err)
1114                         return err;
1115 
1116                 if (copy_to_user(argp, &init, sizeof(init)))
1117                         return -EFAULT;
1118 
1119                 return 0;
1120         }
1121         default:
1122                 return -EINVAL;
1123         }
1124 }
1125 
1126 static void cpu_init_hyp_mode(void *dummy)
1127 {
1128         phys_addr_t pgd_ptr;
1129         unsigned long hyp_stack_ptr;
1130         unsigned long stack_page;
1131         unsigned long vector_ptr;
1132 
1133         /* Switch from the HYP stub to our own HYP init vector */
1134         __hyp_set_vectors(kvm_get_idmap_vector());
1135 
1136         pgd_ptr = kvm_mmu_get_httbr();
1137         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1138         hyp_stack_ptr = stack_page + PAGE_SIZE;
1139         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1140 
1141         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1142         __cpu_init_stage2();
1143 
1144         kvm_arm_init_debug();
1145 }
1146 
1147 static void cpu_hyp_reset(void)
1148 {
1149         if (!is_kernel_in_hyp_mode())
1150                 __hyp_reset_vectors();
1151 }
1152 
1153 static void cpu_hyp_reinit(void)
1154 {
1155         cpu_hyp_reset();
1156 
1157         if (is_kernel_in_hyp_mode()) {
1158                 /*
1159                  * __cpu_init_stage2() is safe to call even if the PM
1160                  * event was cancelled before the CPU was reset.
1161                  */
1162                 __cpu_init_stage2();
1163                 kvm_timer_init_vhe();
1164         } else {
1165                 cpu_init_hyp_mode(NULL);
1166         }
1167 
1168         if (vgic_present)
1169                 kvm_vgic_init_cpu_hardware();
1170 }
1171 
1172 static void _kvm_arch_hardware_enable(void *discard)
1173 {
1174         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1175                 cpu_hyp_reinit();
1176                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1177         }
1178 }
1179 
1180 int kvm_arch_hardware_enable(void)
1181 {
1182         _kvm_arch_hardware_enable(NULL);
1183         return 0;
1184 }
1185 
1186 static void _kvm_arch_hardware_disable(void *discard)
1187 {
1188         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1189                 cpu_hyp_reset();
1190                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1191         }
1192 }
1193 
1194 void kvm_arch_hardware_disable(void)
1195 {
1196         _kvm_arch_hardware_disable(NULL);
1197 }
1198 
1199 #ifdef CONFIG_CPU_PM
1200 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1201                                     unsigned long cmd,
1202                                     void *v)
1203 {
1204         /*
1205          * kvm_arm_hardware_enabled is left with its old value over
1206          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1207          * re-enable hyp.
1208          */
1209         switch (cmd) {
1210         case CPU_PM_ENTER:
1211                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1212                         /*
1213                          * don't update kvm_arm_hardware_enabled here
1214                          * so that the hardware will be re-enabled
1215                          * when we resume. See below.
1216                          */
1217                         cpu_hyp_reset();
1218 
1219                 return NOTIFY_OK;
1220         case CPU_PM_EXIT:
1221                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1222                         /* The hardware was enabled before suspend. */
1223                         cpu_hyp_reinit();
1224 
1225                 return NOTIFY_OK;
1226 
1227         default:
1228                 return NOTIFY_DONE;
1229         }
1230 }
1231 
1232 static struct notifier_block hyp_init_cpu_pm_nb = {
1233         .notifier_call = hyp_init_cpu_pm_notifier,
1234 };
1235 
1236 static void __init hyp_cpu_pm_init(void)
1237 {
1238         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1239 }
1240 static void __init hyp_cpu_pm_exit(void)
1241 {
1242         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1243 }
1244 #else
1245 static inline void hyp_cpu_pm_init(void)
1246 {
1247 }
1248 static inline void hyp_cpu_pm_exit(void)
1249 {
1250 }
1251 #endif
1252 
1253 static void teardown_common_resources(void)
1254 {
1255         free_percpu(kvm_host_cpu_state);
1256 }
1257 
1258 static int init_common_resources(void)
1259 {
1260         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1261         if (!kvm_host_cpu_state) {
1262                 kvm_err("Cannot allocate host CPU state\n");
1263                 return -ENOMEM;
1264         }
1265 
1266         /* set size of VMID supported by CPU */
1267         kvm_vmid_bits = kvm_get_vmid_bits();
1268         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1269 
1270         return 0;
1271 }
1272 
1273 static int init_subsystems(void)
1274 {
1275         int err = 0;
1276 
1277         /*
1278          * Enable hardware so that subsystem initialisation can access EL2.
1279          */
1280         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1281 
1282         /*
1283          * Register CPU lower-power notifier
1284          */
1285         hyp_cpu_pm_init();
1286 
1287         /*
1288          * Init HYP view of VGIC
1289          */
1290         err = kvm_vgic_hyp_init();
1291         switch (err) {
1292         case 0:
1293                 vgic_present = true;
1294                 break;
1295         case -ENODEV:
1296         case -ENXIO:
1297                 vgic_present = false;
1298                 err = 0;
1299                 break;
1300         default:
1301                 goto out;
1302         }
1303 
1304         /*
1305          * Init HYP architected timer support
1306          */
1307         err = kvm_timer_hyp_init();
1308         if (err)
1309                 goto out;
1310 
1311         kvm_perf_init();
1312         kvm_coproc_table_init();
1313 
1314 out:
1315         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1316 
1317         return err;
1318 }
1319 
1320 static void teardown_hyp_mode(void)
1321 {
1322         int cpu;
1323 
1324         if (is_kernel_in_hyp_mode())
1325                 return;
1326 
1327         free_hyp_pgds();
1328         for_each_possible_cpu(cpu)
1329                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1330         hyp_cpu_pm_exit();
1331 }
1332 
1333 static int init_vhe_mode(void)
1334 {
1335         kvm_info("VHE mode initialized successfully\n");
1336         return 0;
1337 }
1338 
1339 /**
1340  * Inits Hyp-mode on all online CPUs
1341  */
1342 static int init_hyp_mode(void)
1343 {
1344         int cpu;
1345         int err = 0;
1346 
1347         /*
1348          * Allocate Hyp PGD and setup Hyp identity mapping
1349          */
1350         err = kvm_mmu_init();
1351         if (err)
1352                 goto out_err;
1353 
1354         /*
1355          * Allocate stack pages for Hypervisor-mode
1356          */
1357         for_each_possible_cpu(cpu) {
1358                 unsigned long stack_page;
1359 
1360                 stack_page = __get_free_page(GFP_KERNEL);
1361                 if (!stack_page) {
1362                         err = -ENOMEM;
1363                         goto out_err;
1364                 }
1365 
1366                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1367         }
1368 
1369         /*
1370          * Map the Hyp-code called directly from the host
1371          */
1372         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1373                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1374         if (err) {
1375                 kvm_err("Cannot map world-switch code\n");
1376                 goto out_err;
1377         }
1378 
1379         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1380                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1381         if (err) {
1382                 kvm_err("Cannot map rodata section\n");
1383                 goto out_err;
1384         }
1385 
1386         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1387                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1388         if (err) {
1389                 kvm_err("Cannot map bss section\n");
1390                 goto out_err;
1391         }
1392 
1393         /*
1394          * Map the Hyp stack pages
1395          */
1396         for_each_possible_cpu(cpu) {
1397                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1398                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1399                                           PAGE_HYP);
1400 
1401                 if (err) {
1402                         kvm_err("Cannot map hyp stack\n");
1403                         goto out_err;
1404                 }
1405         }
1406 
1407         for_each_possible_cpu(cpu) {
1408                 kvm_cpu_context_t *cpu_ctxt;
1409 
1410                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1411                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1412 
1413                 if (err) {
1414                         kvm_err("Cannot map host CPU state: %d\n", err);
1415                         goto out_err;
1416                 }
1417         }
1418 
1419         kvm_info("Hyp mode initialized successfully\n");
1420 
1421         return 0;
1422 
1423 out_err:
1424         teardown_hyp_mode();
1425         kvm_err("error initializing Hyp mode: %d\n", err);
1426         return err;
1427 }
1428 
1429 static void check_kvm_target_cpu(void *ret)
1430 {
1431         *(int *)ret = kvm_target_cpu();
1432 }
1433 
1434 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1435 {
1436         struct kvm_vcpu *vcpu;
1437         int i;
1438 
1439         mpidr &= MPIDR_HWID_BITMASK;
1440         kvm_for_each_vcpu(i, vcpu, kvm) {
1441                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1442                         return vcpu;
1443         }
1444         return NULL;
1445 }
1446 
1447 /**
1448  * Initialize Hyp-mode and memory mappings on all CPUs.
1449  */
1450 int kvm_arch_init(void *opaque)
1451 {
1452         int err;
1453         int ret, cpu;
1454 
1455         if (!is_hyp_mode_available()) {
1456                 kvm_err("HYP mode not available\n");
1457                 return -ENODEV;
1458         }
1459 
1460         for_each_online_cpu(cpu) {
1461                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1462                 if (ret < 0) {
1463                         kvm_err("Error, CPU %d not supported!\n", cpu);
1464                         return -ENODEV;
1465                 }
1466         }
1467 
1468         err = init_common_resources();
1469         if (err)
1470                 return err;
1471 
1472         if (is_kernel_in_hyp_mode())
1473                 err = init_vhe_mode();
1474         else
1475                 err = init_hyp_mode();
1476         if (err)
1477                 goto out_err;
1478 
1479         err = init_subsystems();
1480         if (err)
1481                 goto out_hyp;
1482 
1483         return 0;
1484 
1485 out_hyp:
1486         teardown_hyp_mode();
1487 out_err:
1488         teardown_common_resources();
1489         return err;
1490 }
1491 
1492 /* NOP: Compiling as a module not supported */
1493 void kvm_arch_exit(void)
1494 {
1495         kvm_perf_teardown();
1496 }
1497 
1498 static int arm_init(void)
1499 {
1500         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1501         return rc;
1502 }
1503 
1504 module_init(arm_init);
1505 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp