1 /* 2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 3 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License, version 2, as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 17 */ 18 19 #include <linux/cpu_pm.h> 20 #include <linux/errno.h> 21 #include <linux/err.h> 22 #include <linux/kvm_host.h> 23 #include <linux/list.h> 24 #include <linux/module.h> 25 #include <linux/vmalloc.h> 26 #include <linux/fs.h> 27 #include <linux/mman.h> 28 #include <linux/sched.h> 29 #include <linux/kvm.h> 30 #include <trace/events/kvm.h> 31 #include <kvm/arm_pmu.h> 32 33 #define CREATE_TRACE_POINTS 34 #include "trace.h" 35 36 #include <linux/uaccess.h> 37 #include <asm/ptrace.h> 38 #include <asm/mman.h> 39 #include <asm/tlbflush.h> 40 #include <asm/cacheflush.h> 41 #include <asm/virt.h> 42 #include <asm/kvm_arm.h> 43 #include <asm/kvm_asm.h> 44 #include <asm/kvm_mmu.h> 45 #include <asm/kvm_emulate.h> 46 #include <asm/kvm_coproc.h> 47 #include <asm/kvm_psci.h> 48 #include <asm/sections.h> 49 50 #ifdef REQUIRES_VIRT 51 __asm__(".arch_extension virt"); 52 #endif 53 54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state; 56 57 /* Per-CPU variable containing the currently running vcpu. */ 58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu); 59 60 /* The VMID used in the VTTBR */ 61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 62 static u32 kvm_next_vmid; 63 static unsigned int kvm_vmid_bits __read_mostly; 64 static DEFINE_SPINLOCK(kvm_vmid_lock); 65 66 static bool vgic_present; 67 68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); 69 70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu) 71 { 72 BUG_ON(preemptible()); 73 __this_cpu_write(kvm_arm_running_vcpu, vcpu); 74 } 75 76 /** 77 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU. 78 * Must be called from non-preemptible context 79 */ 80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void) 81 { 82 BUG_ON(preemptible()); 83 return __this_cpu_read(kvm_arm_running_vcpu); 84 } 85 86 /** 87 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. 88 */ 89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 90 { 91 return &kvm_arm_running_vcpu; 92 } 93 94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 95 { 96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 97 } 98 99 int kvm_arch_hardware_setup(void) 100 { 101 return 0; 102 } 103 104 void kvm_arch_check_processor_compat(void *rtn) 105 { 106 *(int *)rtn = 0; 107 } 108 109 110 /** 111 * kvm_arch_init_vm - initializes a VM data structure 112 * @kvm: pointer to the KVM struct 113 */ 114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 115 { 116 int ret, cpu; 117 118 if (type) 119 return -EINVAL; 120 121 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran)); 122 if (!kvm->arch.last_vcpu_ran) 123 return -ENOMEM; 124 125 for_each_possible_cpu(cpu) 126 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1; 127 128 ret = kvm_alloc_stage2_pgd(kvm); 129 if (ret) 130 goto out_fail_alloc; 131 132 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); 133 if (ret) 134 goto out_free_stage2_pgd; 135 136 kvm_vgic_early_init(kvm); 137 138 /* Mark the initial VMID generation invalid */ 139 kvm->arch.vmid_gen = 0; 140 141 /* The maximum number of VCPUs is limited by the host's GIC model */ 142 kvm->arch.max_vcpus = vgic_present ? 143 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 144 145 return ret; 146 out_free_stage2_pgd: 147 kvm_free_stage2_pgd(kvm); 148 out_fail_alloc: 149 free_percpu(kvm->arch.last_vcpu_ran); 150 kvm->arch.last_vcpu_ran = NULL; 151 return ret; 152 } 153 154 bool kvm_arch_has_vcpu_debugfs(void) 155 { 156 return false; 157 } 158 159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 160 { 161 return 0; 162 } 163 164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 165 { 166 return VM_FAULT_SIGBUS; 167 } 168 169 170 /** 171 * kvm_arch_destroy_vm - destroy the VM data structure 172 * @kvm: pointer to the KVM struct 173 */ 174 void kvm_arch_destroy_vm(struct kvm *kvm) 175 { 176 int i; 177 178 free_percpu(kvm->arch.last_vcpu_ran); 179 kvm->arch.last_vcpu_ran = NULL; 180 181 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 182 if (kvm->vcpus[i]) { 183 kvm_arch_vcpu_free(kvm->vcpus[i]); 184 kvm->vcpus[i] = NULL; 185 } 186 } 187 188 kvm_vgic_destroy(kvm); 189 } 190 191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 192 { 193 int r; 194 switch (ext) { 195 case KVM_CAP_IRQCHIP: 196 r = vgic_present; 197 break; 198 case KVM_CAP_IOEVENTFD: 199 case KVM_CAP_DEVICE_CTRL: 200 case KVM_CAP_USER_MEMORY: 201 case KVM_CAP_SYNC_MMU: 202 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 203 case KVM_CAP_ONE_REG: 204 case KVM_CAP_ARM_PSCI: 205 case KVM_CAP_ARM_PSCI_0_2: 206 case KVM_CAP_READONLY_MEM: 207 case KVM_CAP_MP_STATE: 208 case KVM_CAP_IMMEDIATE_EXIT: 209 r = 1; 210 break; 211 case KVM_CAP_ARM_SET_DEVICE_ADDR: 212 r = 1; 213 break; 214 case KVM_CAP_NR_VCPUS: 215 r = num_online_cpus(); 216 break; 217 case KVM_CAP_MAX_VCPUS: 218 r = KVM_MAX_VCPUS; 219 break; 220 case KVM_CAP_NR_MEMSLOTS: 221 r = KVM_USER_MEM_SLOTS; 222 break; 223 case KVM_CAP_MSI_DEVID: 224 if (!kvm) 225 r = -EINVAL; 226 else 227 r = kvm->arch.vgic.msis_require_devid; 228 break; 229 case KVM_CAP_ARM_USER_IRQ: 230 /* 231 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 232 * (bump this number if adding more devices) 233 */ 234 r = 1; 235 break; 236 default: 237 r = kvm_arch_dev_ioctl_check_extension(kvm, ext); 238 break; 239 } 240 return r; 241 } 242 243 long kvm_arch_dev_ioctl(struct file *filp, 244 unsigned int ioctl, unsigned long arg) 245 { 246 return -EINVAL; 247 } 248 249 250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 251 { 252 int err; 253 struct kvm_vcpu *vcpu; 254 255 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) { 256 err = -EBUSY; 257 goto out; 258 } 259 260 if (id >= kvm->arch.max_vcpus) { 261 err = -EINVAL; 262 goto out; 263 } 264 265 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 266 if (!vcpu) { 267 err = -ENOMEM; 268 goto out; 269 } 270 271 err = kvm_vcpu_init(vcpu, kvm, id); 272 if (err) 273 goto free_vcpu; 274 275 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); 276 if (err) 277 goto vcpu_uninit; 278 279 return vcpu; 280 vcpu_uninit: 281 kvm_vcpu_uninit(vcpu); 282 free_vcpu: 283 kmem_cache_free(kvm_vcpu_cache, vcpu); 284 out: 285 return ERR_PTR(err); 286 } 287 288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 289 { 290 kvm_vgic_vcpu_early_init(vcpu); 291 } 292 293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 294 { 295 kvm_mmu_free_memory_caches(vcpu); 296 kvm_timer_vcpu_terminate(vcpu); 297 kvm_vgic_vcpu_destroy(vcpu); 298 kvm_pmu_vcpu_destroy(vcpu); 299 kvm_vcpu_uninit(vcpu); 300 kmem_cache_free(kvm_vcpu_cache, vcpu); 301 } 302 303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 304 { 305 kvm_arch_vcpu_free(vcpu); 306 } 307 308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 309 { 310 return kvm_timer_should_fire(vcpu_vtimer(vcpu)) || 311 kvm_timer_should_fire(vcpu_ptimer(vcpu)); 312 } 313 314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 315 { 316 kvm_timer_schedule(vcpu); 317 } 318 319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 320 { 321 kvm_timer_unschedule(vcpu); 322 } 323 324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 325 { 326 /* Force users to call KVM_ARM_VCPU_INIT */ 327 vcpu->arch.target = -1; 328 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 329 330 /* Set up the timer */ 331 kvm_timer_vcpu_init(vcpu); 332 333 kvm_arm_reset_debug_ptr(vcpu); 334 335 return kvm_vgic_vcpu_init(vcpu); 336 } 337 338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 339 { 340 int *last_ran; 341 342 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran); 343 344 /* 345 * We might get preempted before the vCPU actually runs, but 346 * over-invalidation doesn't affect correctness. 347 */ 348 if (*last_ran != vcpu->vcpu_id) { 349 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu); 350 *last_ran = vcpu->vcpu_id; 351 } 352 353 vcpu->cpu = cpu; 354 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state); 355 356 kvm_arm_set_running_vcpu(vcpu); 357 358 kvm_vgic_load(vcpu); 359 } 360 361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 362 { 363 kvm_vgic_put(vcpu); 364 365 vcpu->cpu = -1; 366 367 kvm_arm_set_running_vcpu(NULL); 368 kvm_timer_vcpu_put(vcpu); 369 } 370 371 static void vcpu_power_off(struct kvm_vcpu *vcpu) 372 { 373 vcpu->arch.power_off = true; 374 kvm_make_request(KVM_REQ_SLEEP, vcpu); 375 kvm_vcpu_kick(vcpu); 376 } 377 378 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 379 struct kvm_mp_state *mp_state) 380 { 381 if (vcpu->arch.power_off) 382 mp_state->mp_state = KVM_MP_STATE_STOPPED; 383 else 384 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 385 386 return 0; 387 } 388 389 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 390 struct kvm_mp_state *mp_state) 391 { 392 switch (mp_state->mp_state) { 393 case KVM_MP_STATE_RUNNABLE: 394 vcpu->arch.power_off = false; 395 break; 396 case KVM_MP_STATE_STOPPED: 397 vcpu_power_off(vcpu); 398 break; 399 default: 400 return -EINVAL; 401 } 402 403 return 0; 404 } 405 406 /** 407 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 408 * @v: The VCPU pointer 409 * 410 * If the guest CPU is not waiting for interrupts or an interrupt line is 411 * asserted, the CPU is by definition runnable. 412 */ 413 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 414 { 415 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v)) 416 && !v->arch.power_off && !v->arch.pause); 417 } 418 419 /* Just ensure a guest exit from a particular CPU */ 420 static void exit_vm_noop(void *info) 421 { 422 } 423 424 void force_vm_exit(const cpumask_t *mask) 425 { 426 preempt_disable(); 427 smp_call_function_many(mask, exit_vm_noop, NULL, true); 428 preempt_enable(); 429 } 430 431 /** 432 * need_new_vmid_gen - check that the VMID is still valid 433 * @kvm: The VM's VMID to check 434 * 435 * return true if there is a new generation of VMIDs being used 436 * 437 * The hardware supports only 256 values with the value zero reserved for the 438 * host, so we check if an assigned value belongs to a previous generation, 439 * which which requires us to assign a new value. If we're the first to use a 440 * VMID for the new generation, we must flush necessary caches and TLBs on all 441 * CPUs. 442 */ 443 static bool need_new_vmid_gen(struct kvm *kvm) 444 { 445 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen)); 446 } 447 448 /** 449 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs 450 * @kvm The guest that we are about to run 451 * 452 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the 453 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding 454 * caches and TLBs. 455 */ 456 static void update_vttbr(struct kvm *kvm) 457 { 458 phys_addr_t pgd_phys; 459 u64 vmid; 460 461 if (!need_new_vmid_gen(kvm)) 462 return; 463 464 spin_lock(&kvm_vmid_lock); 465 466 /* 467 * We need to re-check the vmid_gen here to ensure that if another vcpu 468 * already allocated a valid vmid for this vm, then this vcpu should 469 * use the same vmid. 470 */ 471 if (!need_new_vmid_gen(kvm)) { 472 spin_unlock(&kvm_vmid_lock); 473 return; 474 } 475 476 /* First user of a new VMID generation? */ 477 if (unlikely(kvm_next_vmid == 0)) { 478 atomic64_inc(&kvm_vmid_gen); 479 kvm_next_vmid = 1; 480 481 /* 482 * On SMP we know no other CPUs can use this CPU's or each 483 * other's VMID after force_vm_exit returns since the 484 * kvm_vmid_lock blocks them from reentry to the guest. 485 */ 486 force_vm_exit(cpu_all_mask); 487 /* 488 * Now broadcast TLB + ICACHE invalidation over the inner 489 * shareable domain to make sure all data structures are 490 * clean. 491 */ 492 kvm_call_hyp(__kvm_flush_vm_context); 493 } 494 495 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen); 496 kvm->arch.vmid = kvm_next_vmid; 497 kvm_next_vmid++; 498 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1; 499 500 /* update vttbr to be used with the new vmid */ 501 pgd_phys = virt_to_phys(kvm->arch.pgd); 502 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK); 503 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits); 504 kvm->arch.vttbr = pgd_phys | vmid; 505 506 spin_unlock(&kvm_vmid_lock); 507 } 508 509 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) 510 { 511 struct kvm *kvm = vcpu->kvm; 512 int ret = 0; 513 514 if (likely(vcpu->arch.has_run_once)) 515 return 0; 516 517 vcpu->arch.has_run_once = true; 518 519 /* 520 * Map the VGIC hardware resources before running a vcpu the first 521 * time on this VM. 522 */ 523 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) { 524 ret = kvm_vgic_map_resources(kvm); 525 if (ret) 526 return ret; 527 } 528 529 ret = kvm_timer_enable(vcpu); 530 if (ret) 531 return ret; 532 533 ret = kvm_arm_pmu_v3_enable(vcpu); 534 535 return ret; 536 } 537 538 bool kvm_arch_intc_initialized(struct kvm *kvm) 539 { 540 return vgic_initialized(kvm); 541 } 542 543 void kvm_arm_halt_guest(struct kvm *kvm) 544 { 545 int i; 546 struct kvm_vcpu *vcpu; 547 548 kvm_for_each_vcpu(i, vcpu, kvm) 549 vcpu->arch.pause = true; 550 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 551 } 552 553 void kvm_arm_resume_guest(struct kvm *kvm) 554 { 555 int i; 556 struct kvm_vcpu *vcpu; 557 558 kvm_for_each_vcpu(i, vcpu, kvm) { 559 vcpu->arch.pause = false; 560 swake_up(kvm_arch_vcpu_wq(vcpu)); 561 } 562 } 563 564 static void vcpu_req_sleep(struct kvm_vcpu *vcpu) 565 { 566 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); 567 568 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) && 569 (!vcpu->arch.pause))); 570 571 if (vcpu->arch.power_off || vcpu->arch.pause) { 572 /* Awaken to handle a signal, request we sleep again later. */ 573 kvm_make_request(KVM_REQ_SLEEP, vcpu); 574 } 575 } 576 577 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 578 { 579 return vcpu->arch.target >= 0; 580 } 581 582 static void check_vcpu_requests(struct kvm_vcpu *vcpu) 583 { 584 if (kvm_request_pending(vcpu)) { 585 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 586 vcpu_req_sleep(vcpu); 587 588 /* 589 * Clear IRQ_PENDING requests that were made to guarantee 590 * that a VCPU sees new virtual interrupts. 591 */ 592 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 593 } 594 } 595 596 /** 597 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 598 * @vcpu: The VCPU pointer 599 * @run: The kvm_run structure pointer used for userspace state exchange 600 * 601 * This function is called through the VCPU_RUN ioctl called from user space. It 602 * will execute VM code in a loop until the time slice for the process is used 603 * or some emulation is needed from user space in which case the function will 604 * return with return value 0 and with the kvm_run structure filled in with the 605 * required data for the requested emulation. 606 */ 607 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 608 { 609 int ret; 610 sigset_t sigsaved; 611 612 if (unlikely(!kvm_vcpu_initialized(vcpu))) 613 return -ENOEXEC; 614 615 ret = kvm_vcpu_first_run_init(vcpu); 616 if (ret) 617 return ret; 618 619 if (run->exit_reason == KVM_EXIT_MMIO) { 620 ret = kvm_handle_mmio_return(vcpu, vcpu->run); 621 if (ret) 622 return ret; 623 } 624 625 if (run->immediate_exit) 626 return -EINTR; 627 628 if (vcpu->sigset_active) 629 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 630 631 ret = 1; 632 run->exit_reason = KVM_EXIT_UNKNOWN; 633 while (ret > 0) { 634 /* 635 * Check conditions before entering the guest 636 */ 637 cond_resched(); 638 639 update_vttbr(vcpu->kvm); 640 641 check_vcpu_requests(vcpu); 642 643 /* 644 * Preparing the interrupts to be injected also 645 * involves poking the GIC, which must be done in a 646 * non-preemptible context. 647 */ 648 preempt_disable(); 649 650 kvm_pmu_flush_hwstate(vcpu); 651 652 kvm_timer_flush_hwstate(vcpu); 653 kvm_vgic_flush_hwstate(vcpu); 654 655 local_irq_disable(); 656 657 /* 658 * If we have a singal pending, or need to notify a userspace 659 * irqchip about timer or PMU level changes, then we exit (and 660 * update the timer level state in kvm_timer_update_run 661 * below). 662 */ 663 if (signal_pending(current) || 664 kvm_timer_should_notify_user(vcpu) || 665 kvm_pmu_should_notify_user(vcpu)) { 666 ret = -EINTR; 667 run->exit_reason = KVM_EXIT_INTR; 668 } 669 670 /* 671 * Ensure we set mode to IN_GUEST_MODE after we disable 672 * interrupts and before the final VCPU requests check. 673 * See the comment in kvm_vcpu_exiting_guest_mode() and 674 * Documentation/virtual/kvm/vcpu-requests.rst 675 */ 676 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 677 678 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) || 679 kvm_request_pending(vcpu)) { 680 vcpu->mode = OUTSIDE_GUEST_MODE; 681 local_irq_enable(); 682 kvm_pmu_sync_hwstate(vcpu); 683 kvm_timer_sync_hwstate(vcpu); 684 kvm_vgic_sync_hwstate(vcpu); 685 preempt_enable(); 686 continue; 687 } 688 689 kvm_arm_setup_debug(vcpu); 690 691 /************************************************************** 692 * Enter the guest 693 */ 694 trace_kvm_entry(*vcpu_pc(vcpu)); 695 guest_enter_irqoff(); 696 697 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); 698 699 vcpu->mode = OUTSIDE_GUEST_MODE; 700 vcpu->stat.exits++; 701 /* 702 * Back from guest 703 *************************************************************/ 704 705 kvm_arm_clear_debug(vcpu); 706 707 /* 708 * We may have taken a host interrupt in HYP mode (ie 709 * while executing the guest). This interrupt is still 710 * pending, as we haven't serviced it yet! 711 * 712 * We're now back in SVC mode, with interrupts 713 * disabled. Enabling the interrupts now will have 714 * the effect of taking the interrupt again, in SVC 715 * mode this time. 716 */ 717 local_irq_enable(); 718 719 /* 720 * We do local_irq_enable() before calling guest_exit() so 721 * that if a timer interrupt hits while running the guest we 722 * account that tick as being spent in the guest. We enable 723 * preemption after calling guest_exit() so that if we get 724 * preempted we make sure ticks after that is not counted as 725 * guest time. 726 */ 727 guest_exit(); 728 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 729 730 /* 731 * We must sync the PMU and timer state before the vgic state so 732 * that the vgic can properly sample the updated state of the 733 * interrupt line. 734 */ 735 kvm_pmu_sync_hwstate(vcpu); 736 kvm_timer_sync_hwstate(vcpu); 737 738 kvm_vgic_sync_hwstate(vcpu); 739 740 preempt_enable(); 741 742 ret = handle_exit(vcpu, run, ret); 743 } 744 745 /* Tell userspace about in-kernel device output levels */ 746 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 747 kvm_timer_update_run(vcpu); 748 kvm_pmu_update_run(vcpu); 749 } 750 751 if (vcpu->sigset_active) 752 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 753 return ret; 754 } 755 756 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 757 { 758 int bit_index; 759 bool set; 760 unsigned long *ptr; 761 762 if (number == KVM_ARM_IRQ_CPU_IRQ) 763 bit_index = __ffs(HCR_VI); 764 else /* KVM_ARM_IRQ_CPU_FIQ */ 765 bit_index = __ffs(HCR_VF); 766 767 ptr = (unsigned long *)&vcpu->arch.irq_lines; 768 if (level) 769 set = test_and_set_bit(bit_index, ptr); 770 else 771 set = test_and_clear_bit(bit_index, ptr); 772 773 /* 774 * If we didn't change anything, no need to wake up or kick other CPUs 775 */ 776 if (set == level) 777 return 0; 778 779 /* 780 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 781 * trigger a world-switch round on the running physical CPU to set the 782 * virtual IRQ/FIQ fields in the HCR appropriately. 783 */ 784 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 785 kvm_vcpu_kick(vcpu); 786 787 return 0; 788 } 789 790 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 791 bool line_status) 792 { 793 u32 irq = irq_level->irq; 794 unsigned int irq_type, vcpu_idx, irq_num; 795 int nrcpus = atomic_read(&kvm->online_vcpus); 796 struct kvm_vcpu *vcpu = NULL; 797 bool level = irq_level->level; 798 799 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 800 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 801 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 802 803 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 804 805 switch (irq_type) { 806 case KVM_ARM_IRQ_TYPE_CPU: 807 if (irqchip_in_kernel(kvm)) 808 return -ENXIO; 809 810 if (vcpu_idx >= nrcpus) 811 return -EINVAL; 812 813 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 814 if (!vcpu) 815 return -EINVAL; 816 817 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 818 return -EINVAL; 819 820 return vcpu_interrupt_line(vcpu, irq_num, level); 821 case KVM_ARM_IRQ_TYPE_PPI: 822 if (!irqchip_in_kernel(kvm)) 823 return -ENXIO; 824 825 if (vcpu_idx >= nrcpus) 826 return -EINVAL; 827 828 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 829 if (!vcpu) 830 return -EINVAL; 831 832 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 833 return -EINVAL; 834 835 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); 836 case KVM_ARM_IRQ_TYPE_SPI: 837 if (!irqchip_in_kernel(kvm)) 838 return -ENXIO; 839 840 if (irq_num < VGIC_NR_PRIVATE_IRQS) 841 return -EINVAL; 842 843 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); 844 } 845 846 return -EINVAL; 847 } 848 849 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 850 const struct kvm_vcpu_init *init) 851 { 852 unsigned int i; 853 int phys_target = kvm_target_cpu(); 854 855 if (init->target != phys_target) 856 return -EINVAL; 857 858 /* 859 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 860 * use the same target. 861 */ 862 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) 863 return -EINVAL; 864 865 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 866 for (i = 0; i < sizeof(init->features) * 8; i++) { 867 bool set = (init->features[i / 32] & (1 << (i % 32))); 868 869 if (set && i >= KVM_VCPU_MAX_FEATURES) 870 return -ENOENT; 871 872 /* 873 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 874 * use the same feature set. 875 */ 876 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && 877 test_bit(i, vcpu->arch.features) != set) 878 return -EINVAL; 879 880 if (set) 881 set_bit(i, vcpu->arch.features); 882 } 883 884 vcpu->arch.target = phys_target; 885 886 /* Now we know what it is, we can reset it. */ 887 return kvm_reset_vcpu(vcpu); 888 } 889 890 891 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 892 struct kvm_vcpu_init *init) 893 { 894 int ret; 895 896 ret = kvm_vcpu_set_target(vcpu, init); 897 if (ret) 898 return ret; 899 900 /* 901 * Ensure a rebooted VM will fault in RAM pages and detect if the 902 * guest MMU is turned off and flush the caches as needed. 903 */ 904 if (vcpu->arch.has_run_once) 905 stage2_unmap_vm(vcpu->kvm); 906 907 vcpu_reset_hcr(vcpu); 908 909 /* 910 * Handle the "start in power-off" case. 911 */ 912 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) 913 vcpu_power_off(vcpu); 914 else 915 vcpu->arch.power_off = false; 916 917 return 0; 918 } 919 920 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 921 struct kvm_device_attr *attr) 922 { 923 int ret = -ENXIO; 924 925 switch (attr->group) { 926 default: 927 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 928 break; 929 } 930 931 return ret; 932 } 933 934 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 935 struct kvm_device_attr *attr) 936 { 937 int ret = -ENXIO; 938 939 switch (attr->group) { 940 default: 941 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 942 break; 943 } 944 945 return ret; 946 } 947 948 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 949 struct kvm_device_attr *attr) 950 { 951 int ret = -ENXIO; 952 953 switch (attr->group) { 954 default: 955 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 956 break; 957 } 958 959 return ret; 960 } 961 962 long kvm_arch_vcpu_ioctl(struct file *filp, 963 unsigned int ioctl, unsigned long arg) 964 { 965 struct kvm_vcpu *vcpu = filp->private_data; 966 void __user *argp = (void __user *)arg; 967 struct kvm_device_attr attr; 968 969 switch (ioctl) { 970 case KVM_ARM_VCPU_INIT: { 971 struct kvm_vcpu_init init; 972 973 if (copy_from_user(&init, argp, sizeof(init))) 974 return -EFAULT; 975 976 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 977 } 978 case KVM_SET_ONE_REG: 979 case KVM_GET_ONE_REG: { 980 struct kvm_one_reg reg; 981 982 if (unlikely(!kvm_vcpu_initialized(vcpu))) 983 return -ENOEXEC; 984 985 if (copy_from_user(®, argp, sizeof(reg))) 986 return -EFAULT; 987 if (ioctl == KVM_SET_ONE_REG) 988 return kvm_arm_set_reg(vcpu, ®); 989 else 990 return kvm_arm_get_reg(vcpu, ®); 991 } 992 case KVM_GET_REG_LIST: { 993 struct kvm_reg_list __user *user_list = argp; 994 struct kvm_reg_list reg_list; 995 unsigned n; 996 997 if (unlikely(!kvm_vcpu_initialized(vcpu))) 998 return -ENOEXEC; 999 1000 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1001 return -EFAULT; 1002 n = reg_list.n; 1003 reg_list.n = kvm_arm_num_regs(vcpu); 1004 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1005 return -EFAULT; 1006 if (n < reg_list.n) 1007 return -E2BIG; 1008 return kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1009 } 1010 case KVM_SET_DEVICE_ATTR: { 1011 if (copy_from_user(&attr, argp, sizeof(attr))) 1012 return -EFAULT; 1013 return kvm_arm_vcpu_set_attr(vcpu, &attr); 1014 } 1015 case KVM_GET_DEVICE_ATTR: { 1016 if (copy_from_user(&attr, argp, sizeof(attr))) 1017 return -EFAULT; 1018 return kvm_arm_vcpu_get_attr(vcpu, &attr); 1019 } 1020 case KVM_HAS_DEVICE_ATTR: { 1021 if (copy_from_user(&attr, argp, sizeof(attr))) 1022 return -EFAULT; 1023 return kvm_arm_vcpu_has_attr(vcpu, &attr); 1024 } 1025 default: 1026 return -EINVAL; 1027 } 1028 } 1029 1030 /** 1031 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1032 * @kvm: kvm instance 1033 * @log: slot id and address to which we copy the log 1034 * 1035 * Steps 1-4 below provide general overview of dirty page logging. See 1036 * kvm_get_dirty_log_protect() function description for additional details. 1037 * 1038 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1039 * always flush the TLB (step 4) even if previous step failed and the dirty 1040 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1041 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1042 * writes will be marked dirty for next log read. 1043 * 1044 * 1. Take a snapshot of the bit and clear it if needed. 1045 * 2. Write protect the corresponding page. 1046 * 3. Copy the snapshot to the userspace. 1047 * 4. Flush TLB's if needed. 1048 */ 1049 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 1050 { 1051 bool is_dirty = false; 1052 int r; 1053 1054 mutex_lock(&kvm->slots_lock); 1055 1056 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 1057 1058 if (is_dirty) 1059 kvm_flush_remote_tlbs(kvm); 1060 1061 mutex_unlock(&kvm->slots_lock); 1062 return r; 1063 } 1064 1065 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1066 struct kvm_arm_device_addr *dev_addr) 1067 { 1068 unsigned long dev_id, type; 1069 1070 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> 1071 KVM_ARM_DEVICE_ID_SHIFT; 1072 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> 1073 KVM_ARM_DEVICE_TYPE_SHIFT; 1074 1075 switch (dev_id) { 1076 case KVM_ARM_DEVICE_VGIC_V2: 1077 if (!vgic_present) 1078 return -ENXIO; 1079 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); 1080 default: 1081 return -ENODEV; 1082 } 1083 } 1084 1085 long kvm_arch_vm_ioctl(struct file *filp, 1086 unsigned int ioctl, unsigned long arg) 1087 { 1088 struct kvm *kvm = filp->private_data; 1089 void __user *argp = (void __user *)arg; 1090 1091 switch (ioctl) { 1092 case KVM_CREATE_IRQCHIP: { 1093 int ret; 1094 if (!vgic_present) 1095 return -ENXIO; 1096 mutex_lock(&kvm->lock); 1097 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1098 mutex_unlock(&kvm->lock); 1099 return ret; 1100 } 1101 case KVM_ARM_SET_DEVICE_ADDR: { 1102 struct kvm_arm_device_addr dev_addr; 1103 1104 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1105 return -EFAULT; 1106 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1107 } 1108 case KVM_ARM_PREFERRED_TARGET: { 1109 int err; 1110 struct kvm_vcpu_init init; 1111 1112 err = kvm_vcpu_preferred_target(&init); 1113 if (err) 1114 return err; 1115 1116 if (copy_to_user(argp, &init, sizeof(init))) 1117 return -EFAULT; 1118 1119 return 0; 1120 } 1121 default: 1122 return -EINVAL; 1123 } 1124 } 1125 1126 static void cpu_init_hyp_mode(void *dummy) 1127 { 1128 phys_addr_t pgd_ptr; 1129 unsigned long hyp_stack_ptr; 1130 unsigned long stack_page; 1131 unsigned long vector_ptr; 1132 1133 /* Switch from the HYP stub to our own HYP init vector */ 1134 __hyp_set_vectors(kvm_get_idmap_vector()); 1135 1136 pgd_ptr = kvm_mmu_get_httbr(); 1137 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page); 1138 hyp_stack_ptr = stack_page + PAGE_SIZE; 1139 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector); 1140 1141 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr); 1142 __cpu_init_stage2(); 1143 1144 kvm_arm_init_debug(); 1145 } 1146 1147 static void cpu_hyp_reset(void) 1148 { 1149 if (!is_kernel_in_hyp_mode()) 1150 __hyp_reset_vectors(); 1151 } 1152 1153 static void cpu_hyp_reinit(void) 1154 { 1155 cpu_hyp_reset(); 1156 1157 if (is_kernel_in_hyp_mode()) { 1158 /* 1159 * __cpu_init_stage2() is safe to call even if the PM 1160 * event was cancelled before the CPU was reset. 1161 */ 1162 __cpu_init_stage2(); 1163 kvm_timer_init_vhe(); 1164 } else { 1165 cpu_init_hyp_mode(NULL); 1166 } 1167 1168 if (vgic_present) 1169 kvm_vgic_init_cpu_hardware(); 1170 } 1171 1172 static void _kvm_arch_hardware_enable(void *discard) 1173 { 1174 if (!__this_cpu_read(kvm_arm_hardware_enabled)) { 1175 cpu_hyp_reinit(); 1176 __this_cpu_write(kvm_arm_hardware_enabled, 1); 1177 } 1178 } 1179 1180 int kvm_arch_hardware_enable(void) 1181 { 1182 _kvm_arch_hardware_enable(NULL); 1183 return 0; 1184 } 1185 1186 static void _kvm_arch_hardware_disable(void *discard) 1187 { 1188 if (__this_cpu_read(kvm_arm_hardware_enabled)) { 1189 cpu_hyp_reset(); 1190 __this_cpu_write(kvm_arm_hardware_enabled, 0); 1191 } 1192 } 1193 1194 void kvm_arch_hardware_disable(void) 1195 { 1196 _kvm_arch_hardware_disable(NULL); 1197 } 1198 1199 #ifdef CONFIG_CPU_PM 1200 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 1201 unsigned long cmd, 1202 void *v) 1203 { 1204 /* 1205 * kvm_arm_hardware_enabled is left with its old value over 1206 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 1207 * re-enable hyp. 1208 */ 1209 switch (cmd) { 1210 case CPU_PM_ENTER: 1211 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1212 /* 1213 * don't update kvm_arm_hardware_enabled here 1214 * so that the hardware will be re-enabled 1215 * when we resume. See below. 1216 */ 1217 cpu_hyp_reset(); 1218 1219 return NOTIFY_OK; 1220 case CPU_PM_EXIT: 1221 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1222 /* The hardware was enabled before suspend. */ 1223 cpu_hyp_reinit(); 1224 1225 return NOTIFY_OK; 1226 1227 default: 1228 return NOTIFY_DONE; 1229 } 1230 } 1231 1232 static struct notifier_block hyp_init_cpu_pm_nb = { 1233 .notifier_call = hyp_init_cpu_pm_notifier, 1234 }; 1235 1236 static void __init hyp_cpu_pm_init(void) 1237 { 1238 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 1239 } 1240 static void __init hyp_cpu_pm_exit(void) 1241 { 1242 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 1243 } 1244 #else 1245 static inline void hyp_cpu_pm_init(void) 1246 { 1247 } 1248 static inline void hyp_cpu_pm_exit(void) 1249 { 1250 } 1251 #endif 1252 1253 static void teardown_common_resources(void) 1254 { 1255 free_percpu(kvm_host_cpu_state); 1256 } 1257 1258 static int init_common_resources(void) 1259 { 1260 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t); 1261 if (!kvm_host_cpu_state) { 1262 kvm_err("Cannot allocate host CPU state\n"); 1263 return -ENOMEM; 1264 } 1265 1266 /* set size of VMID supported by CPU */ 1267 kvm_vmid_bits = kvm_get_vmid_bits(); 1268 kvm_info("%d-bit VMID\n", kvm_vmid_bits); 1269 1270 return 0; 1271 } 1272 1273 static int init_subsystems(void) 1274 { 1275 int err = 0; 1276 1277 /* 1278 * Enable hardware so that subsystem initialisation can access EL2. 1279 */ 1280 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); 1281 1282 /* 1283 * Register CPU lower-power notifier 1284 */ 1285 hyp_cpu_pm_init(); 1286 1287 /* 1288 * Init HYP view of VGIC 1289 */ 1290 err = kvm_vgic_hyp_init(); 1291 switch (err) { 1292 case 0: 1293 vgic_present = true; 1294 break; 1295 case -ENODEV: 1296 case -ENXIO: 1297 vgic_present = false; 1298 err = 0; 1299 break; 1300 default: 1301 goto out; 1302 } 1303 1304 /* 1305 * Init HYP architected timer support 1306 */ 1307 err = kvm_timer_hyp_init(); 1308 if (err) 1309 goto out; 1310 1311 kvm_perf_init(); 1312 kvm_coproc_table_init(); 1313 1314 out: 1315 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); 1316 1317 return err; 1318 } 1319 1320 static void teardown_hyp_mode(void) 1321 { 1322 int cpu; 1323 1324 if (is_kernel_in_hyp_mode()) 1325 return; 1326 1327 free_hyp_pgds(); 1328 for_each_possible_cpu(cpu) 1329 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 1330 hyp_cpu_pm_exit(); 1331 } 1332 1333 static int init_vhe_mode(void) 1334 { 1335 kvm_info("VHE mode initialized successfully\n"); 1336 return 0; 1337 } 1338 1339 /** 1340 * Inits Hyp-mode on all online CPUs 1341 */ 1342 static int init_hyp_mode(void) 1343 { 1344 int cpu; 1345 int err = 0; 1346 1347 /* 1348 * Allocate Hyp PGD and setup Hyp identity mapping 1349 */ 1350 err = kvm_mmu_init(); 1351 if (err) 1352 goto out_err; 1353 1354 /* 1355 * Allocate stack pages for Hypervisor-mode 1356 */ 1357 for_each_possible_cpu(cpu) { 1358 unsigned long stack_page; 1359 1360 stack_page = __get_free_page(GFP_KERNEL); 1361 if (!stack_page) { 1362 err = -ENOMEM; 1363 goto out_err; 1364 } 1365 1366 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 1367 } 1368 1369 /* 1370 * Map the Hyp-code called directly from the host 1371 */ 1372 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 1373 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 1374 if (err) { 1375 kvm_err("Cannot map world-switch code\n"); 1376 goto out_err; 1377 } 1378 1379 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 1380 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 1381 if (err) { 1382 kvm_err("Cannot map rodata section\n"); 1383 goto out_err; 1384 } 1385 1386 err = create_hyp_mappings(kvm_ksym_ref(__bss_start), 1387 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 1388 if (err) { 1389 kvm_err("Cannot map bss section\n"); 1390 goto out_err; 1391 } 1392 1393 /* 1394 * Map the Hyp stack pages 1395 */ 1396 for_each_possible_cpu(cpu) { 1397 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 1398 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, 1399 PAGE_HYP); 1400 1401 if (err) { 1402 kvm_err("Cannot map hyp stack\n"); 1403 goto out_err; 1404 } 1405 } 1406 1407 for_each_possible_cpu(cpu) { 1408 kvm_cpu_context_t *cpu_ctxt; 1409 1410 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu); 1411 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP); 1412 1413 if (err) { 1414 kvm_err("Cannot map host CPU state: %d\n", err); 1415 goto out_err; 1416 } 1417 } 1418 1419 kvm_info("Hyp mode initialized successfully\n"); 1420 1421 return 0; 1422 1423 out_err: 1424 teardown_hyp_mode(); 1425 kvm_err("error initializing Hyp mode: %d\n", err); 1426 return err; 1427 } 1428 1429 static void check_kvm_target_cpu(void *ret) 1430 { 1431 *(int *)ret = kvm_target_cpu(); 1432 } 1433 1434 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 1435 { 1436 struct kvm_vcpu *vcpu; 1437 int i; 1438 1439 mpidr &= MPIDR_HWID_BITMASK; 1440 kvm_for_each_vcpu(i, vcpu, kvm) { 1441 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 1442 return vcpu; 1443 } 1444 return NULL; 1445 } 1446 1447 /** 1448 * Initialize Hyp-mode and memory mappings on all CPUs. 1449 */ 1450 int kvm_arch_init(void *opaque) 1451 { 1452 int err; 1453 int ret, cpu; 1454 1455 if (!is_hyp_mode_available()) { 1456 kvm_err("HYP mode not available\n"); 1457 return -ENODEV; 1458 } 1459 1460 for_each_online_cpu(cpu) { 1461 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); 1462 if (ret < 0) { 1463 kvm_err("Error, CPU %d not supported!\n", cpu); 1464 return -ENODEV; 1465 } 1466 } 1467 1468 err = init_common_resources(); 1469 if (err) 1470 return err; 1471 1472 if (is_kernel_in_hyp_mode()) 1473 err = init_vhe_mode(); 1474 else 1475 err = init_hyp_mode(); 1476 if (err) 1477 goto out_err; 1478 1479 err = init_subsystems(); 1480 if (err) 1481 goto out_hyp; 1482 1483 return 0; 1484 1485 out_hyp: 1486 teardown_hyp_mode(); 1487 out_err: 1488 teardown_common_resources(); 1489 return err; 1490 } 1491 1492 /* NOP: Compiling as a module not supported */ 1493 void kvm_arch_exit(void) 1494 { 1495 kvm_perf_teardown(); 1496 } 1497 1498 static int arm_init(void) 1499 { 1500 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1501 return rc; 1502 } 1503 1504 module_init(arm_init); 1505
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.