~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/virt/kvm/kvm_main.c

Version: ~ [ linux-5.12-rc7 ] ~ [ linux-5.11.13 ] ~ [ linux-5.10.29 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.111 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.186 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.230 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.266 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.266 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Kernel-based Virtual Machine driver for Linux
  3  *
  4  * This module enables machines with Intel VT-x extensions to run virtual
  5  * machines without emulation or binary translation.
  6  *
  7  * Copyright (C) 2006 Qumranet, Inc.
  8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9  *
 10  * Authors:
 11  *   Avi Kivity   <avi@qumranet.com>
 12  *   Yaniv Kamay  <yaniv@qumranet.com>
 13  *
 14  * This work is licensed under the terms of the GNU GPL, version 2.  See
 15  * the COPYING file in the top-level directory.
 16  *
 17  */
 18 
 19 #include <kvm/iodev.h>
 20 
 21 #include <linux/kvm_host.h>
 22 #include <linux/kvm.h>
 23 #include <linux/module.h>
 24 #include <linux/errno.h>
 25 #include <linux/percpu.h>
 26 #include <linux/mm.h>
 27 #include <linux/miscdevice.h>
 28 #include <linux/vmalloc.h>
 29 #include <linux/reboot.h>
 30 #include <linux/debugfs.h>
 31 #include <linux/highmem.h>
 32 #include <linux/file.h>
 33 #include <linux/syscore_ops.h>
 34 #include <linux/cpu.h>
 35 #include <linux/sched/signal.h>
 36 #include <linux/sched/mm.h>
 37 #include <linux/sched/stat.h>
 38 #include <linux/cpumask.h>
 39 #include <linux/smp.h>
 40 #include <linux/anon_inodes.h>
 41 #include <linux/profile.h>
 42 #include <linux/kvm_para.h>
 43 #include <linux/pagemap.h>
 44 #include <linux/mman.h>
 45 #include <linux/swap.h>
 46 #include <linux/bitops.h>
 47 #include <linux/spinlock.h>
 48 #include <linux/compat.h>
 49 #include <linux/srcu.h>
 50 #include <linux/hugetlb.h>
 51 #include <linux/slab.h>
 52 #include <linux/sort.h>
 53 #include <linux/bsearch.h>
 54 
 55 #include <asm/processor.h>
 56 #include <asm/io.h>
 57 #include <asm/ioctl.h>
 58 #include <linux/uaccess.h>
 59 #include <asm/pgtable.h>
 60 
 61 #include "coalesced_mmio.h"
 62 #include "async_pf.h"
 63 #include "vfio.h"
 64 
 65 #define CREATE_TRACE_POINTS
 66 #include <trace/events/kvm.h>
 67 
 68 /* Worst case buffer size needed for holding an integer. */
 69 #define ITOA_MAX_LEN 12
 70 
 71 MODULE_AUTHOR("Qumranet");
 72 MODULE_LICENSE("GPL");
 73 
 74 /* Architectures should define their poll value according to the halt latency */
 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
 76 module_param(halt_poll_ns, uint, 0644);
 77 EXPORT_SYMBOL_GPL(halt_poll_ns);
 78 
 79 /* Default doubles per-vcpu halt_poll_ns. */
 80 unsigned int halt_poll_ns_grow = 2;
 81 module_param(halt_poll_ns_grow, uint, 0644);
 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
 83 
 84 /* Default resets per-vcpu halt_poll_ns . */
 85 unsigned int halt_poll_ns_shrink;
 86 module_param(halt_poll_ns_shrink, uint, 0644);
 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
 88 
 89 /*
 90  * Ordering of locks:
 91  *
 92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
 93  */
 94 
 95 DEFINE_SPINLOCK(kvm_lock);
 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
 97 LIST_HEAD(vm_list);
 98 
 99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127 
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130 
131 static bool largepages_enabled = true;
132 
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138 
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141         if (pfn_valid(pfn))
142                 return PageReserved(pfn_to_page(pfn));
143 
144         return true;
145 }
146 
147 /*
148  * Switches to specified vcpu, until a matching vcpu_put()
149  */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152         int cpu;
153 
154         if (mutex_lock_killable(&vcpu->mutex))
155                 return -EINTR;
156         cpu = get_cpu();
157         preempt_notifier_register(&vcpu->preempt_notifier);
158         kvm_arch_vcpu_load(vcpu, cpu);
159         put_cpu();
160         return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163 
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166         preempt_disable();
167         kvm_arch_vcpu_put(vcpu);
168         preempt_notifier_unregister(&vcpu->preempt_notifier);
169         preempt_enable();
170         mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173 
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178 
179         /*
180          * We need to wait for the VCPU to reenable interrupts and get out of
181          * READING_SHADOW_PAGE_TABLES mode.
182          */
183         if (req & KVM_REQUEST_WAIT)
184                 return mode != OUTSIDE_GUEST_MODE;
185 
186         /*
187          * Need to kick a running VCPU, but otherwise there is nothing to do.
188          */
189         return mode == IN_GUEST_MODE;
190 }
191 
192 static void ack_flush(void *_completed)
193 {
194 }
195 
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198         if (unlikely(!cpus))
199                 cpus = cpu_online_mask;
200 
201         if (cpumask_empty(cpus))
202                 return false;
203 
204         smp_call_function_many(cpus, ack_flush, NULL, wait);
205         return true;
206 }
207 
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210         int i, cpu, me;
211         cpumask_var_t cpus;
212         bool called;
213         struct kvm_vcpu *vcpu;
214 
215         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216 
217         me = get_cpu();
218         kvm_for_each_vcpu(i, vcpu, kvm) {
219                 kvm_make_request(req, vcpu);
220                 cpu = vcpu->cpu;
221 
222                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223                         continue;
224 
225                 if (cpus != NULL && cpu != -1 && cpu != me &&
226                     kvm_request_needs_ipi(vcpu, req))
227                         __cpumask_set_cpu(cpu, cpus);
228         }
229         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230         put_cpu();
231         free_cpumask_var(cpus);
232         return called;
233 }
234 
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238         /*
239          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240          * kvm_make_all_cpus_request.
241          */
242         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243 
244         /*
245          * We want to publish modifications to the page tables before reading
246          * mode. Pairs with a memory barrier in arch-specific code.
247          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248          * and smp_mb in walk_shadow_page_lockless_begin/end.
249          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250          *
251          * There is already an smp_mb__after_atomic() before
252          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253          * barrier here.
254          */
255         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256                 ++kvm->stat.remote_tlb_flush;
257         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261 
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266 
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269         struct page *page;
270         int r;
271 
272         mutex_init(&vcpu->mutex);
273         vcpu->cpu = -1;
274         vcpu->kvm = kvm;
275         vcpu->vcpu_id = id;
276         vcpu->pid = NULL;
277         init_swait_queue_head(&vcpu->wq);
278         kvm_async_pf_vcpu_init(vcpu);
279 
280         vcpu->pre_pcpu = -1;
281         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282 
283         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284         if (!page) {
285                 r = -ENOMEM;
286                 goto fail;
287         }
288         vcpu->run = page_address(page);
289 
290         kvm_vcpu_set_in_spin_loop(vcpu, false);
291         kvm_vcpu_set_dy_eligible(vcpu, false);
292         vcpu->preempted = false;
293 
294         r = kvm_arch_vcpu_init(vcpu);
295         if (r < 0)
296                 goto fail_free_run;
297         return 0;
298 
299 fail_free_run:
300         free_page((unsigned long)vcpu->run);
301 fail:
302         return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305 
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308         /*
309          * no need for rcu_read_lock as VCPU_RUN is the only place that
310          * will change the vcpu->pid pointer and on uninit all file
311          * descriptors are already gone.
312          */
313         put_pid(rcu_dereference_protected(vcpu->pid, 1));
314         kvm_arch_vcpu_uninit(vcpu);
315         free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318 
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322         return container_of(mn, struct kvm, mmu_notifier);
323 }
324 
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326                                         struct mm_struct *mm,
327                                         unsigned long address,
328                                         pte_t pte)
329 {
330         struct kvm *kvm = mmu_notifier_to_kvm(mn);
331         int idx;
332 
333         idx = srcu_read_lock(&kvm->srcu);
334         spin_lock(&kvm->mmu_lock);
335         kvm->mmu_notifier_seq++;
336         kvm_set_spte_hva(kvm, address, pte);
337         spin_unlock(&kvm->mmu_lock);
338         srcu_read_unlock(&kvm->srcu, idx);
339 }
340 
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342                                                     struct mm_struct *mm,
343                                                     unsigned long start,
344                                                     unsigned long end)
345 {
346         struct kvm *kvm = mmu_notifier_to_kvm(mn);
347         int need_tlb_flush = 0, idx;
348 
349         idx = srcu_read_lock(&kvm->srcu);
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * The count increase must become visible at unlock time as no
353          * spte can be established without taking the mmu_lock and
354          * count is also read inside the mmu_lock critical section.
355          */
356         kvm->mmu_notifier_count++;
357         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358         need_tlb_flush |= kvm->tlbs_dirty;
359         /* we've to flush the tlb before the pages can be freed */
360         if (need_tlb_flush)
361                 kvm_flush_remote_tlbs(kvm);
362 
363         spin_unlock(&kvm->mmu_lock);
364         srcu_read_unlock(&kvm->srcu, idx);
365 }
366 
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368                                                   struct mm_struct *mm,
369                                                   unsigned long start,
370                                                   unsigned long end)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 
374         spin_lock(&kvm->mmu_lock);
375         /*
376          * This sequence increase will notify the kvm page fault that
377          * the page that is going to be mapped in the spte could have
378          * been freed.
379          */
380         kvm->mmu_notifier_seq++;
381         smp_wmb();
382         /*
383          * The above sequence increase must be visible before the
384          * below count decrease, which is ensured by the smp_wmb above
385          * in conjunction with the smp_rmb in mmu_notifier_retry().
386          */
387         kvm->mmu_notifier_count--;
388         spin_unlock(&kvm->mmu_lock);
389 
390         BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392 
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394                                               struct mm_struct *mm,
395                                               unsigned long start,
396                                               unsigned long end)
397 {
398         struct kvm *kvm = mmu_notifier_to_kvm(mn);
399         int young, idx;
400 
401         idx = srcu_read_lock(&kvm->srcu);
402         spin_lock(&kvm->mmu_lock);
403 
404         young = kvm_age_hva(kvm, start, end);
405         if (young)
406                 kvm_flush_remote_tlbs(kvm);
407 
408         spin_unlock(&kvm->mmu_lock);
409         srcu_read_unlock(&kvm->srcu, idx);
410 
411         return young;
412 }
413 
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415                                         struct mm_struct *mm,
416                                         unsigned long start,
417                                         unsigned long end)
418 {
419         struct kvm *kvm = mmu_notifier_to_kvm(mn);
420         int young, idx;
421 
422         idx = srcu_read_lock(&kvm->srcu);
423         spin_lock(&kvm->mmu_lock);
424         /*
425          * Even though we do not flush TLB, this will still adversely
426          * affect performance on pre-Haswell Intel EPT, where there is
427          * no EPT Access Bit to clear so that we have to tear down EPT
428          * tables instead. If we find this unacceptable, we can always
429          * add a parameter to kvm_age_hva so that it effectively doesn't
430          * do anything on clear_young.
431          *
432          * Also note that currently we never issue secondary TLB flushes
433          * from clear_young, leaving this job up to the regular system
434          * cadence. If we find this inaccurate, we might come up with a
435          * more sophisticated heuristic later.
436          */
437         young = kvm_age_hva(kvm, start, end);
438         spin_unlock(&kvm->mmu_lock);
439         srcu_read_unlock(&kvm->srcu, idx);
440 
441         return young;
442 }
443 
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445                                        struct mm_struct *mm,
446                                        unsigned long address)
447 {
448         struct kvm *kvm = mmu_notifier_to_kvm(mn);
449         int young, idx;
450 
451         idx = srcu_read_lock(&kvm->srcu);
452         spin_lock(&kvm->mmu_lock);
453         young = kvm_test_age_hva(kvm, address);
454         spin_unlock(&kvm->mmu_lock);
455         srcu_read_unlock(&kvm->srcu, idx);
456 
457         return young;
458 }
459 
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461                                      struct mm_struct *mm)
462 {
463         struct kvm *kvm = mmu_notifier_to_kvm(mn);
464         int idx;
465 
466         idx = srcu_read_lock(&kvm->srcu);
467         kvm_arch_flush_shadow_all(kvm);
468         srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
473         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
474         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
475         .clear_young            = kvm_mmu_notifier_clear_young,
476         .test_young             = kvm_mmu_notifier_test_young,
477         .change_pte             = kvm_mmu_notifier_change_pte,
478         .release                = kvm_mmu_notifier_release,
479 };
480 
481 static int kvm_init_mmu_notifier(struct kvm *kvm)
482 {
483         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
484         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
485 }
486 
487 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
488 
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491         return 0;
492 }
493 
494 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
495 
496 static struct kvm_memslots *kvm_alloc_memslots(void)
497 {
498         int i;
499         struct kvm_memslots *slots;
500 
501         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
502         if (!slots)
503                 return NULL;
504 
505         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
506                 slots->id_to_index[i] = slots->memslots[i].id = i;
507 
508         return slots;
509 }
510 
511 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
512 {
513         if (!memslot->dirty_bitmap)
514                 return;
515 
516         kvfree(memslot->dirty_bitmap);
517         memslot->dirty_bitmap = NULL;
518 }
519 
520 /*
521  * Free any memory in @free but not in @dont.
522  */
523 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
524                               struct kvm_memory_slot *dont)
525 {
526         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527                 kvm_destroy_dirty_bitmap(free);
528 
529         kvm_arch_free_memslot(kvm, free, dont);
530 
531         free->npages = 0;
532 }
533 
534 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
535 {
536         struct kvm_memory_slot *memslot;
537 
538         if (!slots)
539                 return;
540 
541         kvm_for_each_memslot(memslot, slots)
542                 kvm_free_memslot(kvm, memslot, NULL);
543 
544         kvfree(slots);
545 }
546 
547 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
548 {
549         int i;
550 
551         if (!kvm->debugfs_dentry)
552                 return;
553 
554         debugfs_remove_recursive(kvm->debugfs_dentry);
555 
556         if (kvm->debugfs_stat_data) {
557                 for (i = 0; i < kvm_debugfs_num_entries; i++)
558                         kfree(kvm->debugfs_stat_data[i]);
559                 kfree(kvm->debugfs_stat_data);
560         }
561 }
562 
563 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
564 {
565         char dir_name[ITOA_MAX_LEN * 2];
566         struct kvm_stat_data *stat_data;
567         struct kvm_stats_debugfs_item *p;
568 
569         if (!debugfs_initialized())
570                 return 0;
571 
572         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
573         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
574                                                  kvm_debugfs_dir);
575         if (!kvm->debugfs_dentry)
576                 return -ENOMEM;
577 
578         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
579                                          sizeof(*kvm->debugfs_stat_data),
580                                          GFP_KERNEL);
581         if (!kvm->debugfs_stat_data)
582                 return -ENOMEM;
583 
584         for (p = debugfs_entries; p->name; p++) {
585                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
586                 if (!stat_data)
587                         return -ENOMEM;
588 
589                 stat_data->kvm = kvm;
590                 stat_data->offset = p->offset;
591                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
592                 if (!debugfs_create_file(p->name, 0644,
593                                          kvm->debugfs_dentry,
594                                          stat_data,
595                                          stat_fops_per_vm[p->kind]))
596                         return -ENOMEM;
597         }
598         return 0;
599 }
600 
601 static struct kvm *kvm_create_vm(unsigned long type)
602 {
603         int r, i;
604         struct kvm *kvm = kvm_arch_alloc_vm();
605 
606         if (!kvm)
607                 return ERR_PTR(-ENOMEM);
608 
609         spin_lock_init(&kvm->mmu_lock);
610         mmgrab(current->mm);
611         kvm->mm = current->mm;
612         kvm_eventfd_init(kvm);
613         mutex_init(&kvm->lock);
614         mutex_init(&kvm->irq_lock);
615         mutex_init(&kvm->slots_lock);
616         refcount_set(&kvm->users_count, 1);
617         INIT_LIST_HEAD(&kvm->devices);
618 
619         r = kvm_arch_init_vm(kvm, type);
620         if (r)
621                 goto out_err_no_disable;
622 
623         r = hardware_enable_all();
624         if (r)
625                 goto out_err_no_disable;
626 
627 #ifdef CONFIG_HAVE_KVM_IRQFD
628         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
629 #endif
630 
631         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
632 
633         r = -ENOMEM;
634         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
635                 struct kvm_memslots *slots = kvm_alloc_memslots();
636                 if (!slots)
637                         goto out_err_no_srcu;
638                 /*
639                  * Generations must be different for each address space.
640                  * Init kvm generation close to the maximum to easily test the
641                  * code of handling generation number wrap-around.
642                  */
643                 slots->generation = i * 2 - 150;
644                 rcu_assign_pointer(kvm->memslots[i], slots);
645         }
646 
647         if (init_srcu_struct(&kvm->srcu))
648                 goto out_err_no_srcu;
649         if (init_srcu_struct(&kvm->irq_srcu))
650                 goto out_err_no_irq_srcu;
651         for (i = 0; i < KVM_NR_BUSES; i++) {
652                 rcu_assign_pointer(kvm->buses[i],
653                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
654                 if (!kvm->buses[i])
655                         goto out_err;
656         }
657 
658         r = kvm_init_mmu_notifier(kvm);
659         if (r)
660                 goto out_err;
661 
662         spin_lock(&kvm_lock);
663         list_add(&kvm->vm_list, &vm_list);
664         spin_unlock(&kvm_lock);
665 
666         preempt_notifier_inc();
667 
668         return kvm;
669 
670 out_err:
671         cleanup_srcu_struct(&kvm->irq_srcu);
672 out_err_no_irq_srcu:
673         cleanup_srcu_struct(&kvm->srcu);
674 out_err_no_srcu:
675         hardware_disable_all();
676 out_err_no_disable:
677         for (i = 0; i < KVM_NR_BUSES; i++)
678                 kfree(kvm_get_bus(kvm, i));
679         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
680                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
681         kvm_arch_free_vm(kvm);
682         mmdrop(current->mm);
683         return ERR_PTR(r);
684 }
685 
686 static void kvm_destroy_devices(struct kvm *kvm)
687 {
688         struct kvm_device *dev, *tmp;
689 
690         /*
691          * We do not need to take the kvm->lock here, because nobody else
692          * has a reference to the struct kvm at this point and therefore
693          * cannot access the devices list anyhow.
694          */
695         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
696                 list_del(&dev->vm_node);
697                 dev->ops->destroy(dev);
698         }
699 }
700 
701 static void kvm_destroy_vm(struct kvm *kvm)
702 {
703         int i;
704         struct mm_struct *mm = kvm->mm;
705 
706         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
707         kvm_destroy_vm_debugfs(kvm);
708         kvm_arch_sync_events(kvm);
709         spin_lock(&kvm_lock);
710         list_del(&kvm->vm_list);
711         spin_unlock(&kvm_lock);
712         kvm_free_irq_routing(kvm);
713         for (i = 0; i < KVM_NR_BUSES; i++) {
714                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
715 
716                 if (bus)
717                         kvm_io_bus_destroy(bus);
718                 kvm->buses[i] = NULL;
719         }
720         kvm_coalesced_mmio_free(kvm);
721 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
722         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
723 #else
724         kvm_arch_flush_shadow_all(kvm);
725 #endif
726         kvm_arch_destroy_vm(kvm);
727         kvm_destroy_devices(kvm);
728         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
729                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
730         cleanup_srcu_struct(&kvm->irq_srcu);
731         cleanup_srcu_struct(&kvm->srcu);
732         kvm_arch_free_vm(kvm);
733         preempt_notifier_dec();
734         hardware_disable_all();
735         mmdrop(mm);
736 }
737 
738 void kvm_get_kvm(struct kvm *kvm)
739 {
740         refcount_inc(&kvm->users_count);
741 }
742 EXPORT_SYMBOL_GPL(kvm_get_kvm);
743 
744 void kvm_put_kvm(struct kvm *kvm)
745 {
746         if (refcount_dec_and_test(&kvm->users_count))
747                 kvm_destroy_vm(kvm);
748 }
749 EXPORT_SYMBOL_GPL(kvm_put_kvm);
750 
751 
752 static int kvm_vm_release(struct inode *inode, struct file *filp)
753 {
754         struct kvm *kvm = filp->private_data;
755 
756         kvm_irqfd_release(kvm);
757 
758         kvm_put_kvm(kvm);
759         return 0;
760 }
761 
762 /*
763  * Allocation size is twice as large as the actual dirty bitmap size.
764  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
765  */
766 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
767 {
768         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
769 
770         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
771         if (!memslot->dirty_bitmap)
772                 return -ENOMEM;
773 
774         return 0;
775 }
776 
777 /*
778  * Insert memslot and re-sort memslots based on their GFN,
779  * so binary search could be used to lookup GFN.
780  * Sorting algorithm takes advantage of having initially
781  * sorted array and known changed memslot position.
782  */
783 static void update_memslots(struct kvm_memslots *slots,
784                             struct kvm_memory_slot *new)
785 {
786         int id = new->id;
787         int i = slots->id_to_index[id];
788         struct kvm_memory_slot *mslots = slots->memslots;
789 
790         WARN_ON(mslots[i].id != id);
791         if (!new->npages) {
792                 WARN_ON(!mslots[i].npages);
793                 if (mslots[i].npages)
794                         slots->used_slots--;
795         } else {
796                 if (!mslots[i].npages)
797                         slots->used_slots++;
798         }
799 
800         while (i < KVM_MEM_SLOTS_NUM - 1 &&
801                new->base_gfn <= mslots[i + 1].base_gfn) {
802                 if (!mslots[i + 1].npages)
803                         break;
804                 mslots[i] = mslots[i + 1];
805                 slots->id_to_index[mslots[i].id] = i;
806                 i++;
807         }
808 
809         /*
810          * The ">=" is needed when creating a slot with base_gfn == 0,
811          * so that it moves before all those with base_gfn == npages == 0.
812          *
813          * On the other hand, if new->npages is zero, the above loop has
814          * already left i pointing to the beginning of the empty part of
815          * mslots, and the ">=" would move the hole backwards in this
816          * case---which is wrong.  So skip the loop when deleting a slot.
817          */
818         if (new->npages) {
819                 while (i > 0 &&
820                        new->base_gfn >= mslots[i - 1].base_gfn) {
821                         mslots[i] = mslots[i - 1];
822                         slots->id_to_index[mslots[i].id] = i;
823                         i--;
824                 }
825         } else
826                 WARN_ON_ONCE(i != slots->used_slots);
827 
828         mslots[i] = *new;
829         slots->id_to_index[mslots[i].id] = i;
830 }
831 
832 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
833 {
834         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
835 
836 #ifdef __KVM_HAVE_READONLY_MEM
837         valid_flags |= KVM_MEM_READONLY;
838 #endif
839 
840         if (mem->flags & ~valid_flags)
841                 return -EINVAL;
842 
843         return 0;
844 }
845 
846 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
847                 int as_id, struct kvm_memslots *slots)
848 {
849         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
850 
851         /*
852          * Set the low bit in the generation, which disables SPTE caching
853          * until the end of synchronize_srcu_expedited.
854          */
855         WARN_ON(old_memslots->generation & 1);
856         slots->generation = old_memslots->generation + 1;
857 
858         rcu_assign_pointer(kvm->memslots[as_id], slots);
859         synchronize_srcu_expedited(&kvm->srcu);
860 
861         /*
862          * Increment the new memslot generation a second time. This prevents
863          * vm exits that race with memslot updates from caching a memslot
864          * generation that will (potentially) be valid forever.
865          *
866          * Generations must be unique even across address spaces.  We do not need
867          * a global counter for that, instead the generation space is evenly split
868          * across address spaces.  For example, with two address spaces, address
869          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
870          * use generations 2, 6, 10, 14, ...
871          */
872         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
873 
874         kvm_arch_memslots_updated(kvm, slots);
875 
876         return old_memslots;
877 }
878 
879 /*
880  * Allocate some memory and give it an address in the guest physical address
881  * space.
882  *
883  * Discontiguous memory is allowed, mostly for framebuffers.
884  *
885  * Must be called holding kvm->slots_lock for write.
886  */
887 int __kvm_set_memory_region(struct kvm *kvm,
888                             const struct kvm_userspace_memory_region *mem)
889 {
890         int r;
891         gfn_t base_gfn;
892         unsigned long npages;
893         struct kvm_memory_slot *slot;
894         struct kvm_memory_slot old, new;
895         struct kvm_memslots *slots = NULL, *old_memslots;
896         int as_id, id;
897         enum kvm_mr_change change;
898 
899         r = check_memory_region_flags(mem);
900         if (r)
901                 goto out;
902 
903         r = -EINVAL;
904         as_id = mem->slot >> 16;
905         id = (u16)mem->slot;
906 
907         /* General sanity checks */
908         if (mem->memory_size & (PAGE_SIZE - 1))
909                 goto out;
910         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
911                 goto out;
912         /* We can read the guest memory with __xxx_user() later on. */
913         if ((id < KVM_USER_MEM_SLOTS) &&
914             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
915              !access_ok(VERIFY_WRITE,
916                         (void __user *)(unsigned long)mem->userspace_addr,
917                         mem->memory_size)))
918                 goto out;
919         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
920                 goto out;
921         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
922                 goto out;
923 
924         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
925         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
926         npages = mem->memory_size >> PAGE_SHIFT;
927 
928         if (npages > KVM_MEM_MAX_NR_PAGES)
929                 goto out;
930 
931         new = old = *slot;
932 
933         new.id = id;
934         new.base_gfn = base_gfn;
935         new.npages = npages;
936         new.flags = mem->flags;
937 
938         if (npages) {
939                 if (!old.npages)
940                         change = KVM_MR_CREATE;
941                 else { /* Modify an existing slot. */
942                         if ((mem->userspace_addr != old.userspace_addr) ||
943                             (npages != old.npages) ||
944                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
945                                 goto out;
946 
947                         if (base_gfn != old.base_gfn)
948                                 change = KVM_MR_MOVE;
949                         else if (new.flags != old.flags)
950                                 change = KVM_MR_FLAGS_ONLY;
951                         else { /* Nothing to change. */
952                                 r = 0;
953                                 goto out;
954                         }
955                 }
956         } else {
957                 if (!old.npages)
958                         goto out;
959 
960                 change = KVM_MR_DELETE;
961                 new.base_gfn = 0;
962                 new.flags = 0;
963         }
964 
965         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
966                 /* Check for overlaps */
967                 r = -EEXIST;
968                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
969                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
970                             (slot->id == id))
971                                 continue;
972                         if (!((base_gfn + npages <= slot->base_gfn) ||
973                               (base_gfn >= slot->base_gfn + slot->npages)))
974                                 goto out;
975                 }
976         }
977 
978         /* Free page dirty bitmap if unneeded */
979         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
980                 new.dirty_bitmap = NULL;
981 
982         r = -ENOMEM;
983         if (change == KVM_MR_CREATE) {
984                 new.userspace_addr = mem->userspace_addr;
985 
986                 if (kvm_arch_create_memslot(kvm, &new, npages))
987                         goto out_free;
988         }
989 
990         /* Allocate page dirty bitmap if needed */
991         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
992                 if (kvm_create_dirty_bitmap(&new) < 0)
993                         goto out_free;
994         }
995 
996         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
997         if (!slots)
998                 goto out_free;
999         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1000 
1001         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1002                 slot = id_to_memslot(slots, id);
1003                 slot->flags |= KVM_MEMSLOT_INVALID;
1004 
1005                 old_memslots = install_new_memslots(kvm, as_id, slots);
1006 
1007                 /* From this point no new shadow pages pointing to a deleted,
1008                  * or moved, memslot will be created.
1009                  *
1010                  * validation of sp->gfn happens in:
1011                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1012                  *      - kvm_is_visible_gfn (mmu_check_roots)
1013                  */
1014                 kvm_arch_flush_shadow_memslot(kvm, slot);
1015 
1016                 /*
1017                  * We can re-use the old_memslots from above, the only difference
1018                  * from the currently installed memslots is the invalid flag.  This
1019                  * will get overwritten by update_memslots anyway.
1020                  */
1021                 slots = old_memslots;
1022         }
1023 
1024         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1025         if (r)
1026                 goto out_slots;
1027 
1028         /* actual memory is freed via old in kvm_free_memslot below */
1029         if (change == KVM_MR_DELETE) {
1030                 new.dirty_bitmap = NULL;
1031                 memset(&new.arch, 0, sizeof(new.arch));
1032         }
1033 
1034         update_memslots(slots, &new);
1035         old_memslots = install_new_memslots(kvm, as_id, slots);
1036 
1037         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1038 
1039         kvm_free_memslot(kvm, &old, &new);
1040         kvfree(old_memslots);
1041         return 0;
1042 
1043 out_slots:
1044         kvfree(slots);
1045 out_free:
1046         kvm_free_memslot(kvm, &new, &old);
1047 out:
1048         return r;
1049 }
1050 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1051 
1052 int kvm_set_memory_region(struct kvm *kvm,
1053                           const struct kvm_userspace_memory_region *mem)
1054 {
1055         int r;
1056 
1057         mutex_lock(&kvm->slots_lock);
1058         r = __kvm_set_memory_region(kvm, mem);
1059         mutex_unlock(&kvm->slots_lock);
1060         return r;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1063 
1064 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1065                                           struct kvm_userspace_memory_region *mem)
1066 {
1067         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1068                 return -EINVAL;
1069 
1070         return kvm_set_memory_region(kvm, mem);
1071 }
1072 
1073 int kvm_get_dirty_log(struct kvm *kvm,
1074                         struct kvm_dirty_log *log, int *is_dirty)
1075 {
1076         struct kvm_memslots *slots;
1077         struct kvm_memory_slot *memslot;
1078         int i, as_id, id;
1079         unsigned long n;
1080         unsigned long any = 0;
1081 
1082         as_id = log->slot >> 16;
1083         id = (u16)log->slot;
1084         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1085                 return -EINVAL;
1086 
1087         slots = __kvm_memslots(kvm, as_id);
1088         memslot = id_to_memslot(slots, id);
1089         if (!memslot->dirty_bitmap)
1090                 return -ENOENT;
1091 
1092         n = kvm_dirty_bitmap_bytes(memslot);
1093 
1094         for (i = 0; !any && i < n/sizeof(long); ++i)
1095                 any = memslot->dirty_bitmap[i];
1096 
1097         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1098                 return -EFAULT;
1099 
1100         if (any)
1101                 *is_dirty = 1;
1102         return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1105 
1106 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1107 /**
1108  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1109  *      are dirty write protect them for next write.
1110  * @kvm:        pointer to kvm instance
1111  * @log:        slot id and address to which we copy the log
1112  * @is_dirty:   flag set if any page is dirty
1113  *
1114  * We need to keep it in mind that VCPU threads can write to the bitmap
1115  * concurrently. So, to avoid losing track of dirty pages we keep the
1116  * following order:
1117  *
1118  *    1. Take a snapshot of the bit and clear it if needed.
1119  *    2. Write protect the corresponding page.
1120  *    3. Copy the snapshot to the userspace.
1121  *    4. Upon return caller flushes TLB's if needed.
1122  *
1123  * Between 2 and 4, the guest may write to the page using the remaining TLB
1124  * entry.  This is not a problem because the page is reported dirty using
1125  * the snapshot taken before and step 4 ensures that writes done after
1126  * exiting to userspace will be logged for the next call.
1127  *
1128  */
1129 int kvm_get_dirty_log_protect(struct kvm *kvm,
1130                         struct kvm_dirty_log *log, bool *is_dirty)
1131 {
1132         struct kvm_memslots *slots;
1133         struct kvm_memory_slot *memslot;
1134         int i, as_id, id;
1135         unsigned long n;
1136         unsigned long *dirty_bitmap;
1137         unsigned long *dirty_bitmap_buffer;
1138 
1139         as_id = log->slot >> 16;
1140         id = (u16)log->slot;
1141         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1142                 return -EINVAL;
1143 
1144         slots = __kvm_memslots(kvm, as_id);
1145         memslot = id_to_memslot(slots, id);
1146 
1147         dirty_bitmap = memslot->dirty_bitmap;
1148         if (!dirty_bitmap)
1149                 return -ENOENT;
1150 
1151         n = kvm_dirty_bitmap_bytes(memslot);
1152 
1153         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1154         memset(dirty_bitmap_buffer, 0, n);
1155 
1156         spin_lock(&kvm->mmu_lock);
1157         *is_dirty = false;
1158         for (i = 0; i < n / sizeof(long); i++) {
1159                 unsigned long mask;
1160                 gfn_t offset;
1161 
1162                 if (!dirty_bitmap[i])
1163                         continue;
1164 
1165                 *is_dirty = true;
1166 
1167                 mask = xchg(&dirty_bitmap[i], 0);
1168                 dirty_bitmap_buffer[i] = mask;
1169 
1170                 if (mask) {
1171                         offset = i * BITS_PER_LONG;
1172                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1173                                                                 offset, mask);
1174                 }
1175         }
1176 
1177         spin_unlock(&kvm->mmu_lock);
1178         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1179                 return -EFAULT;
1180         return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1183 #endif
1184 
1185 bool kvm_largepages_enabled(void)
1186 {
1187         return largepages_enabled;
1188 }
1189 
1190 void kvm_disable_largepages(void)
1191 {
1192         largepages_enabled = false;
1193 }
1194 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1195 
1196 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1197 {
1198         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1199 }
1200 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1201 
1202 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1203 {
1204         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1205 }
1206 
1207 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1208 {
1209         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1210 
1211         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1212               memslot->flags & KVM_MEMSLOT_INVALID)
1213                 return false;
1214 
1215         return true;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1218 
1219 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1220 {
1221         struct vm_area_struct *vma;
1222         unsigned long addr, size;
1223 
1224         size = PAGE_SIZE;
1225 
1226         addr = gfn_to_hva(kvm, gfn);
1227         if (kvm_is_error_hva(addr))
1228                 return PAGE_SIZE;
1229 
1230         down_read(&current->mm->mmap_sem);
1231         vma = find_vma(current->mm, addr);
1232         if (!vma)
1233                 goto out;
1234 
1235         size = vma_kernel_pagesize(vma);
1236 
1237 out:
1238         up_read(&current->mm->mmap_sem);
1239 
1240         return size;
1241 }
1242 
1243 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1244 {
1245         return slot->flags & KVM_MEM_READONLY;
1246 }
1247 
1248 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1249                                        gfn_t *nr_pages, bool write)
1250 {
1251         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1252                 return KVM_HVA_ERR_BAD;
1253 
1254         if (memslot_is_readonly(slot) && write)
1255                 return KVM_HVA_ERR_RO_BAD;
1256 
1257         if (nr_pages)
1258                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1259 
1260         return __gfn_to_hva_memslot(slot, gfn);
1261 }
1262 
1263 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1264                                      gfn_t *nr_pages)
1265 {
1266         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1267 }
1268 
1269 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1270                                         gfn_t gfn)
1271 {
1272         return gfn_to_hva_many(slot, gfn, NULL);
1273 }
1274 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1275 
1276 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1277 {
1278         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1279 }
1280 EXPORT_SYMBOL_GPL(gfn_to_hva);
1281 
1282 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1283 {
1284         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1285 }
1286 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1287 
1288 /*
1289  * If writable is set to false, the hva returned by this function is only
1290  * allowed to be read.
1291  */
1292 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1293                                       gfn_t gfn, bool *writable)
1294 {
1295         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1296 
1297         if (!kvm_is_error_hva(hva) && writable)
1298                 *writable = !memslot_is_readonly(slot);
1299 
1300         return hva;
1301 }
1302 
1303 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1304 {
1305         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1306 
1307         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1308 }
1309 
1310 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1311 {
1312         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1313 
1314         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1315 }
1316 
1317 static int get_user_page_nowait(unsigned long start, int write,
1318                 struct page **page)
1319 {
1320         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1321 
1322         if (write)
1323                 flags |= FOLL_WRITE;
1324 
1325         return get_user_pages(start, 1, flags, page, NULL);
1326 }
1327 
1328 static inline int check_user_page_hwpoison(unsigned long addr)
1329 {
1330         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1331 
1332         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1333         return rc == -EHWPOISON;
1334 }
1335 
1336 /*
1337  * The atomic path to get the writable pfn which will be stored in @pfn,
1338  * true indicates success, otherwise false is returned.
1339  */
1340 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1341                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1342 {
1343         struct page *page[1];
1344         int npages;
1345 
1346         if (!(async || atomic))
1347                 return false;
1348 
1349         /*
1350          * Fast pin a writable pfn only if it is a write fault request
1351          * or the caller allows to map a writable pfn for a read fault
1352          * request.
1353          */
1354         if (!(write_fault || writable))
1355                 return false;
1356 
1357         npages = __get_user_pages_fast(addr, 1, 1, page);
1358         if (npages == 1) {
1359                 *pfn = page_to_pfn(page[0]);
1360 
1361                 if (writable)
1362                         *writable = true;
1363                 return true;
1364         }
1365 
1366         return false;
1367 }
1368 
1369 /*
1370  * The slow path to get the pfn of the specified host virtual address,
1371  * 1 indicates success, -errno is returned if error is detected.
1372  */
1373 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1374                            bool *writable, kvm_pfn_t *pfn)
1375 {
1376         struct page *page[1];
1377         int npages = 0;
1378 
1379         might_sleep();
1380 
1381         if (writable)
1382                 *writable = write_fault;
1383 
1384         if (async) {
1385                 down_read(&current->mm->mmap_sem);
1386                 npages = get_user_page_nowait(addr, write_fault, page);
1387                 up_read(&current->mm->mmap_sem);
1388         } else {
1389                 unsigned int flags = FOLL_HWPOISON;
1390 
1391                 if (write_fault)
1392                         flags |= FOLL_WRITE;
1393 
1394                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1395         }
1396         if (npages != 1)
1397                 return npages;
1398 
1399         /* map read fault as writable if possible */
1400         if (unlikely(!write_fault) && writable) {
1401                 struct page *wpage[1];
1402 
1403                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1404                 if (npages == 1) {
1405                         *writable = true;
1406                         put_page(page[0]);
1407                         page[0] = wpage[0];
1408                 }
1409 
1410                 npages = 1;
1411         }
1412         *pfn = page_to_pfn(page[0]);
1413         return npages;
1414 }
1415 
1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1417 {
1418         if (unlikely(!(vma->vm_flags & VM_READ)))
1419                 return false;
1420 
1421         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1422                 return false;
1423 
1424         return true;
1425 }
1426 
1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1428                                unsigned long addr, bool *async,
1429                                bool write_fault, kvm_pfn_t *p_pfn)
1430 {
1431         unsigned long pfn;
1432         int r;
1433 
1434         r = follow_pfn(vma, addr, &pfn);
1435         if (r) {
1436                 /*
1437                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1438                  * not call the fault handler, so do it here.
1439                  */
1440                 bool unlocked = false;
1441                 r = fixup_user_fault(current, current->mm, addr,
1442                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1443                                      &unlocked);
1444                 if (unlocked)
1445                         return -EAGAIN;
1446                 if (r)
1447                         return r;
1448 
1449                 r = follow_pfn(vma, addr, &pfn);
1450                 if (r)
1451                         return r;
1452 
1453         }
1454 
1455 
1456         /*
1457          * Get a reference here because callers of *hva_to_pfn* and
1458          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1459          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1460          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1461          * simply do nothing for reserved pfns.
1462          *
1463          * Whoever called remap_pfn_range is also going to call e.g.
1464          * unmap_mapping_range before the underlying pages are freed,
1465          * causing a call to our MMU notifier.
1466          */ 
1467         kvm_get_pfn(pfn);
1468 
1469         *p_pfn = pfn;
1470         return 0;
1471 }
1472 
1473 /*
1474  * Pin guest page in memory and return its pfn.
1475  * @addr: host virtual address which maps memory to the guest
1476  * @atomic: whether this function can sleep
1477  * @async: whether this function need to wait IO complete if the
1478  *         host page is not in the memory
1479  * @write_fault: whether we should get a writable host page
1480  * @writable: whether it allows to map a writable host page for !@write_fault
1481  *
1482  * The function will map a writable host page for these two cases:
1483  * 1): @write_fault = true
1484  * 2): @write_fault = false && @writable, @writable will tell the caller
1485  *     whether the mapping is writable.
1486  */
1487 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1488                         bool write_fault, bool *writable)
1489 {
1490         struct vm_area_struct *vma;
1491         kvm_pfn_t pfn = 0;
1492         int npages, r;
1493 
1494         /* we can do it either atomically or asynchronously, not both */
1495         BUG_ON(atomic && async);
1496 
1497         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1498                 return pfn;
1499 
1500         if (atomic)
1501                 return KVM_PFN_ERR_FAULT;
1502 
1503         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1504         if (npages == 1)
1505                 return pfn;
1506 
1507         down_read(&current->mm->mmap_sem);
1508         if (npages == -EHWPOISON ||
1509               (!async && check_user_page_hwpoison(addr))) {
1510                 pfn = KVM_PFN_ERR_HWPOISON;
1511                 goto exit;
1512         }
1513 
1514 retry:
1515         vma = find_vma_intersection(current->mm, addr, addr + 1);
1516 
1517         if (vma == NULL)
1518                 pfn = KVM_PFN_ERR_FAULT;
1519         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1520                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1521                 if (r == -EAGAIN)
1522                         goto retry;
1523                 if (r < 0)
1524                         pfn = KVM_PFN_ERR_FAULT;
1525         } else {
1526                 if (async && vma_is_valid(vma, write_fault))
1527                         *async = true;
1528                 pfn = KVM_PFN_ERR_FAULT;
1529         }
1530 exit:
1531         up_read(&current->mm->mmap_sem);
1532         return pfn;
1533 }
1534 
1535 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1536                                bool atomic, bool *async, bool write_fault,
1537                                bool *writable)
1538 {
1539         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1540 
1541         if (addr == KVM_HVA_ERR_RO_BAD) {
1542                 if (writable)
1543                         *writable = false;
1544                 return KVM_PFN_ERR_RO_FAULT;
1545         }
1546 
1547         if (kvm_is_error_hva(addr)) {
1548                 if (writable)
1549                         *writable = false;
1550                 return KVM_PFN_NOSLOT;
1551         }
1552 
1553         /* Do not map writable pfn in the readonly memslot. */
1554         if (writable && memslot_is_readonly(slot)) {
1555                 *writable = false;
1556                 writable = NULL;
1557         }
1558 
1559         return hva_to_pfn(addr, atomic, async, write_fault,
1560                           writable);
1561 }
1562 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1563 
1564 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1565                       bool *writable)
1566 {
1567         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1568                                     write_fault, writable);
1569 }
1570 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1571 
1572 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1573 {
1574         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1575 }
1576 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1577 
1578 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1579 {
1580         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1581 }
1582 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1583 
1584 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1585 {
1586         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1587 }
1588 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1589 
1590 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1591 {
1592         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1593 }
1594 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1595 
1596 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1597 {
1598         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1599 }
1600 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1601 
1602 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1603 {
1604         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1607 
1608 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1609                             struct page **pages, int nr_pages)
1610 {
1611         unsigned long addr;
1612         gfn_t entry;
1613 
1614         addr = gfn_to_hva_many(slot, gfn, &entry);
1615         if (kvm_is_error_hva(addr))
1616                 return -1;
1617 
1618         if (entry < nr_pages)
1619                 return 0;
1620 
1621         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1622 }
1623 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1624 
1625 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1626 {
1627         if (is_error_noslot_pfn(pfn))
1628                 return KVM_ERR_PTR_BAD_PAGE;
1629 
1630         if (kvm_is_reserved_pfn(pfn)) {
1631                 WARN_ON(1);
1632                 return KVM_ERR_PTR_BAD_PAGE;
1633         }
1634 
1635         return pfn_to_page(pfn);
1636 }
1637 
1638 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1639 {
1640         kvm_pfn_t pfn;
1641 
1642         pfn = gfn_to_pfn(kvm, gfn);
1643 
1644         return kvm_pfn_to_page(pfn);
1645 }
1646 EXPORT_SYMBOL_GPL(gfn_to_page);
1647 
1648 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1649 {
1650         kvm_pfn_t pfn;
1651 
1652         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1653 
1654         return kvm_pfn_to_page(pfn);
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1657 
1658 void kvm_release_page_clean(struct page *page)
1659 {
1660         WARN_ON(is_error_page(page));
1661 
1662         kvm_release_pfn_clean(page_to_pfn(page));
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1665 
1666 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1667 {
1668         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1669                 put_page(pfn_to_page(pfn));
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1672 
1673 void kvm_release_page_dirty(struct page *page)
1674 {
1675         WARN_ON(is_error_page(page));
1676 
1677         kvm_release_pfn_dirty(page_to_pfn(page));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1680 
1681 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1682 {
1683         kvm_set_pfn_dirty(pfn);
1684         kvm_release_pfn_clean(pfn);
1685 }
1686 
1687 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1688 {
1689         if (!kvm_is_reserved_pfn(pfn)) {
1690                 struct page *page = pfn_to_page(pfn);
1691 
1692                 if (!PageReserved(page))
1693                         SetPageDirty(page);
1694         }
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1697 
1698 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1699 {
1700         if (!kvm_is_reserved_pfn(pfn))
1701                 mark_page_accessed(pfn_to_page(pfn));
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1704 
1705 void kvm_get_pfn(kvm_pfn_t pfn)
1706 {
1707         if (!kvm_is_reserved_pfn(pfn))
1708                 get_page(pfn_to_page(pfn));
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1711 
1712 static int next_segment(unsigned long len, int offset)
1713 {
1714         if (len > PAGE_SIZE - offset)
1715                 return PAGE_SIZE - offset;
1716         else
1717                 return len;
1718 }
1719 
1720 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1721                                  void *data, int offset, int len)
1722 {
1723         int r;
1724         unsigned long addr;
1725 
1726         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1727         if (kvm_is_error_hva(addr))
1728                 return -EFAULT;
1729         r = __copy_from_user(data, (void __user *)addr + offset, len);
1730         if (r)
1731                 return -EFAULT;
1732         return 0;
1733 }
1734 
1735 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1736                         int len)
1737 {
1738         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1739 
1740         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1743 
1744 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1745                              int offset, int len)
1746 {
1747         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1748 
1749         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1752 
1753 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1754 {
1755         gfn_t gfn = gpa >> PAGE_SHIFT;
1756         int seg;
1757         int offset = offset_in_page(gpa);
1758         int ret;
1759 
1760         while ((seg = next_segment(len, offset)) != 0) {
1761                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1762                 if (ret < 0)
1763                         return ret;
1764                 offset = 0;
1765                 len -= seg;
1766                 data += seg;
1767                 ++gfn;
1768         }
1769         return 0;
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_read_guest);
1772 
1773 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1774 {
1775         gfn_t gfn = gpa >> PAGE_SHIFT;
1776         int seg;
1777         int offset = offset_in_page(gpa);
1778         int ret;
1779 
1780         while ((seg = next_segment(len, offset)) != 0) {
1781                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1782                 if (ret < 0)
1783                         return ret;
1784                 offset = 0;
1785                 len -= seg;
1786                 data += seg;
1787                 ++gfn;
1788         }
1789         return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1792 
1793 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1794                                    void *data, int offset, unsigned long len)
1795 {
1796         int r;
1797         unsigned long addr;
1798 
1799         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1800         if (kvm_is_error_hva(addr))
1801                 return -EFAULT;
1802         pagefault_disable();
1803         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1804         pagefault_enable();
1805         if (r)
1806                 return -EFAULT;
1807         return 0;
1808 }
1809 
1810 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1811                           unsigned long len)
1812 {
1813         gfn_t gfn = gpa >> PAGE_SHIFT;
1814         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1815         int offset = offset_in_page(gpa);
1816 
1817         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1818 }
1819 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1820 
1821 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1822                                void *data, unsigned long len)
1823 {
1824         gfn_t gfn = gpa >> PAGE_SHIFT;
1825         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1826         int offset = offset_in_page(gpa);
1827 
1828         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1831 
1832 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1833                                   const void *data, int offset, int len)
1834 {
1835         int r;
1836         unsigned long addr;
1837 
1838         addr = gfn_to_hva_memslot(memslot, gfn);
1839         if (kvm_is_error_hva(addr))
1840                 return -EFAULT;
1841         r = __copy_to_user((void __user *)addr + offset, data, len);
1842         if (r)
1843                 return -EFAULT;
1844         mark_page_dirty_in_slot(memslot, gfn);
1845         return 0;
1846 }
1847 
1848 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1849                          const void *data, int offset, int len)
1850 {
1851         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1852 
1853         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1856 
1857 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1858                               const void *data, int offset, int len)
1859 {
1860         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1861 
1862         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1865 
1866 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1867                     unsigned long len)
1868 {
1869         gfn_t gfn = gpa >> PAGE_SHIFT;
1870         int seg;
1871         int offset = offset_in_page(gpa);
1872         int ret;
1873 
1874         while ((seg = next_segment(len, offset)) != 0) {
1875                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1876                 if (ret < 0)
1877                         return ret;
1878                 offset = 0;
1879                 len -= seg;
1880                 data += seg;
1881                 ++gfn;
1882         }
1883         return 0;
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_write_guest);
1886 
1887 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1888                          unsigned long len)
1889 {
1890         gfn_t gfn = gpa >> PAGE_SHIFT;
1891         int seg;
1892         int offset = offset_in_page(gpa);
1893         int ret;
1894 
1895         while ((seg = next_segment(len, offset)) != 0) {
1896                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1897                 if (ret < 0)
1898                         return ret;
1899                 offset = 0;
1900                 len -= seg;
1901                 data += seg;
1902                 ++gfn;
1903         }
1904         return 0;
1905 }
1906 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1907 
1908 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1909                                        struct gfn_to_hva_cache *ghc,
1910                                        gpa_t gpa, unsigned long len)
1911 {
1912         int offset = offset_in_page(gpa);
1913         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1914         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1915         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1916         gfn_t nr_pages_avail;
1917 
1918         ghc->gpa = gpa;
1919         ghc->generation = slots->generation;
1920         ghc->len = len;
1921         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1922         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1923         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1924                 ghc->hva += offset;
1925         } else {
1926                 /*
1927                  * If the requested region crosses two memslots, we still
1928                  * verify that the entire region is valid here.
1929                  */
1930                 while (start_gfn <= end_gfn) {
1931                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1932                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1933                                                    &nr_pages_avail);
1934                         if (kvm_is_error_hva(ghc->hva))
1935                                 return -EFAULT;
1936                         start_gfn += nr_pages_avail;
1937                 }
1938                 /* Use the slow path for cross page reads and writes. */
1939                 ghc->memslot = NULL;
1940         }
1941         return 0;
1942 }
1943 
1944 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1945                               gpa_t gpa, unsigned long len)
1946 {
1947         struct kvm_memslots *slots = kvm_memslots(kvm);
1948         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1949 }
1950 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1951 
1952 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1953                            void *data, int offset, unsigned long len)
1954 {
1955         struct kvm_memslots *slots = kvm_memslots(kvm);
1956         int r;
1957         gpa_t gpa = ghc->gpa + offset;
1958 
1959         BUG_ON(len + offset > ghc->len);
1960 
1961         if (slots->generation != ghc->generation)
1962                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1963 
1964         if (unlikely(!ghc->memslot))
1965                 return kvm_write_guest(kvm, gpa, data, len);
1966 
1967         if (kvm_is_error_hva(ghc->hva))
1968                 return -EFAULT;
1969 
1970         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1971         if (r)
1972                 return -EFAULT;
1973         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1974 
1975         return 0;
1976 }
1977 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1978 
1979 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1980                            void *data, unsigned long len)
1981 {
1982         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1983 }
1984 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1985 
1986 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1987                            void *data, unsigned long len)
1988 {
1989         struct kvm_memslots *slots = kvm_memslots(kvm);
1990         int r;
1991 
1992         BUG_ON(len > ghc->len);
1993 
1994         if (slots->generation != ghc->generation)
1995                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1996 
1997         if (unlikely(!ghc->memslot))
1998                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1999 
2000         if (kvm_is_error_hva(ghc->hva))
2001                 return -EFAULT;
2002 
2003         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2004         if (r)
2005                 return -EFAULT;
2006 
2007         return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2010 
2011 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2012 {
2013         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2014 
2015         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2016 }
2017 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2018 
2019 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2020 {
2021         gfn_t gfn = gpa >> PAGE_SHIFT;
2022         int seg;
2023         int offset = offset_in_page(gpa);
2024         int ret;
2025 
2026         while ((seg = next_segment(len, offset)) != 0) {
2027                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2028                 if (ret < 0)
2029                         return ret;
2030                 offset = 0;
2031                 len -= seg;
2032                 ++gfn;
2033         }
2034         return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2037 
2038 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2039                                     gfn_t gfn)
2040 {
2041         if (memslot && memslot->dirty_bitmap) {
2042                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2043 
2044                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2045         }
2046 }
2047 
2048 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2049 {
2050         struct kvm_memory_slot *memslot;
2051 
2052         memslot = gfn_to_memslot(kvm, gfn);
2053         mark_page_dirty_in_slot(memslot, gfn);
2054 }
2055 EXPORT_SYMBOL_GPL(mark_page_dirty);
2056 
2057 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2058 {
2059         struct kvm_memory_slot *memslot;
2060 
2061         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2062         mark_page_dirty_in_slot(memslot, gfn);
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2065 
2066 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2067 {
2068         unsigned int old, val, grow;
2069 
2070         old = val = vcpu->halt_poll_ns;
2071         grow = READ_ONCE(halt_poll_ns_grow);
2072         /* 10us base */
2073         if (val == 0 && grow)
2074                 val = 10000;
2075         else
2076                 val *= grow;
2077 
2078         if (val > halt_poll_ns)
2079                 val = halt_poll_ns;
2080 
2081         vcpu->halt_poll_ns = val;
2082         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2083 }
2084 
2085 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2086 {
2087         unsigned int old, val, shrink;
2088 
2089         old = val = vcpu->halt_poll_ns;
2090         shrink = READ_ONCE(halt_poll_ns_shrink);
2091         if (shrink == 0)
2092                 val = 0;
2093         else
2094                 val /= shrink;
2095 
2096         vcpu->halt_poll_ns = val;
2097         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2098 }
2099 
2100 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2101 {
2102         if (kvm_arch_vcpu_runnable(vcpu)) {
2103                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2104                 return -EINTR;
2105         }
2106         if (kvm_cpu_has_pending_timer(vcpu))
2107                 return -EINTR;
2108         if (signal_pending(current))
2109                 return -EINTR;
2110 
2111         return 0;
2112 }
2113 
2114 /*
2115  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2116  */
2117 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2118 {
2119         ktime_t start, cur;
2120         DECLARE_SWAITQUEUE(wait);
2121         bool waited = false;
2122         u64 block_ns;
2123 
2124         start = cur = ktime_get();
2125         if (vcpu->halt_poll_ns) {
2126                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2127 
2128                 ++vcpu->stat.halt_attempted_poll;
2129                 do {
2130                         /*
2131                          * This sets KVM_REQ_UNHALT if an interrupt
2132                          * arrives.
2133                          */
2134                         if (kvm_vcpu_check_block(vcpu) < 0) {
2135                                 ++vcpu->stat.halt_successful_poll;
2136                                 if (!vcpu_valid_wakeup(vcpu))
2137                                         ++vcpu->stat.halt_poll_invalid;
2138                                 goto out;
2139                         }
2140                         cur = ktime_get();
2141                 } while (single_task_running() && ktime_before(cur, stop));
2142         }
2143 
2144         kvm_arch_vcpu_blocking(vcpu);
2145 
2146         for (;;) {
2147                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2148 
2149                 if (kvm_vcpu_check_block(vcpu) < 0)
2150                         break;
2151 
2152                 waited = true;
2153                 schedule();
2154         }
2155 
2156         finish_swait(&vcpu->wq, &wait);
2157         cur = ktime_get();
2158 
2159         kvm_arch_vcpu_unblocking(vcpu);
2160 out:
2161         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2162 
2163         if (!vcpu_valid_wakeup(vcpu))
2164                 shrink_halt_poll_ns(vcpu);
2165         else if (halt_poll_ns) {
2166                 if (block_ns <= vcpu->halt_poll_ns)
2167                         ;
2168                 /* we had a long block, shrink polling */
2169                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2170                         shrink_halt_poll_ns(vcpu);
2171                 /* we had a short halt and our poll time is too small */
2172                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2173                         block_ns < halt_poll_ns)
2174                         grow_halt_poll_ns(vcpu);
2175         } else
2176                 vcpu->halt_poll_ns = 0;
2177 
2178         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2179         kvm_arch_vcpu_block_finish(vcpu);
2180 }
2181 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2182 
2183 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2184 {
2185         struct swait_queue_head *wqp;
2186 
2187         wqp = kvm_arch_vcpu_wq(vcpu);
2188         if (swait_active(wqp)) {
2189                 swake_up(wqp);
2190                 ++vcpu->stat.halt_wakeup;
2191                 return true;
2192         }
2193 
2194         return false;
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2197 
2198 #ifndef CONFIG_S390
2199 /*
2200  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2201  */
2202 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2203 {
2204         int me;
2205         int cpu = vcpu->cpu;
2206 
2207         if (kvm_vcpu_wake_up(vcpu))
2208                 return;
2209 
2210         me = get_cpu();
2211         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2212                 if (kvm_arch_vcpu_should_kick(vcpu))
2213                         smp_send_reschedule(cpu);
2214         put_cpu();
2215 }
2216 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2217 #endif /* !CONFIG_S390 */
2218 
2219 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2220 {
2221         struct pid *pid;
2222         struct task_struct *task = NULL;
2223         int ret = 0;
2224 
2225         rcu_read_lock();
2226         pid = rcu_dereference(target->pid);
2227         if (pid)
2228                 task = get_pid_task(pid, PIDTYPE_PID);
2229         rcu_read_unlock();
2230         if (!task)
2231                 return ret;
2232         ret = yield_to(task, 1);
2233         put_task_struct(task);
2234 
2235         return ret;
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2238 
2239 /*
2240  * Helper that checks whether a VCPU is eligible for directed yield.
2241  * Most eligible candidate to yield is decided by following heuristics:
2242  *
2243  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2244  *  (preempted lock holder), indicated by @in_spin_loop.
2245  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2246  *
2247  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2248  *  chance last time (mostly it has become eligible now since we have probably
2249  *  yielded to lockholder in last iteration. This is done by toggling
2250  *  @dy_eligible each time a VCPU checked for eligibility.)
2251  *
2252  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2253  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2254  *  burning. Giving priority for a potential lock-holder increases lock
2255  *  progress.
2256  *
2257  *  Since algorithm is based on heuristics, accessing another VCPU data without
2258  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2259  *  and continue with next VCPU and so on.
2260  */
2261 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2262 {
2263 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2264         bool eligible;
2265 
2266         eligible = !vcpu->spin_loop.in_spin_loop ||
2267                     vcpu->spin_loop.dy_eligible;
2268 
2269         if (vcpu->spin_loop.in_spin_loop)
2270                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2271 
2272         return eligible;
2273 #else
2274         return true;
2275 #endif
2276 }
2277 
2278 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2279 {
2280         struct kvm *kvm = me->kvm;
2281         struct kvm_vcpu *vcpu;
2282         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2283         int yielded = 0;
2284         int try = 3;
2285         int pass;
2286         int i;
2287 
2288         kvm_vcpu_set_in_spin_loop(me, true);
2289         /*
2290          * We boost the priority of a VCPU that is runnable but not
2291          * currently running, because it got preempted by something
2292          * else and called schedule in __vcpu_run.  Hopefully that
2293          * VCPU is holding the lock that we need and will release it.
2294          * We approximate round-robin by starting at the last boosted VCPU.
2295          */
2296         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2297                 kvm_for_each_vcpu(i, vcpu, kvm) {
2298                         if (!pass && i <= last_boosted_vcpu) {
2299                                 i = last_boosted_vcpu;
2300                                 continue;
2301                         } else if (pass && i > last_boosted_vcpu)
2302                                 break;
2303                         if (!ACCESS_ONCE(vcpu->preempted))
2304                                 continue;
2305                         if (vcpu == me)
2306                                 continue;
2307                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2308                                 continue;
2309                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2310                                 continue;
2311 
2312                         yielded = kvm_vcpu_yield_to(vcpu);
2313                         if (yielded > 0) {
2314                                 kvm->last_boosted_vcpu = i;
2315                                 break;
2316                         } else if (yielded < 0) {
2317                                 try--;
2318                                 if (!try)
2319                                         break;
2320                         }
2321                 }
2322         }
2323         kvm_vcpu_set_in_spin_loop(me, false);
2324 
2325         /* Ensure vcpu is not eligible during next spinloop */
2326         kvm_vcpu_set_dy_eligible(me, false);
2327 }
2328 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2329 
2330 static int kvm_vcpu_fault(struct vm_fault *vmf)
2331 {
2332         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2333         struct page *page;
2334 
2335         if (vmf->pgoff == 0)
2336                 page = virt_to_page(vcpu->run);
2337 #ifdef CONFIG_X86
2338         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2339                 page = virt_to_page(vcpu->arch.pio_data);
2340 #endif
2341 #ifdef CONFIG_KVM_MMIO
2342         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2343                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2344 #endif
2345         else
2346                 return kvm_arch_vcpu_fault(vcpu, vmf);
2347         get_page(page);
2348         vmf->page = page;
2349         return 0;
2350 }
2351 
2352 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2353         .fault = kvm_vcpu_fault,
2354 };
2355 
2356 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2357 {
2358         vma->vm_ops = &kvm_vcpu_vm_ops;
2359         return 0;
2360 }
2361 
2362 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2363 {
2364         struct kvm_vcpu *vcpu = filp->private_data;
2365 
2366         debugfs_remove_recursive(vcpu->debugfs_dentry);
2367         kvm_put_kvm(vcpu->kvm);
2368         return 0;
2369 }
2370 
2371 static struct file_operations kvm_vcpu_fops = {
2372         .release        = kvm_vcpu_release,
2373         .unlocked_ioctl = kvm_vcpu_ioctl,
2374 #ifdef CONFIG_KVM_COMPAT
2375         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2376 #endif
2377         .mmap           = kvm_vcpu_mmap,
2378         .llseek         = noop_llseek,
2379 };
2380 
2381 /*
2382  * Allocates an inode for the vcpu.
2383  */
2384 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2385 {
2386         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2387 }
2388 
2389 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2390 {
2391         char dir_name[ITOA_MAX_LEN * 2];
2392         int ret;
2393 
2394         if (!kvm_arch_has_vcpu_debugfs())
2395                 return 0;
2396 
2397         if (!debugfs_initialized())
2398                 return 0;
2399 
2400         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2401         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2402                                                                 vcpu->kvm->debugfs_dentry);
2403         if (!vcpu->debugfs_dentry)
2404                 return -ENOMEM;
2405 
2406         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2407         if (ret < 0) {
2408                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2409                 return ret;
2410         }
2411 
2412         return 0;
2413 }
2414 
2415 /*
2416  * Creates some virtual cpus.  Good luck creating more than one.
2417  */
2418 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2419 {
2420         int r;
2421         struct kvm_vcpu *vcpu;
2422 
2423         if (id >= KVM_MAX_VCPU_ID)
2424                 return -EINVAL;
2425 
2426         mutex_lock(&kvm->lock);
2427         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2428                 mutex_unlock(&kvm->lock);
2429                 return -EINVAL;
2430         }
2431 
2432         kvm->created_vcpus++;
2433         mutex_unlock(&kvm->lock);
2434 
2435         vcpu = kvm_arch_vcpu_create(kvm, id);
2436         if (IS_ERR(vcpu)) {
2437                 r = PTR_ERR(vcpu);
2438                 goto vcpu_decrement;
2439         }
2440 
2441         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2442 
2443         r = kvm_arch_vcpu_setup(vcpu);
2444         if (r)
2445                 goto vcpu_destroy;
2446 
2447         r = kvm_create_vcpu_debugfs(vcpu);
2448         if (r)
2449                 goto vcpu_destroy;
2450 
2451         mutex_lock(&kvm->lock);
2452         if (kvm_get_vcpu_by_id(kvm, id)) {
2453                 r = -EEXIST;
2454                 goto unlock_vcpu_destroy;
2455         }
2456 
2457         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2458 
2459         /* Now it's all set up, let userspace reach it */
2460         kvm_get_kvm(kvm);
2461         r = create_vcpu_fd(vcpu);
2462         if (r < 0) {
2463                 kvm_put_kvm(kvm);
2464                 goto unlock_vcpu_destroy;
2465         }
2466 
2467         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2468 
2469         /*
2470          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2471          * before kvm->online_vcpu's incremented value.
2472          */
2473         smp_wmb();
2474         atomic_inc(&kvm->online_vcpus);
2475 
2476         mutex_unlock(&kvm->lock);
2477         kvm_arch_vcpu_postcreate(vcpu);
2478         return r;
2479 
2480 unlock_vcpu_destroy:
2481         mutex_unlock(&kvm->lock);
2482         debugfs_remove_recursive(vcpu->debugfs_dentry);
2483 vcpu_destroy:
2484         kvm_arch_vcpu_destroy(vcpu);
2485 vcpu_decrement:
2486         mutex_lock(&kvm->lock);
2487         kvm->created_vcpus--;
2488         mutex_unlock(&kvm->lock);
2489         return r;
2490 }
2491 
2492 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2493 {
2494         if (sigset) {
2495                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2496                 vcpu->sigset_active = 1;
2497                 vcpu->sigset = *sigset;
2498         } else
2499                 vcpu->sigset_active = 0;
2500         return 0;
2501 }
2502 
2503 static long kvm_vcpu_ioctl(struct file *filp,
2504                            unsigned int ioctl, unsigned long arg)
2505 {
2506         struct kvm_vcpu *vcpu = filp->private_data;
2507         void __user *argp = (void __user *)arg;
2508         int r;
2509         struct kvm_fpu *fpu = NULL;
2510         struct kvm_sregs *kvm_sregs = NULL;
2511 
2512         if (vcpu->kvm->mm != current->mm)
2513                 return -EIO;
2514 
2515         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2516                 return -EINVAL;
2517 
2518 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2519         /*
2520          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2521          * so vcpu_load() would break it.
2522          */
2523         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2524                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2525 #endif
2526 
2527 
2528         r = vcpu_load(vcpu);
2529         if (r)
2530                 return r;
2531         switch (ioctl) {
2532         case KVM_RUN: {
2533                 struct pid *oldpid;
2534                 r = -EINVAL;
2535                 if (arg)
2536                         goto out;
2537                 oldpid = rcu_access_pointer(vcpu->pid);
2538                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2539                         /* The thread running this VCPU changed. */
2540                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2541 
2542                         rcu_assign_pointer(vcpu->pid, newpid);
2543                         if (oldpid)
2544                                 synchronize_rcu();
2545                         put_pid(oldpid);
2546                 }
2547                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2548                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2549                 break;
2550         }
2551         case KVM_GET_REGS: {
2552                 struct kvm_regs *kvm_regs;
2553 
2554                 r = -ENOMEM;
2555                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2556                 if (!kvm_regs)
2557                         goto out;
2558                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2559                 if (r)
2560                         goto out_free1;
2561                 r = -EFAULT;
2562                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2563                         goto out_free1;
2564                 r = 0;
2565 out_free1:
2566                 kfree(kvm_regs);
2567                 break;
2568         }
2569         case KVM_SET_REGS: {
2570                 struct kvm_regs *kvm_regs;
2571 
2572                 r = -ENOMEM;
2573                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2574                 if (IS_ERR(kvm_regs)) {
2575                         r = PTR_ERR(kvm_regs);
2576                         goto out;
2577                 }
2578                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2579                 kfree(kvm_regs);
2580                 break;
2581         }
2582         case KVM_GET_SREGS: {
2583                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2584                 r = -ENOMEM;
2585                 if (!kvm_sregs)
2586                         goto out;
2587                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2588                 if (r)
2589                         goto out;
2590                 r = -EFAULT;
2591                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2592                         goto out;
2593                 r = 0;
2594                 break;
2595         }
2596         case KVM_SET_SREGS: {
2597                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2598                 if (IS_ERR(kvm_sregs)) {
2599                         r = PTR_ERR(kvm_sregs);
2600                         kvm_sregs = NULL;
2601                         goto out;
2602                 }
2603                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2604                 break;
2605         }
2606         case KVM_GET_MP_STATE: {
2607                 struct kvm_mp_state mp_state;
2608 
2609                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2610                 if (r)
2611                         goto out;
2612                 r = -EFAULT;
2613                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2614                         goto out;
2615                 r = 0;
2616                 break;
2617         }
2618         case KVM_SET_MP_STATE: {
2619                 struct kvm_mp_state mp_state;
2620 
2621                 r = -EFAULT;
2622                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2623                         goto out;
2624                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2625                 break;
2626         }
2627         case KVM_TRANSLATE: {
2628                 struct kvm_translation tr;
2629 
2630                 r = -EFAULT;
2631                 if (copy_from_user(&tr, argp, sizeof(tr)))
2632                         goto out;
2633                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2634                 if (r)
2635                         goto out;
2636                 r = -EFAULT;
2637                 if (copy_to_user(argp, &tr, sizeof(tr)))
2638                         goto out;
2639                 r = 0;
2640                 break;
2641         }
2642         case KVM_SET_GUEST_DEBUG: {
2643                 struct kvm_guest_debug dbg;
2644 
2645                 r = -EFAULT;
2646                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2647                         goto out;
2648                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2649                 break;
2650         }
2651         case KVM_SET_SIGNAL_MASK: {
2652                 struct kvm_signal_mask __user *sigmask_arg = argp;
2653                 struct kvm_signal_mask kvm_sigmask;
2654                 sigset_t sigset, *p;
2655 
2656                 p = NULL;
2657                 if (argp) {
2658                         r = -EFAULT;
2659                         if (copy_from_user(&kvm_sigmask, argp,
2660                                            sizeof(kvm_sigmask)))
2661                                 goto out;
2662                         r = -EINVAL;
2663                         if (kvm_sigmask.len != sizeof(sigset))
2664                                 goto out;
2665                         r = -EFAULT;
2666                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2667                                            sizeof(sigset)))
2668                                 goto out;
2669                         p = &sigset;
2670                 }
2671                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2672                 break;
2673         }
2674         case KVM_GET_FPU: {
2675                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2676                 r = -ENOMEM;
2677                 if (!fpu)
2678                         goto out;
2679                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2680                 if (r)
2681                         goto out;
2682                 r = -EFAULT;
2683                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2684                         goto out;
2685                 r = 0;
2686                 break;
2687         }
2688         case KVM_SET_FPU: {
2689                 fpu = memdup_user(argp, sizeof(*fpu));
2690                 if (IS_ERR(fpu)) {
2691                         r = PTR_ERR(fpu);
2692                         fpu = NULL;
2693                         goto out;
2694                 }
2695                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2696                 break;
2697         }
2698         default:
2699                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2700         }
2701 out:
2702         vcpu_put(vcpu);
2703         kfree(fpu);
2704         kfree(kvm_sregs);
2705         return r;
2706 }
2707 
2708 #ifdef CONFIG_KVM_COMPAT
2709 static long kvm_vcpu_compat_ioctl(struct file *filp,
2710                                   unsigned int ioctl, unsigned long arg)
2711 {
2712         struct kvm_vcpu *vcpu = filp->private_data;
2713         void __user *argp = compat_ptr(arg);
2714         int r;
2715 
2716         if (vcpu->kvm->mm != current->mm)
2717                 return -EIO;
2718 
2719         switch (ioctl) {
2720         case KVM_SET_SIGNAL_MASK: {
2721                 struct kvm_signal_mask __user *sigmask_arg = argp;
2722                 struct kvm_signal_mask kvm_sigmask;
2723                 compat_sigset_t csigset;
2724                 sigset_t sigset;
2725 
2726                 if (argp) {
2727                         r = -EFAULT;
2728                         if (copy_from_user(&kvm_sigmask, argp,
2729                                            sizeof(kvm_sigmask)))
2730                                 goto out;
2731                         r = -EINVAL;
2732                         if (kvm_sigmask.len != sizeof(csigset))
2733                                 goto out;
2734                         r = -EFAULT;
2735                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2736                                            sizeof(csigset)))
2737                                 goto out;
2738                         sigset_from_compat(&sigset, &csigset);
2739                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2740                 } else
2741                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2742                 break;
2743         }
2744         default:
2745                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2746         }
2747 
2748 out:
2749         return r;
2750 }
2751 #endif
2752 
2753 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2754                                  int (*accessor)(struct kvm_device *dev,
2755                                                  struct kvm_device_attr *attr),
2756                                  unsigned long arg)
2757 {
2758         struct kvm_device_attr attr;
2759 
2760         if (!accessor)
2761                 return -EPERM;
2762 
2763         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2764                 return -EFAULT;
2765 
2766         return accessor(dev, &attr);
2767 }
2768 
2769 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2770                              unsigned long arg)
2771 {
2772         struct kvm_device *dev = filp->private_data;
2773 
2774         switch (ioctl) {
2775         case KVM_SET_DEVICE_ATTR:
2776                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2777         case KVM_GET_DEVICE_ATTR:
2778                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2779         case KVM_HAS_DEVICE_ATTR:
2780                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2781         default:
2782                 if (dev->ops->ioctl)
2783                         return dev->ops->ioctl(dev, ioctl, arg);
2784 
2785                 return -ENOTTY;
2786         }
2787 }
2788 
2789 static int kvm_device_release(struct inode *inode, struct file *filp)
2790 {
2791         struct kvm_device *dev = filp->private_data;
2792         struct kvm *kvm = dev->kvm;
2793 
2794         kvm_put_kvm(kvm);
2795         return 0;
2796 }
2797 
2798 static const struct file_operations kvm_device_fops = {
2799         .unlocked_ioctl = kvm_device_ioctl,
2800 #ifdef CONFIG_KVM_COMPAT
2801         .compat_ioctl = kvm_device_ioctl,
2802 #endif
2803         .release = kvm_device_release,
2804 };
2805 
2806 struct kvm_device *kvm_device_from_filp(struct file *filp)
2807 {
2808         if (filp->f_op != &kvm_device_fops)
2809                 return NULL;
2810 
2811         return filp->private_data;
2812 }
2813 
2814 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2815 #ifdef CONFIG_KVM_MPIC
2816         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2817         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2818 #endif
2819 };
2820 
2821 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2822 {
2823         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2824                 return -ENOSPC;
2825 
2826         if (kvm_device_ops_table[type] != NULL)
2827                 return -EEXIST;
2828 
2829         kvm_device_ops_table[type] = ops;
2830         return 0;
2831 }
2832 
2833 void kvm_unregister_device_ops(u32 type)
2834 {
2835         if (kvm_device_ops_table[type] != NULL)
2836                 kvm_device_ops_table[type] = NULL;
2837 }
2838 
2839 static int kvm_ioctl_create_device(struct kvm *kvm,
2840                                    struct kvm_create_device *cd)
2841 {
2842         struct kvm_device_ops *ops = NULL;
2843         struct kvm_device *dev;
2844         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2845         int ret;
2846 
2847         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2848                 return -ENODEV;
2849 
2850         ops = kvm_device_ops_table[cd->type];
2851         if (ops == NULL)
2852                 return -ENODEV;
2853 
2854         if (test)
2855                 return 0;
2856 
2857         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2858         if (!dev)
2859                 return -ENOMEM;
2860 
2861         dev->ops = ops;
2862         dev->kvm = kvm;
2863 
2864         mutex_lock(&kvm->lock);
2865         ret = ops->create(dev, cd->type);
2866         if (ret < 0) {
2867                 mutex_unlock(&kvm->lock);
2868                 kfree(dev);
2869                 return ret;
2870         }
2871         list_add(&dev->vm_node, &kvm->devices);
2872         mutex_unlock(&kvm->lock);
2873 
2874         if (ops->init)
2875                 ops->init(dev);
2876 
2877         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2878         if (ret < 0) {
2879                 mutex_lock(&kvm->lock);
2880                 list_del(&dev->vm_node);
2881                 mutex_unlock(&kvm->lock);
2882                 ops->destroy(dev);
2883                 return ret;
2884         }
2885 
2886         kvm_get_kvm(kvm);
2887         cd->fd = ret;
2888         return 0;
2889 }
2890 
2891 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2892 {
2893         switch (arg) {
2894         case KVM_CAP_USER_MEMORY:
2895         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2896         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2897         case KVM_CAP_INTERNAL_ERROR_DATA:
2898 #ifdef CONFIG_HAVE_KVM_MSI
2899         case KVM_CAP_SIGNAL_MSI:
2900 #endif
2901 #ifdef CONFIG_HAVE_KVM_IRQFD
2902         case KVM_CAP_IRQFD:
2903         case KVM_CAP_IRQFD_RESAMPLE:
2904 #endif
2905         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2906         case KVM_CAP_CHECK_EXTENSION_VM:
2907                 return 1;
2908 #ifdef CONFIG_KVM_MMIO
2909         case KVM_CAP_COALESCED_MMIO:
2910                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2911 #endif
2912 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2913         case KVM_CAP_IRQ_ROUTING:
2914                 return KVM_MAX_IRQ_ROUTES;
2915 #endif
2916 #if KVM_ADDRESS_SPACE_NUM > 1
2917         case KVM_CAP_MULTI_ADDRESS_SPACE:
2918                 return KVM_ADDRESS_SPACE_NUM;
2919 #endif
2920         case KVM_CAP_MAX_VCPU_ID:
2921                 return KVM_MAX_VCPU_ID;
2922         default:
2923                 break;
2924         }
2925         return kvm_vm_ioctl_check_extension(kvm, arg);
2926 }
2927 
2928 static long kvm_vm_ioctl(struct file *filp,
2929                            unsigned int ioctl, unsigned long arg)
2930 {
2931         struct kvm *kvm = filp->private_data;
2932         void __user *argp = (void __user *)arg;
2933         int r;
2934 
2935         if (kvm->mm != current->mm)
2936                 return -EIO;
2937         switch (ioctl) {
2938         case KVM_CREATE_VCPU:
2939                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2940                 break;
2941         case KVM_SET_USER_MEMORY_REGION: {
2942                 struct kvm_userspace_memory_region kvm_userspace_mem;
2943 
2944                 r = -EFAULT;
2945                 if (copy_from_user(&kvm_userspace_mem, argp,
2946                                                 sizeof(kvm_userspace_mem)))
2947                         goto out;
2948 
2949                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2950                 break;
2951         }
2952         case KVM_GET_DIRTY_LOG: {
2953                 struct kvm_dirty_log log;
2954 
2955                 r = -EFAULT;
2956                 if (copy_from_user(&log, argp, sizeof(log)))
2957                         goto out;
2958                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2959                 break;
2960         }
2961 #ifdef CONFIG_KVM_MMIO
2962         case KVM_REGISTER_COALESCED_MMIO: {
2963                 struct kvm_coalesced_mmio_zone zone;
2964 
2965                 r = -EFAULT;
2966                 if (copy_from_user(&zone, argp, sizeof(zone)))
2967                         goto out;
2968                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2969                 break;
2970         }
2971         case KVM_UNREGISTER_COALESCED_MMIO: {
2972                 struct kvm_coalesced_mmio_zone zone;
2973 
2974                 r = -EFAULT;
2975                 if (copy_from_user(&zone, argp, sizeof(zone)))
2976                         goto out;
2977                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2978                 break;
2979         }
2980 #endif
2981         case KVM_IRQFD: {
2982                 struct kvm_irqfd data;
2983 
2984                 r = -EFAULT;
2985                 if (copy_from_user(&data, argp, sizeof(data)))
2986                         goto out;
2987                 r = kvm_irqfd(kvm, &data);
2988                 break;
2989         }
2990         case KVM_IOEVENTFD: {
2991                 struct kvm_ioeventfd data;
2992 
2993                 r = -EFAULT;
2994                 if (copy_from_user(&data, argp, sizeof(data)))
2995                         goto out;
2996                 r = kvm_ioeventfd(kvm, &data);
2997                 break;
2998         }
2999 #ifdef CONFIG_HAVE_KVM_MSI
3000         case KVM_SIGNAL_MSI: {
3001                 struct kvm_msi msi;
3002 
3003                 r = -EFAULT;
3004                 if (copy_from_user(&msi, argp, sizeof(msi)))
3005                         goto out;
3006                 r = kvm_send_userspace_msi(kvm, &msi);
3007                 break;
3008         }
3009 #endif
3010 #ifdef __KVM_HAVE_IRQ_LINE
3011         case KVM_IRQ_LINE_STATUS:
3012         case KVM_IRQ_LINE: {
3013                 struct kvm_irq_level irq_event;
3014 
3015                 r = -EFAULT;
3016                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3017                         goto out;
3018 
3019                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3020                                         ioctl == KVM_IRQ_LINE_STATUS);
3021                 if (r)
3022                         goto out;
3023 
3024                 r = -EFAULT;
3025                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3026                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3027                                 goto out;
3028                 }
3029 
3030                 r = 0;
3031                 break;
3032         }
3033 #endif
3034 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3035         case KVM_SET_GSI_ROUTING: {
3036                 struct kvm_irq_routing routing;
3037                 struct kvm_irq_routing __user *urouting;
3038                 struct kvm_irq_routing_entry *entries = NULL;
3039 
3040                 r = -EFAULT;
3041                 if (copy_from_user(&routing, argp, sizeof(routing)))
3042                         goto out;
3043                 r = -EINVAL;
3044                 if (!kvm_arch_can_set_irq_routing(kvm))
3045                         goto out;
3046                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3047                         goto out;
3048                 if (routing.flags)
3049                         goto out;
3050                 if (routing.nr) {
3051                         r = -ENOMEM;
3052                         entries = vmalloc(routing.nr * sizeof(*entries));
3053                         if (!entries)
3054                                 goto out;
3055                         r = -EFAULT;
3056                         urouting = argp;
3057                         if (copy_from_user(entries, urouting->entries,
3058                                            routing.nr * sizeof(*entries)))
3059                                 goto out_free_irq_routing;
3060                 }
3061                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3062                                         routing.flags);
3063 out_free_irq_routing:
3064                 vfree(entries);
3065                 break;
3066         }
3067 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3068         case KVM_CREATE_DEVICE: {
3069                 struct kvm_create_device cd;
3070 
3071                 r = -EFAULT;
3072                 if (copy_from_user(&cd, argp, sizeof(cd)))
3073                         goto out;
3074 
3075                 r = kvm_ioctl_create_device(kvm, &cd);
3076                 if (r)
3077                         goto out;
3078 
3079                 r = -EFAULT;
3080                 if (copy_to_user(argp, &cd, sizeof(cd)))
3081                         goto out;
3082 
3083                 r = 0;
3084                 break;
3085         }
3086         case KVM_CHECK_EXTENSION:
3087                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3088                 break;
3089         default:
3090                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3091         }
3092 out:
3093         return r;
3094 }
3095 
3096 #ifdef CONFIG_KVM_COMPAT
3097 struct compat_kvm_dirty_log {
3098         __u32 slot;
3099         __u32 padding1;
3100         union {
3101                 compat_uptr_t dirty_bitmap; /* one bit per page */
3102                 __u64 padding2;
3103         };
3104 };
3105 
3106 static long kvm_vm_compat_ioctl(struct file *filp,
3107                            unsigned int ioctl, unsigned long arg)
3108 {
3109         struct kvm *kvm = filp->private_data;
3110         int r;
3111 
3112         if (kvm->mm != current->mm)
3113                 return -EIO;
3114         switch (ioctl) {
3115         case KVM_GET_DIRTY_LOG: {
3116                 struct compat_kvm_dirty_log compat_log;
3117                 struct kvm_dirty_log log;
3118 
3119                 if (copy_from_user(&compat_log, (void __user *)arg,
3120                                    sizeof(compat_log)))
3121                         return -EFAULT;
3122                 log.slot         = compat_log.slot;
3123                 log.padding1     = compat_log.padding1;
3124                 log.padding2     = compat_log.padding2;
3125                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3126 
3127                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3128                 break;
3129         }
3130         default:
3131                 r = kvm_vm_ioctl(filp, ioctl, arg);
3132         }
3133         return r;
3134 }
3135 #endif
3136 
3137 static struct file_operations kvm_vm_fops = {
3138         .release        = kvm_vm_release,
3139         .unlocked_ioctl = kvm_vm_ioctl,
3140 #ifdef CONFIG_KVM_COMPAT
3141         .compat_ioctl   = kvm_vm_compat_ioctl,
3142 #endif
3143         .llseek         = noop_llseek,
3144 };
3145 
3146 static int kvm_dev_ioctl_create_vm(unsigned long type)
3147 {
3148         int r;
3149         struct kvm *kvm;
3150         struct file *file;
3151 
3152         kvm = kvm_create_vm(type);
3153         if (IS_ERR(kvm))
3154                 return PTR_ERR(kvm);
3155 #ifdef CONFIG_KVM_MMIO
3156         r = kvm_coalesced_mmio_init(kvm);
3157         if (r < 0) {
3158                 kvm_put_kvm(kvm);
3159                 return r;
3160         }
3161 #endif
3162         r = get_unused_fd_flags(O_CLOEXEC);
3163         if (r < 0) {
3164                 kvm_put_kvm(kvm);
3165                 return r;
3166         }
3167         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3168         if (IS_ERR(file)) {
3169                 put_unused_fd(r);
3170                 kvm_put_kvm(kvm);
3171                 return PTR_ERR(file);
3172         }
3173 
3174         /*
3175          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3176          * already set, with ->release() being kvm_vm_release().  In error
3177          * cases it will be called by the final fput(file) and will take
3178          * care of doing kvm_put_kvm(kvm).
3179          */
3180         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3181                 put_unused_fd(r);
3182                 fput(file);
3183                 return -ENOMEM;
3184         }
3185         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3186 
3187         fd_install(r, file);
3188         return r;
3189 }
3190 
3191 static long kvm_dev_ioctl(struct file *filp,
3192                           unsigned int ioctl, unsigned long arg)
3193 {
3194         long r = -EINVAL;
3195 
3196         switch (ioctl) {
3197         case KVM_GET_API_VERSION:
3198                 if (arg)
3199                         goto out;
3200                 r = KVM_API_VERSION;
3201                 break;
3202         case KVM_CREATE_VM:
3203                 r = kvm_dev_ioctl_create_vm(arg);
3204                 break;
3205         case KVM_CHECK_EXTENSION:
3206                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3207                 break;
3208         case KVM_GET_VCPU_MMAP_SIZE:
3209                 if (arg)
3210                         goto out;
3211                 r = PAGE_SIZE;     /* struct kvm_run */
3212 #ifdef CONFIG_X86
3213                 r += PAGE_SIZE;    /* pio data page */
3214 #endif
3215 #ifdef CONFIG_KVM_MMIO
3216                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3217 #endif
3218                 break;
3219         case KVM_TRACE_ENABLE:
3220         case KVM_TRACE_PAUSE:
3221         case KVM_TRACE_DISABLE:
3222                 r = -EOPNOTSUPP;
3223                 break;
3224         default:
3225                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3226         }
3227 out:
3228         return r;
3229 }
3230 
3231 static struct file_operations kvm_chardev_ops = {
3232         .unlocked_ioctl = kvm_dev_ioctl,
3233         .compat_ioctl   = kvm_dev_ioctl,
3234         .llseek         = noop_llseek,
3235 };
3236 
3237 static struct miscdevice kvm_dev = {
3238         KVM_MINOR,
3239         "kvm",
3240         &kvm_chardev_ops,
3241 };
3242 
3243 static void hardware_enable_nolock(void *junk)
3244 {
3245         int cpu = raw_smp_processor_id();
3246         int r;
3247 
3248         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3249                 return;
3250 
3251         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3252 
3253         r = kvm_arch_hardware_enable();
3254 
3255         if (r) {
3256                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3257                 atomic_inc(&hardware_enable_failed);
3258                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3259         }
3260 }
3261 
3262 static int kvm_starting_cpu(unsigned int cpu)
3263 {
3264         raw_spin_lock(&kvm_count_lock);
3265         if (kvm_usage_count)
3266                 hardware_enable_nolock(NULL);
3267         raw_spin_unlock(&kvm_count_lock);
3268         return 0;
3269 }
3270 
3271 static void hardware_disable_nolock(void *junk)
3272 {
3273         int cpu = raw_smp_processor_id();
3274 
3275         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3276                 return;
3277         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3278         kvm_arch_hardware_disable();
3279 }
3280 
3281 static int kvm_dying_cpu(unsigned int cpu)
3282 {
3283         raw_spin_lock(&kvm_count_lock);
3284         if (kvm_usage_count)
3285                 hardware_disable_nolock(NULL);
3286         raw_spin_unlock(&kvm_count_lock);
3287         return 0;
3288 }
3289 
3290 static void hardware_disable_all_nolock(void)
3291 {
3292         BUG_ON(!kvm_usage_count);
3293 
3294         kvm_usage_count--;
3295         if (!kvm_usage_count)
3296                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3297 }
3298 
3299 static void hardware_disable_all(void)
3300 {
3301         raw_spin_lock(&kvm_count_lock);
3302         hardware_disable_all_nolock();
3303         raw_spin_unlock(&kvm_count_lock);
3304 }
3305 
3306 static int hardware_enable_all(void)
3307 {
3308         int r = 0;
3309 
3310         raw_spin_lock(&kvm_count_lock);
3311 
3312         kvm_usage_count++;
3313         if (kvm_usage_count == 1) {
3314                 atomic_set(&hardware_enable_failed, 0);
3315                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3316 
3317                 if (atomic_read(&hardware_enable_failed)) {
3318                         hardware_disable_all_nolock();
3319                         r = -EBUSY;
3320                 }
3321         }
3322 
3323         raw_spin_unlock(&kvm_count_lock);
3324 
3325         return r;
3326 }
3327 
3328 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3329                       void *v)
3330 {
3331         /*
3332          * Some (well, at least mine) BIOSes hang on reboot if
3333          * in vmx root mode.
3334          *
3335          * And Intel TXT required VMX off for all cpu when system shutdown.
3336          */
3337         pr_info("kvm: exiting hardware virtualization\n");
3338         kvm_rebooting = true;
3339         on_each_cpu(hardware_disable_nolock, NULL, 1);
3340         return NOTIFY_OK;
3341 }
3342 
3343 static struct notifier_block kvm_reboot_notifier = {
3344         .notifier_call = kvm_reboot,
3345         .priority = 0,
3346 };
3347 
3348 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3349 {
3350         int i;
3351 
3352         for (i = 0; i < bus->dev_count; i++) {
3353                 struct kvm_io_device *pos = bus->range[i].dev;
3354 
3355                 kvm_iodevice_destructor(pos);
3356         }
3357         kfree(bus);
3358 }
3359 
3360 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3361                                  const struct kvm_io_range *r2)
3362 {
3363         gpa_t addr1 = r1->addr;
3364         gpa_t addr2 = r2->addr;
3365 
3366         if (addr1 < addr2)
3367                 return -1;
3368 
3369         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3370          * accept any overlapping write.  Any order is acceptable for
3371          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3372          * we process all of them.
3373          */
3374         if (r2->len) {
3375                 addr1 += r1->len;
3376                 addr2 += r2->len;
3377         }
3378 
3379         if (addr1 > addr2)
3380                 return 1;
3381 
3382         return 0;
3383 }
3384 
3385 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3386 {
3387         return kvm_io_bus_cmp(p1, p2);
3388 }
3389 
3390 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3391                           gpa_t addr, int len)
3392 {
3393         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3394                 .addr = addr,
3395                 .len = len,
3396                 .dev = dev,
3397         };
3398 
3399         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3400                 kvm_io_bus_sort_cmp, NULL);
3401 
3402         return 0;
3403 }
3404 
3405 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3406                              gpa_t addr, int len)
3407 {
3408         struct kvm_io_range *range, key;
3409         int off;
3410 
3411         key = (struct kvm_io_range) {
3412                 .addr = addr,
3413                 .len = len,
3414         };
3415 
3416         range = bsearch(&key, bus->range, bus->dev_count,
3417                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3418         if (range == NULL)
3419                 return -ENOENT;
3420 
3421         off = range - bus->range;
3422 
3423         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3424                 off--;
3425 
3426         return off;
3427 }
3428 
3429 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3430                               struct kvm_io_range *range, const void *val)
3431 {
3432         int idx;
3433 
3434         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3435         if (idx < 0)
3436                 return -EOPNOTSUPP;
3437 
3438         while (idx < bus->dev_count &&
3439                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3440                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3441                                         range->len, val))
3442                         return idx;
3443                 idx++;
3444         }
3445 
3446         return -EOPNOTSUPP;
3447 }
3448 
3449 /* kvm_io_bus_write - called under kvm->slots_lock */
3450 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3451                      int len, const void *val)
3452 {
3453         struct kvm_io_bus *bus;
3454         struct kvm_io_range range;
3455         int r;
3456 
3457         range = (struct kvm_io_range) {
3458                 .addr = addr,
3459                 .len = len,
3460         };
3461 
3462         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3463         if (!bus)
3464                 return -ENOMEM;
3465         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3466         return r < 0 ? r : 0;
3467 }
3468 
3469 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3470 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3471                             gpa_t addr, int len, const void *val, long cookie)
3472 {
3473         struct kvm_io_bus *bus;
3474         struct kvm_io_range range;
3475 
3476         range = (struct kvm_io_range) {
3477                 .addr = addr,
3478                 .len = len,
3479         };
3480 
3481         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3482         if (!bus)
3483                 return -ENOMEM;
3484 
3485         /* First try the device referenced by cookie. */
3486         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3487             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3488                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3489                                         val))
3490                         return cookie;
3491 
3492         /*
3493          * cookie contained garbage; fall back to search and return the
3494          * correct cookie value.
3495          */
3496         return __kvm_io_bus_write(vcpu, bus, &range, val);
3497 }
3498 
3499 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3500                              struct kvm_io_range *range, void *val)
3501 {
3502         int idx;
3503 
3504         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3505         if (idx < 0)
3506                 return -EOPNOTSUPP;
3507 
3508         while (idx < bus->dev_count &&
3509                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3510                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3511                                        range->len, val))
3512                         return idx;
3513                 idx++;
3514         }
3515 
3516         return -EOPNOTSUPP;
3517 }
3518 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3519 
3520 /* kvm_io_bus_read - called under kvm->slots_lock */
3521 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3522                     int len, void *val)
3523 {
3524         struct kvm_io_bus *bus;
3525         struct kvm_io_range range;
3526         int r;
3527 
3528         range = (struct kvm_io_range) {
3529                 .addr = addr,
3530                 .len = len,
3531         };
3532 
3533         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3534         if (!bus)
3535                 return -ENOMEM;
3536         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3537         return r < 0 ? r : 0;
3538 }
3539 
3540 
3541 /* Caller must hold slots_lock. */
3542 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3543                             int len, struct kvm_io_device *dev)
3544 {
3545         struct kvm_io_bus *new_bus, *bus;
3546 
3547         bus = kvm_get_bus(kvm, bus_idx);
3548         if (!bus)
3549                 return -ENOMEM;
3550 
3551         /* exclude ioeventfd which is limited by maximum fd */
3552         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3553                 return -ENOSPC;
3554 
3555         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3556                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3557         if (!new_bus)
3558                 return -ENOMEM;
3559         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3560                sizeof(struct kvm_io_range)));
3561         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3562         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3563         synchronize_srcu_expedited(&kvm->srcu);
3564         kfree(bus);
3565 
3566         return 0;
3567 }
3568 
3569 /* Caller must hold slots_lock. */
3570 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3571                                struct kvm_io_device *dev)
3572 {
3573         int i;
3574         struct kvm_io_bus *new_bus, *bus;
3575 
3576         bus = kvm_get_bus(kvm, bus_idx);
3577         if (!bus)
3578                 return;
3579 
3580         for (i = 0; i < bus->dev_count; i++)
3581                 if (bus->range[i].dev == dev) {
3582                         break;
3583                 }
3584 
3585         if (i == bus->dev_count)
3586                 return;
3587 
3588         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3589                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3590         if (!new_bus)  {
3591                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3592                 goto broken;
3593         }
3594 
3595         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3596         new_bus->dev_count--;
3597         memcpy(new_bus->range + i, bus->range + i + 1,
3598                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3599 
3600 broken:
3601         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3602         synchronize_srcu_expedited(&kvm->srcu);
3603         kfree(bus);
3604         return;
3605 }
3606 
3607 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3608                                          gpa_t addr)
3609 {
3610         struct kvm_io_bus *bus;
3611         int dev_idx, srcu_idx;
3612         struct kvm_io_device *iodev = NULL;
3613 
3614         srcu_idx = srcu_read_lock(&kvm->srcu);
3615 
3616         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3617         if (!bus)
3618                 goto out_unlock;
3619 
3620         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3621         if (dev_idx < 0)
3622                 goto out_unlock;
3623 
3624         iodev = bus->range[dev_idx].dev;
3625 
3626 out_unlock:
3627         srcu_read_unlock(&kvm->srcu, srcu_idx);
3628 
3629         return iodev;
3630 }
3631 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3632 
3633 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3634                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3635                            const char *fmt)
3636 {
3637         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3638                                           inode->i_private;
3639 
3640         /* The debugfs files are a reference to the kvm struct which
3641          * is still valid when kvm_destroy_vm is called.
3642          * To avoid the race between open and the removal of the debugfs
3643          * directory we test against the users count.
3644          */
3645         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3646                 return -ENOENT;
3647 
3648         if (simple_attr_open(inode, file, get, set, fmt)) {
3649                 kvm_put_kvm(stat_data->kvm);
3650                 return -ENOMEM;
3651         }
3652 
3653         return 0;
3654 }
3655 
3656 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3657 {
3658         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3659                                           inode->i_private;
3660 
3661         simple_attr_release(inode, file);
3662         kvm_put_kvm(stat_data->kvm);
3663 
3664         return 0;
3665 }
3666 
3667 static int vm_stat_get_per_vm(void *data, u64 *val)
3668 {
3669         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3670 
3671         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3672 
3673         return 0;
3674 }
3675 
3676 static int vm_stat_clear_per_vm(void *data, u64 val)
3677 {
3678         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3679 
3680         if (val)
3681                 return -EINVAL;
3682 
3683         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3684 
3685         return 0;
3686 }
3687 
3688 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3689 {
3690         __simple_attr_check_format("%llu\n", 0ull);
3691         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3692                                 vm_stat_clear_per_vm, "%llu\n");
3693 }
3694 
3695 static const struct file_operations vm_stat_get_per_vm_fops = {
3696         .owner   = THIS_MODULE,
3697         .open    = vm_stat_get_per_vm_open,
3698         .release = kvm_debugfs_release,
3699         .read    = simple_attr_read,
3700         .write   = simple_attr_write,
3701         .llseek  = no_llseek,
3702 };
3703 
3704 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3705 {
3706         int i;
3707         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3708         struct kvm_vcpu *vcpu;
3709 
3710         *val = 0;
3711 
3712         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3713                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3714 
3715         return 0;
3716 }
3717 
3718 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3719 {
3720         int i;
3721         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3722         struct kvm_vcpu *vcpu;
3723 
3724         if (val)
3725                 return -EINVAL;
3726 
3727         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3728                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3729 
3730         return 0;
3731 }
3732 
3733 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3734 {
3735         __simple_attr_check_format("%llu\n", 0ull);
3736         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3737                                  vcpu_stat_clear_per_vm, "%llu\n");
3738 }
3739 
3740 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3741         .owner   = THIS_MODULE,
3742         .open    = vcpu_stat_get_per_vm_open,
3743         .release = kvm_debugfs_release,
3744         .read    = simple_attr_read,
3745         .write   = simple_attr_write,
3746         .llseek  = no_llseek,
3747 };
3748 
3749 static const struct file_operations *stat_fops_per_vm[] = {
3750         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3751         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3752 };
3753 
3754 static int vm_stat_get(void *_offset, u64 *val)
3755 {
3756         unsigned offset = (long)_offset;
3757         struct kvm *kvm;
3758         struct kvm_stat_data stat_tmp = {.offset = offset};
3759         u64 tmp_val;
3760 
3761         *val = 0;
3762         spin_lock(&kvm_lock);
3763         list_for_each_entry(kvm, &vm_list, vm_list) {
3764                 stat_tmp.kvm = kvm;
3765                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3766                 *val += tmp_val;
3767         }
3768         spin_unlock(&kvm_lock);
3769         return 0;
3770 }
3771 
3772 static int vm_stat_clear(void *_offset, u64 val)
3773 {
3774         unsigned offset = (long)_offset;
3775         struct kvm *kvm;
3776         struct kvm_stat_data stat_tmp = {.offset = offset};
3777 
3778         if (val)
3779                 return -EINVAL;
3780 
3781         spin_lock(&kvm_lock);
3782         list_for_each_entry(kvm, &vm_list, vm_list) {
3783                 stat_tmp.kvm = kvm;
3784                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3785         }
3786         spin_unlock(&kvm_lock);
3787 
3788         return 0;
3789 }
3790 
3791 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3792 
3793 static int vcpu_stat_get(void *_offset, u64 *val)
3794 {
3795         unsigned offset = (long)_offset;
3796         struct kvm *kvm;
3797         struct kvm_stat_data stat_tmp = {.offset = offset};
3798         u64 tmp_val;
3799 
3800         *val = 0;
3801         spin_lock(&kvm_lock);
3802         list_for_each_entry(kvm, &vm_list, vm_list) {
3803                 stat_tmp.kvm = kvm;
3804                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3805                 *val += tmp_val;
3806         }
3807         spin_unlock(&kvm_lock);
3808         return 0;
3809 }
3810 
3811 static int vcpu_stat_clear(void *_offset, u64 val)
3812 {
3813         unsigned offset = (long)_offset;
3814         struct kvm *kvm;
3815         struct kvm_stat_data stat_tmp = {.offset = offset};
3816 
3817         if (val)
3818                 return -EINVAL;
3819 
3820         spin_lock(&kvm_lock);
3821         list_for_each_entry(kvm, &vm_list, vm_list) {
3822                 stat_tmp.kvm = kvm;
3823                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3824         }
3825         spin_unlock(&kvm_lock);
3826 
3827         return 0;
3828 }
3829 
3830 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3831                         "%llu\n");
3832 
3833 static const struct file_operations *stat_fops[] = {
3834         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3835         [KVM_STAT_VM]   = &vm_stat_fops,
3836 };
3837 
3838 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3839 {
3840         struct kobj_uevent_env *env;
3841         unsigned long long created, active;
3842 
3843         if (!kvm_dev.this_device || !kvm)
3844                 return;
3845 
3846         spin_lock(&kvm_lock);
3847         if (type == KVM_EVENT_CREATE_VM) {
3848                 kvm_createvm_count++;
3849                 kvm_active_vms++;
3850         } else if (type == KVM_EVENT_DESTROY_VM) {
3851                 kvm_active_vms--;
3852         }
3853         created = kvm_createvm_count;
3854         active = kvm_active_vms;
3855         spin_unlock(&kvm_lock);
3856 
3857         env = kzalloc(sizeof(*env), GFP_KERNEL);
3858         if (!env)
3859                 return;
3860 
3861         add_uevent_var(env, "CREATED=%llu", created);
3862         add_uevent_var(env, "COUNT=%llu", active);
3863 
3864         if (type == KVM_EVENT_CREATE_VM) {
3865                 add_uevent_var(env, "EVENT=create");
3866                 kvm->userspace_pid = task_pid_nr(current);
3867         } else if (type == KVM_EVENT_DESTROY_VM) {
3868                 add_uevent_var(env, "EVENT=destroy");
3869         }
3870         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3871 
3872         if (kvm->debugfs_dentry) {
3873                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3874 
3875                 if (p) {
3876                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3877                         if (!IS_ERR(tmp))
3878                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3879                         kfree(p);
3880                 }
3881         }
3882         /* no need for checks, since we are adding at most only 5 keys */
3883         env->envp[env->envp_idx++] = NULL;
3884         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3885         kfree(env);
3886 }
3887 
3888 static int kvm_init_debug(void)
3889 {
3890         int r = -EEXIST;
3891         struct kvm_stats_debugfs_item *p;
3892 
3893         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3894         if (kvm_debugfs_dir == NULL)
3895                 goto out;
3896 
3897         kvm_debugfs_num_entries = 0;
3898         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3899                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3900                                          (void *)(long)p->offset,
3901                                          stat_fops[p->kind]))
3902                         goto out_dir;
3903         }
3904 
3905         return 0;
3906 
3907 out_dir:
3908         debugfs_remove_recursive(kvm_debugfs_dir);
3909 out:
3910         return r;
3911 }
3912 
3913 static int kvm_suspend(void)
3914 {
3915         if (kvm_usage_count)
3916                 hardware_disable_nolock(NULL);
3917         return 0;
3918 }
3919 
3920 static void kvm_resume(void)
3921 {
3922         if (kvm_usage_count) {
3923                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3924                 hardware_enable_nolock(NULL);
3925         }
3926 }
3927 
3928 static struct syscore_ops kvm_syscore_ops = {
3929         .suspend = kvm_suspend,
3930         .resume = kvm_resume,
3931 };
3932 
3933 static inline
3934 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3935 {
3936         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3937 }
3938 
3939 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3940 {
3941         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3942 
3943         if (vcpu->preempted)
3944                 vcpu->preempted = false;
3945 
3946         kvm_arch_sched_in(vcpu, cpu);
3947 
3948         kvm_arch_vcpu_load(vcpu, cpu);
3949 }
3950 
3951 static void kvm_sched_out(struct preempt_notifier *pn,
3952                           struct task_struct *next)
3953 {
3954         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3955 
3956         if (current->state == TASK_RUNNING)
3957                 vcpu->preempted = true;
3958         kvm_arch_vcpu_put(vcpu);
3959 }
3960 
3961 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3962                   struct module *module)
3963 {
3964         int r;
3965         int cpu;
3966 
3967         r = kvm_arch_init(opaque);
3968         if (r)
3969                 goto out_fail;
3970 
3971         /*
3972          * kvm_arch_init makes sure there's at most one caller
3973          * for architectures that support multiple implementations,
3974          * like intel and amd on x86.
3975          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3976          * conflicts in case kvm is already setup for another implementation.
3977          */
3978         r = kvm_irqfd_init();
3979         if (r)
3980                 goto out_irqfd;
3981 
3982         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3983                 r = -ENOMEM;
3984                 goto out_free_0;
3985         }
3986 
3987         r = kvm_arch_hardware_setup();
3988         if (r < 0)
3989                 goto out_free_0a;
3990 
3991         for_each_online_cpu(cpu) {
3992                 smp_call_function_single(cpu,
3993                                 kvm_arch_check_processor_compat,
3994                                 &r, 1);
3995                 if (r < 0)
3996                         goto out_free_1;
3997         }
3998 
3999         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4000                                       kvm_starting_cpu, kvm_dying_cpu);
4001         if (r)
4002                 goto out_free_2;
4003         register_reboot_notifier(&kvm_reboot_notifier);
4004 
4005         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4006         if (!vcpu_align)
4007                 vcpu_align = __alignof__(struct kvm_vcpu);
4008         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4009                                            0, NULL);
4010         if (!kvm_vcpu_cache) {
4011                 r = -ENOMEM;
4012                 goto out_free_3;
4013         }
4014 
4015         r = kvm_async_pf_init();
4016         if (r)
4017                 goto out_free;
4018 
4019         kvm_chardev_ops.owner = module;
4020         kvm_vm_fops.owner = module;
4021         kvm_vcpu_fops.owner = module;
4022 
4023         r = misc_register(&kvm_dev);
4024         if (r) {
4025                 pr_err("kvm: misc device register failed\n");
4026                 goto out_unreg;
4027         }
4028 
4029         register_syscore_ops(&kvm_syscore_ops);
4030 
4031         kvm_preempt_ops.sched_in = kvm_sched_in;
4032         kvm_preempt_ops.sched_out = kvm_sched_out;
4033 
4034         r = kvm_init_debug();
4035         if (r) {
4036                 pr_err("kvm: create debugfs files failed\n");
4037                 goto out_undebugfs;
4038         }
4039 
4040         r = kvm_vfio_ops_init();
4041         WARN_ON(r);
4042 
4043         return 0;
4044 
4045 out_undebugfs:
4046         unregister_syscore_ops(&kvm_syscore_ops);
4047         misc_deregister(&kvm_dev);
4048 out_unreg:
4049         kvm_async_pf_deinit();
4050 out_free:
4051         kmem_cache_destroy(kvm_vcpu_cache);
4052 out_free_3:
4053         unregister_reboot_notifier(&kvm_reboot_notifier);
4054         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4055 out_free_2:
4056 out_free_1:
4057         kvm_arch_hardware_unsetup();
4058 out_free_0a:
4059         free_cpumask_var(cpus_hardware_enabled);
4060 out_free_0:
4061         kvm_irqfd_exit();
4062 out_irqfd:
4063         kvm_arch_exit();
4064 out_fail:
4065         return r;
4066 }
4067 EXPORT_SYMBOL_GPL(kvm_init);
4068 
4069 void kvm_exit(void)
4070 {
4071         debugfs_remove_recursive(kvm_debugfs_dir);
4072         misc_deregister(&kvm_dev);
4073         kmem_cache_destroy(kvm_vcpu_cache);
4074         kvm_async_pf_deinit();
4075         unregister_syscore_ops(&kvm_syscore_ops);
4076         unregister_reboot_notifier(&kvm_reboot_notifier);
4077         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4078         on_each_cpu(hardware_disable_nolock, NULL, 1);
4079         kvm_arch_hardware_unsetup();
4080         kvm_arch_exit();
4081         kvm_irqfd_exit();
4082         free_cpumask_var(cpus_hardware_enabled);
4083         kvm_vfio_ops_exit();
4084 }
4085 EXPORT_SYMBOL_GPL(kvm_exit);
4086 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp