1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #define KVM_COMPAT(c) .compat_ioctl = (c) 120 #else 121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg) { return -EINVAL; } 123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 124 #endif 125 static int hardware_enable_all(void); 126 static void hardware_disable_all(void); 127 128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 129 130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 131 132 __visible bool kvm_rebooting; 133 EXPORT_SYMBOL_GPL(kvm_rebooting); 134 135 static bool largepages_enabled = true; 136 137 #define KVM_EVENT_CREATE_VM 0 138 #define KVM_EVENT_DESTROY_VM 1 139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 140 static unsigned long long kvm_createvm_count; 141 static unsigned long long kvm_active_vms; 142 143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 144 unsigned long start, unsigned long end, bool blockable) 145 { 146 return 0; 147 } 148 149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 150 { 151 if (pfn_valid(pfn)) 152 return PageReserved(pfn_to_page(pfn)); 153 154 return true; 155 } 156 157 /* 158 * Switches to specified vcpu, until a matching vcpu_put() 159 */ 160 void vcpu_load(struct kvm_vcpu *vcpu) 161 { 162 int cpu = get_cpu(); 163 preempt_notifier_register(&vcpu->preempt_notifier); 164 kvm_arch_vcpu_load(vcpu, cpu); 165 put_cpu(); 166 } 167 EXPORT_SYMBOL_GPL(vcpu_load); 168 169 void vcpu_put(struct kvm_vcpu *vcpu) 170 { 171 preempt_disable(); 172 kvm_arch_vcpu_put(vcpu); 173 preempt_notifier_unregister(&vcpu->preempt_notifier); 174 preempt_enable(); 175 } 176 EXPORT_SYMBOL_GPL(vcpu_put); 177 178 /* TODO: merge with kvm_arch_vcpu_should_kick */ 179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 180 { 181 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 182 183 /* 184 * We need to wait for the VCPU to reenable interrupts and get out of 185 * READING_SHADOW_PAGE_TABLES mode. 186 */ 187 if (req & KVM_REQUEST_WAIT) 188 return mode != OUTSIDE_GUEST_MODE; 189 190 /* 191 * Need to kick a running VCPU, but otherwise there is nothing to do. 192 */ 193 return mode == IN_GUEST_MODE; 194 } 195 196 static void ack_flush(void *_completed) 197 { 198 } 199 200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 201 { 202 if (unlikely(!cpus)) 203 cpus = cpu_online_mask; 204 205 if (cpumask_empty(cpus)) 206 return false; 207 208 smp_call_function_many(cpus, ack_flush, NULL, wait); 209 return true; 210 } 211 212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 213 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 214 { 215 int i, cpu, me; 216 struct kvm_vcpu *vcpu; 217 bool called; 218 219 me = get_cpu(); 220 221 kvm_for_each_vcpu(i, vcpu, kvm) { 222 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 223 continue; 224 225 kvm_make_request(req, vcpu); 226 cpu = vcpu->cpu; 227 228 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 229 continue; 230 231 if (tmp != NULL && cpu != -1 && cpu != me && 232 kvm_request_needs_ipi(vcpu, req)) 233 __cpumask_set_cpu(cpu, tmp); 234 } 235 236 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 237 put_cpu(); 238 239 return called; 240 } 241 242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 243 { 244 cpumask_var_t cpus; 245 bool called; 246 247 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 248 249 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 250 251 free_cpumask_var(cpus); 252 return called; 253 } 254 255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 256 void kvm_flush_remote_tlbs(struct kvm *kvm) 257 { 258 /* 259 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 260 * kvm_make_all_cpus_request. 261 */ 262 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 263 264 /* 265 * We want to publish modifications to the page tables before reading 266 * mode. Pairs with a memory barrier in arch-specific code. 267 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 268 * and smp_mb in walk_shadow_page_lockless_begin/end. 269 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 270 * 271 * There is already an smp_mb__after_atomic() before 272 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 273 * barrier here. 274 */ 275 if (!kvm_arch_flush_remote_tlb(kvm) 276 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 277 ++kvm->stat.remote_tlb_flush; 278 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 279 } 280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 281 #endif 282 283 void kvm_reload_remote_mmus(struct kvm *kvm) 284 { 285 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 286 } 287 288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 289 { 290 struct page *page; 291 int r; 292 293 mutex_init(&vcpu->mutex); 294 vcpu->cpu = -1; 295 vcpu->kvm = kvm; 296 vcpu->vcpu_id = id; 297 vcpu->pid = NULL; 298 init_swait_queue_head(&vcpu->wq); 299 kvm_async_pf_vcpu_init(vcpu); 300 301 vcpu->pre_pcpu = -1; 302 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 303 304 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 305 if (!page) { 306 r = -ENOMEM; 307 goto fail; 308 } 309 vcpu->run = page_address(page); 310 311 kvm_vcpu_set_in_spin_loop(vcpu, false); 312 kvm_vcpu_set_dy_eligible(vcpu, false); 313 vcpu->preempted = false; 314 315 r = kvm_arch_vcpu_init(vcpu); 316 if (r < 0) 317 goto fail_free_run; 318 return 0; 319 320 fail_free_run: 321 free_page((unsigned long)vcpu->run); 322 fail: 323 return r; 324 } 325 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 326 327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 328 { 329 /* 330 * no need for rcu_read_lock as VCPU_RUN is the only place that 331 * will change the vcpu->pid pointer and on uninit all file 332 * descriptors are already gone. 333 */ 334 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 335 kvm_arch_vcpu_uninit(vcpu); 336 free_page((unsigned long)vcpu->run); 337 } 338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 339 340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 342 { 343 return container_of(mn, struct kvm, mmu_notifier); 344 } 345 346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 347 struct mm_struct *mm, 348 unsigned long address, 349 pte_t pte) 350 { 351 struct kvm *kvm = mmu_notifier_to_kvm(mn); 352 int idx; 353 354 idx = srcu_read_lock(&kvm->srcu); 355 spin_lock(&kvm->mmu_lock); 356 kvm->mmu_notifier_seq++; 357 358 if (kvm_set_spte_hva(kvm, address, pte)) 359 kvm_flush_remote_tlbs(kvm); 360 361 spin_unlock(&kvm->mmu_lock); 362 srcu_read_unlock(&kvm->srcu, idx); 363 } 364 365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 366 const struct mmu_notifier_range *range) 367 { 368 struct kvm *kvm = mmu_notifier_to_kvm(mn); 369 int need_tlb_flush = 0, idx; 370 int ret; 371 372 idx = srcu_read_lock(&kvm->srcu); 373 spin_lock(&kvm->mmu_lock); 374 /* 375 * The count increase must become visible at unlock time as no 376 * spte can be established without taking the mmu_lock and 377 * count is also read inside the mmu_lock critical section. 378 */ 379 kvm->mmu_notifier_count++; 380 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 381 need_tlb_flush |= kvm->tlbs_dirty; 382 /* we've to flush the tlb before the pages can be freed */ 383 if (need_tlb_flush) 384 kvm_flush_remote_tlbs(kvm); 385 386 spin_unlock(&kvm->mmu_lock); 387 388 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 389 range->end, range->blockable); 390 391 srcu_read_unlock(&kvm->srcu, idx); 392 393 return ret; 394 } 395 396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 397 const struct mmu_notifier_range *range) 398 { 399 struct kvm *kvm = mmu_notifier_to_kvm(mn); 400 401 spin_lock(&kvm->mmu_lock); 402 /* 403 * This sequence increase will notify the kvm page fault that 404 * the page that is going to be mapped in the spte could have 405 * been freed. 406 */ 407 kvm->mmu_notifier_seq++; 408 smp_wmb(); 409 /* 410 * The above sequence increase must be visible before the 411 * below count decrease, which is ensured by the smp_wmb above 412 * in conjunction with the smp_rmb in mmu_notifier_retry(). 413 */ 414 kvm->mmu_notifier_count--; 415 spin_unlock(&kvm->mmu_lock); 416 417 BUG_ON(kvm->mmu_notifier_count < 0); 418 } 419 420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 421 struct mm_struct *mm, 422 unsigned long start, 423 unsigned long end) 424 { 425 struct kvm *kvm = mmu_notifier_to_kvm(mn); 426 int young, idx; 427 428 idx = srcu_read_lock(&kvm->srcu); 429 spin_lock(&kvm->mmu_lock); 430 431 young = kvm_age_hva(kvm, start, end); 432 if (young) 433 kvm_flush_remote_tlbs(kvm); 434 435 spin_unlock(&kvm->mmu_lock); 436 srcu_read_unlock(&kvm->srcu, idx); 437 438 return young; 439 } 440 441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 442 struct mm_struct *mm, 443 unsigned long start, 444 unsigned long end) 445 { 446 struct kvm *kvm = mmu_notifier_to_kvm(mn); 447 int young, idx; 448 449 idx = srcu_read_lock(&kvm->srcu); 450 spin_lock(&kvm->mmu_lock); 451 /* 452 * Even though we do not flush TLB, this will still adversely 453 * affect performance on pre-Haswell Intel EPT, where there is 454 * no EPT Access Bit to clear so that we have to tear down EPT 455 * tables instead. If we find this unacceptable, we can always 456 * add a parameter to kvm_age_hva so that it effectively doesn't 457 * do anything on clear_young. 458 * 459 * Also note that currently we never issue secondary TLB flushes 460 * from clear_young, leaving this job up to the regular system 461 * cadence. If we find this inaccurate, we might come up with a 462 * more sophisticated heuristic later. 463 */ 464 young = kvm_age_hva(kvm, start, end); 465 spin_unlock(&kvm->mmu_lock); 466 srcu_read_unlock(&kvm->srcu, idx); 467 468 return young; 469 } 470 471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 472 struct mm_struct *mm, 473 unsigned long address) 474 { 475 struct kvm *kvm = mmu_notifier_to_kvm(mn); 476 int young, idx; 477 478 idx = srcu_read_lock(&kvm->srcu); 479 spin_lock(&kvm->mmu_lock); 480 young = kvm_test_age_hva(kvm, address); 481 spin_unlock(&kvm->mmu_lock); 482 srcu_read_unlock(&kvm->srcu, idx); 483 484 return young; 485 } 486 487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 488 struct mm_struct *mm) 489 { 490 struct kvm *kvm = mmu_notifier_to_kvm(mn); 491 int idx; 492 493 idx = srcu_read_lock(&kvm->srcu); 494 kvm_arch_flush_shadow_all(kvm); 495 srcu_read_unlock(&kvm->srcu, idx); 496 } 497 498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 499 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 500 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 501 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 502 .clear_young = kvm_mmu_notifier_clear_young, 503 .test_young = kvm_mmu_notifier_test_young, 504 .change_pte = kvm_mmu_notifier_change_pte, 505 .release = kvm_mmu_notifier_release, 506 }; 507 508 static int kvm_init_mmu_notifier(struct kvm *kvm) 509 { 510 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 511 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 512 } 513 514 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 515 516 static int kvm_init_mmu_notifier(struct kvm *kvm) 517 { 518 return 0; 519 } 520 521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 522 523 static struct kvm_memslots *kvm_alloc_memslots(void) 524 { 525 int i; 526 struct kvm_memslots *slots; 527 528 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 529 if (!slots) 530 return NULL; 531 532 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 533 slots->id_to_index[i] = slots->memslots[i].id = i; 534 535 return slots; 536 } 537 538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 539 { 540 if (!memslot->dirty_bitmap) 541 return; 542 543 kvfree(memslot->dirty_bitmap); 544 memslot->dirty_bitmap = NULL; 545 } 546 547 /* 548 * Free any memory in @free but not in @dont. 549 */ 550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 551 struct kvm_memory_slot *dont) 552 { 553 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 554 kvm_destroy_dirty_bitmap(free); 555 556 kvm_arch_free_memslot(kvm, free, dont); 557 558 free->npages = 0; 559 } 560 561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 562 { 563 struct kvm_memory_slot *memslot; 564 565 if (!slots) 566 return; 567 568 kvm_for_each_memslot(memslot, slots) 569 kvm_free_memslot(kvm, memslot, NULL); 570 571 kvfree(slots); 572 } 573 574 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 575 { 576 int i; 577 578 if (!kvm->debugfs_dentry) 579 return; 580 581 debugfs_remove_recursive(kvm->debugfs_dentry); 582 583 if (kvm->debugfs_stat_data) { 584 for (i = 0; i < kvm_debugfs_num_entries; i++) 585 kfree(kvm->debugfs_stat_data[i]); 586 kfree(kvm->debugfs_stat_data); 587 } 588 } 589 590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 591 { 592 char dir_name[ITOA_MAX_LEN * 2]; 593 struct kvm_stat_data *stat_data; 594 struct kvm_stats_debugfs_item *p; 595 596 if (!debugfs_initialized()) 597 return 0; 598 599 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 600 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 601 602 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 603 sizeof(*kvm->debugfs_stat_data), 604 GFP_KERNEL); 605 if (!kvm->debugfs_stat_data) 606 return -ENOMEM; 607 608 for (p = debugfs_entries; p->name; p++) { 609 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 610 if (!stat_data) 611 return -ENOMEM; 612 613 stat_data->kvm = kvm; 614 stat_data->offset = p->offset; 615 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 616 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 617 stat_data, stat_fops_per_vm[p->kind]); 618 } 619 return 0; 620 } 621 622 static struct kvm *kvm_create_vm(unsigned long type) 623 { 624 int r, i; 625 struct kvm *kvm = kvm_arch_alloc_vm(); 626 627 if (!kvm) 628 return ERR_PTR(-ENOMEM); 629 630 spin_lock_init(&kvm->mmu_lock); 631 mmgrab(current->mm); 632 kvm->mm = current->mm; 633 kvm_eventfd_init(kvm); 634 mutex_init(&kvm->lock); 635 mutex_init(&kvm->irq_lock); 636 mutex_init(&kvm->slots_lock); 637 refcount_set(&kvm->users_count, 1); 638 INIT_LIST_HEAD(&kvm->devices); 639 640 r = kvm_arch_init_vm(kvm, type); 641 if (r) 642 goto out_err_no_disable; 643 644 r = hardware_enable_all(); 645 if (r) 646 goto out_err_no_disable; 647 648 #ifdef CONFIG_HAVE_KVM_IRQFD 649 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 650 #endif 651 652 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 653 654 r = -ENOMEM; 655 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 656 struct kvm_memslots *slots = kvm_alloc_memslots(); 657 if (!slots) 658 goto out_err_no_srcu; 659 /* 660 * Generations must be different for each address space. 661 * Init kvm generation close to the maximum to easily test the 662 * code of handling generation number wrap-around. 663 */ 664 slots->generation = i * 2 - 150; 665 rcu_assign_pointer(kvm->memslots[i], slots); 666 } 667 668 if (init_srcu_struct(&kvm->srcu)) 669 goto out_err_no_srcu; 670 if (init_srcu_struct(&kvm->irq_srcu)) 671 goto out_err_no_irq_srcu; 672 for (i = 0; i < KVM_NR_BUSES; i++) { 673 rcu_assign_pointer(kvm->buses[i], 674 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL)); 675 if (!kvm->buses[i]) 676 goto out_err; 677 } 678 679 r = kvm_init_mmu_notifier(kvm); 680 if (r) 681 goto out_err; 682 683 spin_lock(&kvm_lock); 684 list_add(&kvm->vm_list, &vm_list); 685 spin_unlock(&kvm_lock); 686 687 preempt_notifier_inc(); 688 689 return kvm; 690 691 out_err: 692 cleanup_srcu_struct(&kvm->irq_srcu); 693 out_err_no_irq_srcu: 694 cleanup_srcu_struct(&kvm->srcu); 695 out_err_no_srcu: 696 hardware_disable_all(); 697 out_err_no_disable: 698 refcount_set(&kvm->users_count, 0); 699 for (i = 0; i < KVM_NR_BUSES; i++) 700 kfree(kvm_get_bus(kvm, i)); 701 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 702 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 703 kvm_arch_free_vm(kvm); 704 mmdrop(current->mm); 705 return ERR_PTR(r); 706 } 707 708 static void kvm_destroy_devices(struct kvm *kvm) 709 { 710 struct kvm_device *dev, *tmp; 711 712 /* 713 * We do not need to take the kvm->lock here, because nobody else 714 * has a reference to the struct kvm at this point and therefore 715 * cannot access the devices list anyhow. 716 */ 717 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 718 list_del(&dev->vm_node); 719 dev->ops->destroy(dev); 720 } 721 } 722 723 static void kvm_destroy_vm(struct kvm *kvm) 724 { 725 int i; 726 struct mm_struct *mm = kvm->mm; 727 728 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 729 kvm_destroy_vm_debugfs(kvm); 730 kvm_arch_sync_events(kvm); 731 spin_lock(&kvm_lock); 732 list_del(&kvm->vm_list); 733 spin_unlock(&kvm_lock); 734 kvm_free_irq_routing(kvm); 735 for (i = 0; i < KVM_NR_BUSES; i++) { 736 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 737 738 if (bus) 739 kvm_io_bus_destroy(bus); 740 kvm->buses[i] = NULL; 741 } 742 kvm_coalesced_mmio_free(kvm); 743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 744 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 745 #else 746 kvm_arch_flush_shadow_all(kvm); 747 #endif 748 kvm_arch_destroy_vm(kvm); 749 kvm_destroy_devices(kvm); 750 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 751 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 752 cleanup_srcu_struct(&kvm->irq_srcu); 753 cleanup_srcu_struct(&kvm->srcu); 754 kvm_arch_free_vm(kvm); 755 preempt_notifier_dec(); 756 hardware_disable_all(); 757 mmdrop(mm); 758 } 759 760 void kvm_get_kvm(struct kvm *kvm) 761 { 762 refcount_inc(&kvm->users_count); 763 } 764 EXPORT_SYMBOL_GPL(kvm_get_kvm); 765 766 void kvm_put_kvm(struct kvm *kvm) 767 { 768 if (refcount_dec_and_test(&kvm->users_count)) 769 kvm_destroy_vm(kvm); 770 } 771 EXPORT_SYMBOL_GPL(kvm_put_kvm); 772 773 774 static int kvm_vm_release(struct inode *inode, struct file *filp) 775 { 776 struct kvm *kvm = filp->private_data; 777 778 kvm_irqfd_release(kvm); 779 780 kvm_put_kvm(kvm); 781 return 0; 782 } 783 784 /* 785 * Allocation size is twice as large as the actual dirty bitmap size. 786 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 787 */ 788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 789 { 790 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 791 792 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 793 if (!memslot->dirty_bitmap) 794 return -ENOMEM; 795 796 return 0; 797 } 798 799 /* 800 * Insert memslot and re-sort memslots based on their GFN, 801 * so binary search could be used to lookup GFN. 802 * Sorting algorithm takes advantage of having initially 803 * sorted array and known changed memslot position. 804 */ 805 static void update_memslots(struct kvm_memslots *slots, 806 struct kvm_memory_slot *new, 807 enum kvm_mr_change change) 808 { 809 int id = new->id; 810 int i = slots->id_to_index[id]; 811 struct kvm_memory_slot *mslots = slots->memslots; 812 813 WARN_ON(mslots[i].id != id); 814 switch (change) { 815 case KVM_MR_CREATE: 816 slots->used_slots++; 817 WARN_ON(mslots[i].npages || !new->npages); 818 break; 819 case KVM_MR_DELETE: 820 slots->used_slots--; 821 WARN_ON(new->npages || !mslots[i].npages); 822 break; 823 default: 824 break; 825 } 826 827 while (i < KVM_MEM_SLOTS_NUM - 1 && 828 new->base_gfn <= mslots[i + 1].base_gfn) { 829 if (!mslots[i + 1].npages) 830 break; 831 mslots[i] = mslots[i + 1]; 832 slots->id_to_index[mslots[i].id] = i; 833 i++; 834 } 835 836 /* 837 * The ">=" is needed when creating a slot with base_gfn == 0, 838 * so that it moves before all those with base_gfn == npages == 0. 839 * 840 * On the other hand, if new->npages is zero, the above loop has 841 * already left i pointing to the beginning of the empty part of 842 * mslots, and the ">=" would move the hole backwards in this 843 * case---which is wrong. So skip the loop when deleting a slot. 844 */ 845 if (new->npages) { 846 while (i > 0 && 847 new->base_gfn >= mslots[i - 1].base_gfn) { 848 mslots[i] = mslots[i - 1]; 849 slots->id_to_index[mslots[i].id] = i; 850 i--; 851 } 852 } else 853 WARN_ON_ONCE(i != slots->used_slots); 854 855 mslots[i] = *new; 856 slots->id_to_index[mslots[i].id] = i; 857 } 858 859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 860 { 861 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 862 863 #ifdef __KVM_HAVE_READONLY_MEM 864 valid_flags |= KVM_MEM_READONLY; 865 #endif 866 867 if (mem->flags & ~valid_flags) 868 return -EINVAL; 869 870 return 0; 871 } 872 873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 874 int as_id, struct kvm_memslots *slots) 875 { 876 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 877 u64 gen; 878 879 /* 880 * Set the low bit in the generation, which disables SPTE caching 881 * until the end of synchronize_srcu_expedited. 882 */ 883 WARN_ON(old_memslots->generation & 1); 884 slots->generation = old_memslots->generation + 1; 885 886 rcu_assign_pointer(kvm->memslots[as_id], slots); 887 synchronize_srcu_expedited(&kvm->srcu); 888 889 /* 890 * Increment the new memslot generation a second time. This prevents 891 * vm exits that race with memslot updates from caching a memslot 892 * generation that will (potentially) be valid forever. 893 * 894 * Generations must be unique even across address spaces. We do not need 895 * a global counter for that, instead the generation space is evenly split 896 * across address spaces. For example, with two address spaces, address 897 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 898 * use generations 2, 6, 10, 14, ... 899 */ 900 gen = slots->generation + KVM_ADDRESS_SPACE_NUM * 2 - 1; 901 902 kvm_arch_memslots_updated(kvm, gen); 903 904 slots->generation = gen; 905 906 return old_memslots; 907 } 908 909 /* 910 * Allocate some memory and give it an address in the guest physical address 911 * space. 912 * 913 * Discontiguous memory is allowed, mostly for framebuffers. 914 * 915 * Must be called holding kvm->slots_lock for write. 916 */ 917 int __kvm_set_memory_region(struct kvm *kvm, 918 const struct kvm_userspace_memory_region *mem) 919 { 920 int r; 921 gfn_t base_gfn; 922 unsigned long npages; 923 struct kvm_memory_slot *slot; 924 struct kvm_memory_slot old, new; 925 struct kvm_memslots *slots = NULL, *old_memslots; 926 int as_id, id; 927 enum kvm_mr_change change; 928 929 r = check_memory_region_flags(mem); 930 if (r) 931 goto out; 932 933 r = -EINVAL; 934 as_id = mem->slot >> 16; 935 id = (u16)mem->slot; 936 937 /* General sanity checks */ 938 if (mem->memory_size & (PAGE_SIZE - 1)) 939 goto out; 940 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 941 goto out; 942 /* We can read the guest memory with __xxx_user() later on. */ 943 if ((id < KVM_USER_MEM_SLOTS) && 944 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 945 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 946 mem->memory_size))) 947 goto out; 948 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 949 goto out; 950 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 951 goto out; 952 953 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 954 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 955 npages = mem->memory_size >> PAGE_SHIFT; 956 957 if (npages > KVM_MEM_MAX_NR_PAGES) 958 goto out; 959 960 new = old = *slot; 961 962 new.id = id; 963 new.base_gfn = base_gfn; 964 new.npages = npages; 965 new.flags = mem->flags; 966 967 if (npages) { 968 if (!old.npages) 969 change = KVM_MR_CREATE; 970 else { /* Modify an existing slot. */ 971 if ((mem->userspace_addr != old.userspace_addr) || 972 (npages != old.npages) || 973 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 974 goto out; 975 976 if (base_gfn != old.base_gfn) 977 change = KVM_MR_MOVE; 978 else if (new.flags != old.flags) 979 change = KVM_MR_FLAGS_ONLY; 980 else { /* Nothing to change. */ 981 r = 0; 982 goto out; 983 } 984 } 985 } else { 986 if (!old.npages) 987 goto out; 988 989 change = KVM_MR_DELETE; 990 new.base_gfn = 0; 991 new.flags = 0; 992 } 993 994 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 995 /* Check for overlaps */ 996 r = -EEXIST; 997 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 998 if (slot->id == id) 999 continue; 1000 if (!((base_gfn + npages <= slot->base_gfn) || 1001 (base_gfn >= slot->base_gfn + slot->npages))) 1002 goto out; 1003 } 1004 } 1005 1006 /* Free page dirty bitmap if unneeded */ 1007 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1008 new.dirty_bitmap = NULL; 1009 1010 r = -ENOMEM; 1011 if (change == KVM_MR_CREATE) { 1012 new.userspace_addr = mem->userspace_addr; 1013 1014 if (kvm_arch_create_memslot(kvm, &new, npages)) 1015 goto out_free; 1016 } 1017 1018 /* Allocate page dirty bitmap if needed */ 1019 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1020 if (kvm_create_dirty_bitmap(&new) < 0) 1021 goto out_free; 1022 } 1023 1024 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 1025 if (!slots) 1026 goto out_free; 1027 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1028 1029 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1030 slot = id_to_memslot(slots, id); 1031 slot->flags |= KVM_MEMSLOT_INVALID; 1032 1033 old_memslots = install_new_memslots(kvm, as_id, slots); 1034 1035 /* From this point no new shadow pages pointing to a deleted, 1036 * or moved, memslot will be created. 1037 * 1038 * validation of sp->gfn happens in: 1039 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1040 * - kvm_is_visible_gfn (mmu_check_roots) 1041 */ 1042 kvm_arch_flush_shadow_memslot(kvm, slot); 1043 1044 /* 1045 * We can re-use the old_memslots from above, the only difference 1046 * from the currently installed memslots is the invalid flag. This 1047 * will get overwritten by update_memslots anyway. 1048 */ 1049 slots = old_memslots; 1050 } 1051 1052 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1053 if (r) 1054 goto out_slots; 1055 1056 /* actual memory is freed via old in kvm_free_memslot below */ 1057 if (change == KVM_MR_DELETE) { 1058 new.dirty_bitmap = NULL; 1059 memset(&new.arch, 0, sizeof(new.arch)); 1060 } 1061 1062 update_memslots(slots, &new, change); 1063 old_memslots = install_new_memslots(kvm, as_id, slots); 1064 1065 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1066 1067 kvm_free_memslot(kvm, &old, &new); 1068 kvfree(old_memslots); 1069 return 0; 1070 1071 out_slots: 1072 kvfree(slots); 1073 out_free: 1074 kvm_free_memslot(kvm, &new, &old); 1075 out: 1076 return r; 1077 } 1078 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1079 1080 int kvm_set_memory_region(struct kvm *kvm, 1081 const struct kvm_userspace_memory_region *mem) 1082 { 1083 int r; 1084 1085 mutex_lock(&kvm->slots_lock); 1086 r = __kvm_set_memory_region(kvm, mem); 1087 mutex_unlock(&kvm->slots_lock); 1088 return r; 1089 } 1090 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1091 1092 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1093 struct kvm_userspace_memory_region *mem) 1094 { 1095 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1096 return -EINVAL; 1097 1098 return kvm_set_memory_region(kvm, mem); 1099 } 1100 1101 int kvm_get_dirty_log(struct kvm *kvm, 1102 struct kvm_dirty_log *log, int *is_dirty) 1103 { 1104 struct kvm_memslots *slots; 1105 struct kvm_memory_slot *memslot; 1106 int i, as_id, id; 1107 unsigned long n; 1108 unsigned long any = 0; 1109 1110 as_id = log->slot >> 16; 1111 id = (u16)log->slot; 1112 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1113 return -EINVAL; 1114 1115 slots = __kvm_memslots(kvm, as_id); 1116 memslot = id_to_memslot(slots, id); 1117 if (!memslot->dirty_bitmap) 1118 return -ENOENT; 1119 1120 n = kvm_dirty_bitmap_bytes(memslot); 1121 1122 for (i = 0; !any && i < n/sizeof(long); ++i) 1123 any = memslot->dirty_bitmap[i]; 1124 1125 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1126 return -EFAULT; 1127 1128 if (any) 1129 *is_dirty = 1; 1130 return 0; 1131 } 1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1133 1134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1135 /** 1136 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1137 * and reenable dirty page tracking for the corresponding pages. 1138 * @kvm: pointer to kvm instance 1139 * @log: slot id and address to which we copy the log 1140 * @is_dirty: flag set if any page is dirty 1141 * 1142 * We need to keep it in mind that VCPU threads can write to the bitmap 1143 * concurrently. So, to avoid losing track of dirty pages we keep the 1144 * following order: 1145 * 1146 * 1. Take a snapshot of the bit and clear it if needed. 1147 * 2. Write protect the corresponding page. 1148 * 3. Copy the snapshot to the userspace. 1149 * 4. Upon return caller flushes TLB's if needed. 1150 * 1151 * Between 2 and 4, the guest may write to the page using the remaining TLB 1152 * entry. This is not a problem because the page is reported dirty using 1153 * the snapshot taken before and step 4 ensures that writes done after 1154 * exiting to userspace will be logged for the next call. 1155 * 1156 */ 1157 int kvm_get_dirty_log_protect(struct kvm *kvm, 1158 struct kvm_dirty_log *log, bool *flush) 1159 { 1160 struct kvm_memslots *slots; 1161 struct kvm_memory_slot *memslot; 1162 int i, as_id, id; 1163 unsigned long n; 1164 unsigned long *dirty_bitmap; 1165 unsigned long *dirty_bitmap_buffer; 1166 1167 as_id = log->slot >> 16; 1168 id = (u16)log->slot; 1169 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1170 return -EINVAL; 1171 1172 slots = __kvm_memslots(kvm, as_id); 1173 memslot = id_to_memslot(slots, id); 1174 1175 dirty_bitmap = memslot->dirty_bitmap; 1176 if (!dirty_bitmap) 1177 return -ENOENT; 1178 1179 n = kvm_dirty_bitmap_bytes(memslot); 1180 *flush = false; 1181 if (kvm->manual_dirty_log_protect) { 1182 /* 1183 * Unlike kvm_get_dirty_log, we always return false in *flush, 1184 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1185 * is some code duplication between this function and 1186 * kvm_get_dirty_log, but hopefully all architecture 1187 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1188 * can be eliminated. 1189 */ 1190 dirty_bitmap_buffer = dirty_bitmap; 1191 } else { 1192 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1193 memset(dirty_bitmap_buffer, 0, n); 1194 1195 spin_lock(&kvm->mmu_lock); 1196 for (i = 0; i < n / sizeof(long); i++) { 1197 unsigned long mask; 1198 gfn_t offset; 1199 1200 if (!dirty_bitmap[i]) 1201 continue; 1202 1203 *flush = true; 1204 mask = xchg(&dirty_bitmap[i], 0); 1205 dirty_bitmap_buffer[i] = mask; 1206 1207 if (mask) { 1208 offset = i * BITS_PER_LONG; 1209 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1210 offset, mask); 1211 } 1212 } 1213 spin_unlock(&kvm->mmu_lock); 1214 } 1215 1216 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1217 return -EFAULT; 1218 return 0; 1219 } 1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1221 1222 /** 1223 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1224 * and reenable dirty page tracking for the corresponding pages. 1225 * @kvm: pointer to kvm instance 1226 * @log: slot id and address from which to fetch the bitmap of dirty pages 1227 */ 1228 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1229 struct kvm_clear_dirty_log *log, bool *flush) 1230 { 1231 struct kvm_memslots *slots; 1232 struct kvm_memory_slot *memslot; 1233 int as_id, id; 1234 gfn_t offset; 1235 unsigned long i, n; 1236 unsigned long *dirty_bitmap; 1237 unsigned long *dirty_bitmap_buffer; 1238 1239 as_id = log->slot >> 16; 1240 id = (u16)log->slot; 1241 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1242 return -EINVAL; 1243 1244 if (log->first_page & 63) 1245 return -EINVAL; 1246 1247 slots = __kvm_memslots(kvm, as_id); 1248 memslot = id_to_memslot(slots, id); 1249 1250 dirty_bitmap = memslot->dirty_bitmap; 1251 if (!dirty_bitmap) 1252 return -ENOENT; 1253 1254 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1255 1256 if (log->first_page > memslot->npages || 1257 log->num_pages > memslot->npages - log->first_page || 1258 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1259 return -EINVAL; 1260 1261 *flush = false; 1262 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1263 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1264 return -EFAULT; 1265 1266 spin_lock(&kvm->mmu_lock); 1267 for (offset = log->first_page, 1268 i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--; 1269 i++, offset += BITS_PER_LONG) { 1270 unsigned long mask = *dirty_bitmap_buffer++; 1271 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1272 if (!mask) 1273 continue; 1274 1275 mask &= atomic_long_fetch_andnot(mask, p); 1276 1277 /* 1278 * mask contains the bits that really have been cleared. This 1279 * never includes any bits beyond the length of the memslot (if 1280 * the length is not aligned to 64 pages), therefore it is not 1281 * a problem if userspace sets them in log->dirty_bitmap. 1282 */ 1283 if (mask) { 1284 *flush = true; 1285 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1286 offset, mask); 1287 } 1288 } 1289 spin_unlock(&kvm->mmu_lock); 1290 1291 return 0; 1292 } 1293 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1294 #endif 1295 1296 bool kvm_largepages_enabled(void) 1297 { 1298 return largepages_enabled; 1299 } 1300 1301 void kvm_disable_largepages(void) 1302 { 1303 largepages_enabled = false; 1304 } 1305 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1306 1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1308 { 1309 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1310 } 1311 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1312 1313 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1314 { 1315 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1316 } 1317 1318 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1319 { 1320 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1321 1322 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1323 memslot->flags & KVM_MEMSLOT_INVALID) 1324 return false; 1325 1326 return true; 1327 } 1328 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1329 1330 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1331 { 1332 struct vm_area_struct *vma; 1333 unsigned long addr, size; 1334 1335 size = PAGE_SIZE; 1336 1337 addr = gfn_to_hva(kvm, gfn); 1338 if (kvm_is_error_hva(addr)) 1339 return PAGE_SIZE; 1340 1341 down_read(¤t->mm->mmap_sem); 1342 vma = find_vma(current->mm, addr); 1343 if (!vma) 1344 goto out; 1345 1346 size = vma_kernel_pagesize(vma); 1347 1348 out: 1349 up_read(¤t->mm->mmap_sem); 1350 1351 return size; 1352 } 1353 1354 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1355 { 1356 return slot->flags & KVM_MEM_READONLY; 1357 } 1358 1359 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1360 gfn_t *nr_pages, bool write) 1361 { 1362 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1363 return KVM_HVA_ERR_BAD; 1364 1365 if (memslot_is_readonly(slot) && write) 1366 return KVM_HVA_ERR_RO_BAD; 1367 1368 if (nr_pages) 1369 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1370 1371 return __gfn_to_hva_memslot(slot, gfn); 1372 } 1373 1374 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1375 gfn_t *nr_pages) 1376 { 1377 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1378 } 1379 1380 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1381 gfn_t gfn) 1382 { 1383 return gfn_to_hva_many(slot, gfn, NULL); 1384 } 1385 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1386 1387 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1388 { 1389 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1390 } 1391 EXPORT_SYMBOL_GPL(gfn_to_hva); 1392 1393 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1394 { 1395 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1396 } 1397 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1398 1399 /* 1400 * Return the hva of a @gfn and the R/W attribute if possible. 1401 * 1402 * @slot: the kvm_memory_slot which contains @gfn 1403 * @gfn: the gfn to be translated 1404 * @writable: used to return the read/write attribute of the @slot if the hva 1405 * is valid and @writable is not NULL 1406 */ 1407 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1408 gfn_t gfn, bool *writable) 1409 { 1410 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1411 1412 if (!kvm_is_error_hva(hva) && writable) 1413 *writable = !memslot_is_readonly(slot); 1414 1415 return hva; 1416 } 1417 1418 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1419 { 1420 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1421 1422 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1423 } 1424 1425 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1426 { 1427 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1428 1429 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1430 } 1431 1432 static inline int check_user_page_hwpoison(unsigned long addr) 1433 { 1434 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1435 1436 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1437 return rc == -EHWPOISON; 1438 } 1439 1440 /* 1441 * The fast path to get the writable pfn which will be stored in @pfn, 1442 * true indicates success, otherwise false is returned. It's also the 1443 * only part that runs if we can are in atomic context. 1444 */ 1445 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1446 bool *writable, kvm_pfn_t *pfn) 1447 { 1448 struct page *page[1]; 1449 int npages; 1450 1451 /* 1452 * Fast pin a writable pfn only if it is a write fault request 1453 * or the caller allows to map a writable pfn for a read fault 1454 * request. 1455 */ 1456 if (!(write_fault || writable)) 1457 return false; 1458 1459 npages = __get_user_pages_fast(addr, 1, 1, page); 1460 if (npages == 1) { 1461 *pfn = page_to_pfn(page[0]); 1462 1463 if (writable) 1464 *writable = true; 1465 return true; 1466 } 1467 1468 return false; 1469 } 1470 1471 /* 1472 * The slow path to get the pfn of the specified host virtual address, 1473 * 1 indicates success, -errno is returned if error is detected. 1474 */ 1475 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1476 bool *writable, kvm_pfn_t *pfn) 1477 { 1478 unsigned int flags = FOLL_HWPOISON; 1479 struct page *page; 1480 int npages = 0; 1481 1482 might_sleep(); 1483 1484 if (writable) 1485 *writable = write_fault; 1486 1487 if (write_fault) 1488 flags |= FOLL_WRITE; 1489 if (async) 1490 flags |= FOLL_NOWAIT; 1491 1492 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1493 if (npages != 1) 1494 return npages; 1495 1496 /* map read fault as writable if possible */ 1497 if (unlikely(!write_fault) && writable) { 1498 struct page *wpage; 1499 1500 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1501 *writable = true; 1502 put_page(page); 1503 page = wpage; 1504 } 1505 } 1506 *pfn = page_to_pfn(page); 1507 return npages; 1508 } 1509 1510 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1511 { 1512 if (unlikely(!(vma->vm_flags & VM_READ))) 1513 return false; 1514 1515 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1516 return false; 1517 1518 return true; 1519 } 1520 1521 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1522 unsigned long addr, bool *async, 1523 bool write_fault, bool *writable, 1524 kvm_pfn_t *p_pfn) 1525 { 1526 unsigned long pfn; 1527 int r; 1528 1529 r = follow_pfn(vma, addr, &pfn); 1530 if (r) { 1531 /* 1532 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1533 * not call the fault handler, so do it here. 1534 */ 1535 bool unlocked = false; 1536 r = fixup_user_fault(current, current->mm, addr, 1537 (write_fault ? FAULT_FLAG_WRITE : 0), 1538 &unlocked); 1539 if (unlocked) 1540 return -EAGAIN; 1541 if (r) 1542 return r; 1543 1544 r = follow_pfn(vma, addr, &pfn); 1545 if (r) 1546 return r; 1547 1548 } 1549 1550 if (writable) 1551 *writable = true; 1552 1553 /* 1554 * Get a reference here because callers of *hva_to_pfn* and 1555 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1556 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1557 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1558 * simply do nothing for reserved pfns. 1559 * 1560 * Whoever called remap_pfn_range is also going to call e.g. 1561 * unmap_mapping_range before the underlying pages are freed, 1562 * causing a call to our MMU notifier. 1563 */ 1564 kvm_get_pfn(pfn); 1565 1566 *p_pfn = pfn; 1567 return 0; 1568 } 1569 1570 /* 1571 * Pin guest page in memory and return its pfn. 1572 * @addr: host virtual address which maps memory to the guest 1573 * @atomic: whether this function can sleep 1574 * @async: whether this function need to wait IO complete if the 1575 * host page is not in the memory 1576 * @write_fault: whether we should get a writable host page 1577 * @writable: whether it allows to map a writable host page for !@write_fault 1578 * 1579 * The function will map a writable host page for these two cases: 1580 * 1): @write_fault = true 1581 * 2): @write_fault = false && @writable, @writable will tell the caller 1582 * whether the mapping is writable. 1583 */ 1584 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1585 bool write_fault, bool *writable) 1586 { 1587 struct vm_area_struct *vma; 1588 kvm_pfn_t pfn = 0; 1589 int npages, r; 1590 1591 /* we can do it either atomically or asynchronously, not both */ 1592 BUG_ON(atomic && async); 1593 1594 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1595 return pfn; 1596 1597 if (atomic) 1598 return KVM_PFN_ERR_FAULT; 1599 1600 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1601 if (npages == 1) 1602 return pfn; 1603 1604 down_read(¤t->mm->mmap_sem); 1605 if (npages == -EHWPOISON || 1606 (!async && check_user_page_hwpoison(addr))) { 1607 pfn = KVM_PFN_ERR_HWPOISON; 1608 goto exit; 1609 } 1610 1611 retry: 1612 vma = find_vma_intersection(current->mm, addr, addr + 1); 1613 1614 if (vma == NULL) 1615 pfn = KVM_PFN_ERR_FAULT; 1616 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1617 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1618 if (r == -EAGAIN) 1619 goto retry; 1620 if (r < 0) 1621 pfn = KVM_PFN_ERR_FAULT; 1622 } else { 1623 if (async && vma_is_valid(vma, write_fault)) 1624 *async = true; 1625 pfn = KVM_PFN_ERR_FAULT; 1626 } 1627 exit: 1628 up_read(¤t->mm->mmap_sem); 1629 return pfn; 1630 } 1631 1632 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1633 bool atomic, bool *async, bool write_fault, 1634 bool *writable) 1635 { 1636 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1637 1638 if (addr == KVM_HVA_ERR_RO_BAD) { 1639 if (writable) 1640 *writable = false; 1641 return KVM_PFN_ERR_RO_FAULT; 1642 } 1643 1644 if (kvm_is_error_hva(addr)) { 1645 if (writable) 1646 *writable = false; 1647 return KVM_PFN_NOSLOT; 1648 } 1649 1650 /* Do not map writable pfn in the readonly memslot. */ 1651 if (writable && memslot_is_readonly(slot)) { 1652 *writable = false; 1653 writable = NULL; 1654 } 1655 1656 return hva_to_pfn(addr, atomic, async, write_fault, 1657 writable); 1658 } 1659 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1660 1661 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1662 bool *writable) 1663 { 1664 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1665 write_fault, writable); 1666 } 1667 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1668 1669 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1670 { 1671 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1672 } 1673 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1674 1675 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1676 { 1677 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1678 } 1679 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1680 1681 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1682 { 1683 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1684 } 1685 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1686 1687 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1688 { 1689 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1690 } 1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1692 1693 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1694 { 1695 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1696 } 1697 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1698 1699 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1700 { 1701 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1702 } 1703 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1704 1705 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1706 struct page **pages, int nr_pages) 1707 { 1708 unsigned long addr; 1709 gfn_t entry = 0; 1710 1711 addr = gfn_to_hva_many(slot, gfn, &entry); 1712 if (kvm_is_error_hva(addr)) 1713 return -1; 1714 1715 if (entry < nr_pages) 1716 return 0; 1717 1718 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1719 } 1720 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1721 1722 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1723 { 1724 if (is_error_noslot_pfn(pfn)) 1725 return KVM_ERR_PTR_BAD_PAGE; 1726 1727 if (kvm_is_reserved_pfn(pfn)) { 1728 WARN_ON(1); 1729 return KVM_ERR_PTR_BAD_PAGE; 1730 } 1731 1732 return pfn_to_page(pfn); 1733 } 1734 1735 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1736 { 1737 kvm_pfn_t pfn; 1738 1739 pfn = gfn_to_pfn(kvm, gfn); 1740 1741 return kvm_pfn_to_page(pfn); 1742 } 1743 EXPORT_SYMBOL_GPL(gfn_to_page); 1744 1745 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1746 { 1747 kvm_pfn_t pfn; 1748 1749 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1750 1751 return kvm_pfn_to_page(pfn); 1752 } 1753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1754 1755 void kvm_release_page_clean(struct page *page) 1756 { 1757 WARN_ON(is_error_page(page)); 1758 1759 kvm_release_pfn_clean(page_to_pfn(page)); 1760 } 1761 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1762 1763 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1764 { 1765 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1766 put_page(pfn_to_page(pfn)); 1767 } 1768 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1769 1770 void kvm_release_page_dirty(struct page *page) 1771 { 1772 WARN_ON(is_error_page(page)); 1773 1774 kvm_release_pfn_dirty(page_to_pfn(page)); 1775 } 1776 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1777 1778 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1779 { 1780 kvm_set_pfn_dirty(pfn); 1781 kvm_release_pfn_clean(pfn); 1782 } 1783 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1784 1785 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1786 { 1787 if (!kvm_is_reserved_pfn(pfn)) { 1788 struct page *page = pfn_to_page(pfn); 1789 1790 if (!PageReserved(page)) 1791 SetPageDirty(page); 1792 } 1793 } 1794 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1795 1796 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1797 { 1798 if (!kvm_is_reserved_pfn(pfn)) 1799 mark_page_accessed(pfn_to_page(pfn)); 1800 } 1801 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1802 1803 void kvm_get_pfn(kvm_pfn_t pfn) 1804 { 1805 if (!kvm_is_reserved_pfn(pfn)) 1806 get_page(pfn_to_page(pfn)); 1807 } 1808 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1809 1810 static int next_segment(unsigned long len, int offset) 1811 { 1812 if (len > PAGE_SIZE - offset) 1813 return PAGE_SIZE - offset; 1814 else 1815 return len; 1816 } 1817 1818 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1819 void *data, int offset, int len) 1820 { 1821 int r; 1822 unsigned long addr; 1823 1824 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1825 if (kvm_is_error_hva(addr)) 1826 return -EFAULT; 1827 r = __copy_from_user(data, (void __user *)addr + offset, len); 1828 if (r) 1829 return -EFAULT; 1830 return 0; 1831 } 1832 1833 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1834 int len) 1835 { 1836 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1837 1838 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1839 } 1840 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1841 1842 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1843 int offset, int len) 1844 { 1845 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1846 1847 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1848 } 1849 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1850 1851 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1852 { 1853 gfn_t gfn = gpa >> PAGE_SHIFT; 1854 int seg; 1855 int offset = offset_in_page(gpa); 1856 int ret; 1857 1858 while ((seg = next_segment(len, offset)) != 0) { 1859 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1860 if (ret < 0) 1861 return ret; 1862 offset = 0; 1863 len -= seg; 1864 data += seg; 1865 ++gfn; 1866 } 1867 return 0; 1868 } 1869 EXPORT_SYMBOL_GPL(kvm_read_guest); 1870 1871 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1872 { 1873 gfn_t gfn = gpa >> PAGE_SHIFT; 1874 int seg; 1875 int offset = offset_in_page(gpa); 1876 int ret; 1877 1878 while ((seg = next_segment(len, offset)) != 0) { 1879 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1880 if (ret < 0) 1881 return ret; 1882 offset = 0; 1883 len -= seg; 1884 data += seg; 1885 ++gfn; 1886 } 1887 return 0; 1888 } 1889 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1890 1891 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1892 void *data, int offset, unsigned long len) 1893 { 1894 int r; 1895 unsigned long addr; 1896 1897 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1898 if (kvm_is_error_hva(addr)) 1899 return -EFAULT; 1900 pagefault_disable(); 1901 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1902 pagefault_enable(); 1903 if (r) 1904 return -EFAULT; 1905 return 0; 1906 } 1907 1908 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1909 unsigned long len) 1910 { 1911 gfn_t gfn = gpa >> PAGE_SHIFT; 1912 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1913 int offset = offset_in_page(gpa); 1914 1915 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1916 } 1917 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1918 1919 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1920 void *data, unsigned long len) 1921 { 1922 gfn_t gfn = gpa >> PAGE_SHIFT; 1923 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1924 int offset = offset_in_page(gpa); 1925 1926 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1927 } 1928 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1929 1930 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1931 const void *data, int offset, int len) 1932 { 1933 int r; 1934 unsigned long addr; 1935 1936 addr = gfn_to_hva_memslot(memslot, gfn); 1937 if (kvm_is_error_hva(addr)) 1938 return -EFAULT; 1939 r = __copy_to_user((void __user *)addr + offset, data, len); 1940 if (r) 1941 return -EFAULT; 1942 mark_page_dirty_in_slot(memslot, gfn); 1943 return 0; 1944 } 1945 1946 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1947 const void *data, int offset, int len) 1948 { 1949 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1950 1951 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1952 } 1953 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1954 1955 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1956 const void *data, int offset, int len) 1957 { 1958 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1959 1960 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1961 } 1962 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1963 1964 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1965 unsigned long len) 1966 { 1967 gfn_t gfn = gpa >> PAGE_SHIFT; 1968 int seg; 1969 int offset = offset_in_page(gpa); 1970 int ret; 1971 1972 while ((seg = next_segment(len, offset)) != 0) { 1973 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1974 if (ret < 0) 1975 return ret; 1976 offset = 0; 1977 len -= seg; 1978 data += seg; 1979 ++gfn; 1980 } 1981 return 0; 1982 } 1983 EXPORT_SYMBOL_GPL(kvm_write_guest); 1984 1985 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1986 unsigned long len) 1987 { 1988 gfn_t gfn = gpa >> PAGE_SHIFT; 1989 int seg; 1990 int offset = offset_in_page(gpa); 1991 int ret; 1992 1993 while ((seg = next_segment(len, offset)) != 0) { 1994 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1995 if (ret < 0) 1996 return ret; 1997 offset = 0; 1998 len -= seg; 1999 data += seg; 2000 ++gfn; 2001 } 2002 return 0; 2003 } 2004 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2005 2006 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2007 struct gfn_to_hva_cache *ghc, 2008 gpa_t gpa, unsigned long len) 2009 { 2010 int offset = offset_in_page(gpa); 2011 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2012 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2013 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2014 gfn_t nr_pages_avail; 2015 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2016 2017 ghc->gpa = gpa; 2018 ghc->generation = slots->generation; 2019 ghc->len = len; 2020 ghc->hva = KVM_HVA_ERR_BAD; 2021 2022 /* 2023 * If the requested region crosses two memslots, we still 2024 * verify that the entire region is valid here. 2025 */ 2026 while (!r && start_gfn <= end_gfn) { 2027 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2028 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2029 &nr_pages_avail); 2030 if (kvm_is_error_hva(ghc->hva)) 2031 r = -EFAULT; 2032 start_gfn += nr_pages_avail; 2033 } 2034 2035 /* Use the slow path for cross page reads and writes. */ 2036 if (!r && nr_pages_needed == 1) 2037 ghc->hva += offset; 2038 else 2039 ghc->memslot = NULL; 2040 2041 return r; 2042 } 2043 2044 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2045 gpa_t gpa, unsigned long len) 2046 { 2047 struct kvm_memslots *slots = kvm_memslots(kvm); 2048 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2049 } 2050 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2051 2052 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2053 void *data, unsigned int offset, 2054 unsigned long len) 2055 { 2056 struct kvm_memslots *slots = kvm_memslots(kvm); 2057 int r; 2058 gpa_t gpa = ghc->gpa + offset; 2059 2060 BUG_ON(len + offset > ghc->len); 2061 2062 if (slots->generation != ghc->generation) 2063 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2064 2065 if (unlikely(!ghc->memslot)) 2066 return kvm_write_guest(kvm, gpa, data, len); 2067 2068 if (kvm_is_error_hva(ghc->hva)) 2069 return -EFAULT; 2070 2071 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2072 if (r) 2073 return -EFAULT; 2074 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2075 2076 return 0; 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2079 2080 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2081 void *data, unsigned long len) 2082 { 2083 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2084 } 2085 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2086 2087 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2088 void *data, unsigned long len) 2089 { 2090 struct kvm_memslots *slots = kvm_memslots(kvm); 2091 int r; 2092 2093 BUG_ON(len > ghc->len); 2094 2095 if (slots->generation != ghc->generation) 2096 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2097 2098 if (unlikely(!ghc->memslot)) 2099 return kvm_read_guest(kvm, ghc->gpa, data, len); 2100 2101 if (kvm_is_error_hva(ghc->hva)) 2102 return -EFAULT; 2103 2104 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2105 if (r) 2106 return -EFAULT; 2107 2108 return 0; 2109 } 2110 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2111 2112 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2113 { 2114 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2115 2116 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2117 } 2118 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2119 2120 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2121 { 2122 gfn_t gfn = gpa >> PAGE_SHIFT; 2123 int seg; 2124 int offset = offset_in_page(gpa); 2125 int ret; 2126 2127 while ((seg = next_segment(len, offset)) != 0) { 2128 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2129 if (ret < 0) 2130 return ret; 2131 offset = 0; 2132 len -= seg; 2133 ++gfn; 2134 } 2135 return 0; 2136 } 2137 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2138 2139 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2140 gfn_t gfn) 2141 { 2142 if (memslot && memslot->dirty_bitmap) { 2143 unsigned long rel_gfn = gfn - memslot->base_gfn; 2144 2145 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2146 } 2147 } 2148 2149 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2150 { 2151 struct kvm_memory_slot *memslot; 2152 2153 memslot = gfn_to_memslot(kvm, gfn); 2154 mark_page_dirty_in_slot(memslot, gfn); 2155 } 2156 EXPORT_SYMBOL_GPL(mark_page_dirty); 2157 2158 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2159 { 2160 struct kvm_memory_slot *memslot; 2161 2162 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2163 mark_page_dirty_in_slot(memslot, gfn); 2164 } 2165 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2166 2167 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2168 { 2169 if (!vcpu->sigset_active) 2170 return; 2171 2172 /* 2173 * This does a lockless modification of ->real_blocked, which is fine 2174 * because, only current can change ->real_blocked and all readers of 2175 * ->real_blocked don't care as long ->real_blocked is always a subset 2176 * of ->blocked. 2177 */ 2178 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2179 } 2180 2181 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2182 { 2183 if (!vcpu->sigset_active) 2184 return; 2185 2186 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2187 sigemptyset(¤t->real_blocked); 2188 } 2189 2190 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2191 { 2192 unsigned int old, val, grow; 2193 2194 old = val = vcpu->halt_poll_ns; 2195 grow = READ_ONCE(halt_poll_ns_grow); 2196 /* 10us base */ 2197 if (val == 0 && grow) 2198 val = 10000; 2199 else 2200 val *= grow; 2201 2202 if (val > halt_poll_ns) 2203 val = halt_poll_ns; 2204 2205 vcpu->halt_poll_ns = val; 2206 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2207 } 2208 2209 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2210 { 2211 unsigned int old, val, shrink; 2212 2213 old = val = vcpu->halt_poll_ns; 2214 shrink = READ_ONCE(halt_poll_ns_shrink); 2215 if (shrink == 0) 2216 val = 0; 2217 else 2218 val /= shrink; 2219 2220 vcpu->halt_poll_ns = val; 2221 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2222 } 2223 2224 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2225 { 2226 int ret = -EINTR; 2227 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2228 2229 if (kvm_arch_vcpu_runnable(vcpu)) { 2230 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2231 goto out; 2232 } 2233 if (kvm_cpu_has_pending_timer(vcpu)) 2234 goto out; 2235 if (signal_pending(current)) 2236 goto out; 2237 2238 ret = 0; 2239 out: 2240 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2241 return ret; 2242 } 2243 2244 /* 2245 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2246 */ 2247 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2248 { 2249 ktime_t start, cur; 2250 DECLARE_SWAITQUEUE(wait); 2251 bool waited = false; 2252 u64 block_ns; 2253 2254 start = cur = ktime_get(); 2255 if (vcpu->halt_poll_ns) { 2256 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2257 2258 ++vcpu->stat.halt_attempted_poll; 2259 do { 2260 /* 2261 * This sets KVM_REQ_UNHALT if an interrupt 2262 * arrives. 2263 */ 2264 if (kvm_vcpu_check_block(vcpu) < 0) { 2265 ++vcpu->stat.halt_successful_poll; 2266 if (!vcpu_valid_wakeup(vcpu)) 2267 ++vcpu->stat.halt_poll_invalid; 2268 goto out; 2269 } 2270 cur = ktime_get(); 2271 } while (single_task_running() && ktime_before(cur, stop)); 2272 } 2273 2274 kvm_arch_vcpu_blocking(vcpu); 2275 2276 for (;;) { 2277 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2278 2279 if (kvm_vcpu_check_block(vcpu) < 0) 2280 break; 2281 2282 waited = true; 2283 schedule(); 2284 } 2285 2286 finish_swait(&vcpu->wq, &wait); 2287 cur = ktime_get(); 2288 2289 kvm_arch_vcpu_unblocking(vcpu); 2290 out: 2291 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2292 2293 if (!vcpu_valid_wakeup(vcpu)) 2294 shrink_halt_poll_ns(vcpu); 2295 else if (halt_poll_ns) { 2296 if (block_ns <= vcpu->halt_poll_ns) 2297 ; 2298 /* we had a long block, shrink polling */ 2299 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2300 shrink_halt_poll_ns(vcpu); 2301 /* we had a short halt and our poll time is too small */ 2302 else if (vcpu->halt_poll_ns < halt_poll_ns && 2303 block_ns < halt_poll_ns) 2304 grow_halt_poll_ns(vcpu); 2305 } else 2306 vcpu->halt_poll_ns = 0; 2307 2308 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2309 kvm_arch_vcpu_block_finish(vcpu); 2310 } 2311 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2312 2313 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2314 { 2315 struct swait_queue_head *wqp; 2316 2317 wqp = kvm_arch_vcpu_wq(vcpu); 2318 if (swq_has_sleeper(wqp)) { 2319 swake_up_one(wqp); 2320 ++vcpu->stat.halt_wakeup; 2321 return true; 2322 } 2323 2324 return false; 2325 } 2326 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2327 2328 #ifndef CONFIG_S390 2329 /* 2330 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2331 */ 2332 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2333 { 2334 int me; 2335 int cpu = vcpu->cpu; 2336 2337 if (kvm_vcpu_wake_up(vcpu)) 2338 return; 2339 2340 me = get_cpu(); 2341 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2342 if (kvm_arch_vcpu_should_kick(vcpu)) 2343 smp_send_reschedule(cpu); 2344 put_cpu(); 2345 } 2346 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2347 #endif /* !CONFIG_S390 */ 2348 2349 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2350 { 2351 struct pid *pid; 2352 struct task_struct *task = NULL; 2353 int ret = 0; 2354 2355 rcu_read_lock(); 2356 pid = rcu_dereference(target->pid); 2357 if (pid) 2358 task = get_pid_task(pid, PIDTYPE_PID); 2359 rcu_read_unlock(); 2360 if (!task) 2361 return ret; 2362 ret = yield_to(task, 1); 2363 put_task_struct(task); 2364 2365 return ret; 2366 } 2367 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2368 2369 /* 2370 * Helper that checks whether a VCPU is eligible for directed yield. 2371 * Most eligible candidate to yield is decided by following heuristics: 2372 * 2373 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2374 * (preempted lock holder), indicated by @in_spin_loop. 2375 * Set at the beiginning and cleared at the end of interception/PLE handler. 2376 * 2377 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2378 * chance last time (mostly it has become eligible now since we have probably 2379 * yielded to lockholder in last iteration. This is done by toggling 2380 * @dy_eligible each time a VCPU checked for eligibility.) 2381 * 2382 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2383 * to preempted lock-holder could result in wrong VCPU selection and CPU 2384 * burning. Giving priority for a potential lock-holder increases lock 2385 * progress. 2386 * 2387 * Since algorithm is based on heuristics, accessing another VCPU data without 2388 * locking does not harm. It may result in trying to yield to same VCPU, fail 2389 * and continue with next VCPU and so on. 2390 */ 2391 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2392 { 2393 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2394 bool eligible; 2395 2396 eligible = !vcpu->spin_loop.in_spin_loop || 2397 vcpu->spin_loop.dy_eligible; 2398 2399 if (vcpu->spin_loop.in_spin_loop) 2400 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2401 2402 return eligible; 2403 #else 2404 return true; 2405 #endif 2406 } 2407 2408 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2409 { 2410 struct kvm *kvm = me->kvm; 2411 struct kvm_vcpu *vcpu; 2412 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2413 int yielded = 0; 2414 int try = 3; 2415 int pass; 2416 int i; 2417 2418 kvm_vcpu_set_in_spin_loop(me, true); 2419 /* 2420 * We boost the priority of a VCPU that is runnable but not 2421 * currently running, because it got preempted by something 2422 * else and called schedule in __vcpu_run. Hopefully that 2423 * VCPU is holding the lock that we need and will release it. 2424 * We approximate round-robin by starting at the last boosted VCPU. 2425 */ 2426 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2427 kvm_for_each_vcpu(i, vcpu, kvm) { 2428 if (!pass && i <= last_boosted_vcpu) { 2429 i = last_boosted_vcpu; 2430 continue; 2431 } else if (pass && i > last_boosted_vcpu) 2432 break; 2433 if (!READ_ONCE(vcpu->preempted)) 2434 continue; 2435 if (vcpu == me) 2436 continue; 2437 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2438 continue; 2439 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2440 continue; 2441 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2442 continue; 2443 2444 yielded = kvm_vcpu_yield_to(vcpu); 2445 if (yielded > 0) { 2446 kvm->last_boosted_vcpu = i; 2447 break; 2448 } else if (yielded < 0) { 2449 try--; 2450 if (!try) 2451 break; 2452 } 2453 } 2454 } 2455 kvm_vcpu_set_in_spin_loop(me, false); 2456 2457 /* Ensure vcpu is not eligible during next spinloop */ 2458 kvm_vcpu_set_dy_eligible(me, false); 2459 } 2460 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2461 2462 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2463 { 2464 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2465 struct page *page; 2466 2467 if (vmf->pgoff == 0) 2468 page = virt_to_page(vcpu->run); 2469 #ifdef CONFIG_X86 2470 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2471 page = virt_to_page(vcpu->arch.pio_data); 2472 #endif 2473 #ifdef CONFIG_KVM_MMIO 2474 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2475 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2476 #endif 2477 else 2478 return kvm_arch_vcpu_fault(vcpu, vmf); 2479 get_page(page); 2480 vmf->page = page; 2481 return 0; 2482 } 2483 2484 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2485 .fault = kvm_vcpu_fault, 2486 }; 2487 2488 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2489 { 2490 vma->vm_ops = &kvm_vcpu_vm_ops; 2491 return 0; 2492 } 2493 2494 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2495 { 2496 struct kvm_vcpu *vcpu = filp->private_data; 2497 2498 debugfs_remove_recursive(vcpu->debugfs_dentry); 2499 kvm_put_kvm(vcpu->kvm); 2500 return 0; 2501 } 2502 2503 static struct file_operations kvm_vcpu_fops = { 2504 .release = kvm_vcpu_release, 2505 .unlocked_ioctl = kvm_vcpu_ioctl, 2506 .mmap = kvm_vcpu_mmap, 2507 .llseek = noop_llseek, 2508 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2509 }; 2510 2511 /* 2512 * Allocates an inode for the vcpu. 2513 */ 2514 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2515 { 2516 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2517 2518 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2519 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2520 } 2521 2522 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2523 { 2524 char dir_name[ITOA_MAX_LEN * 2]; 2525 int ret; 2526 2527 if (!kvm_arch_has_vcpu_debugfs()) 2528 return 0; 2529 2530 if (!debugfs_initialized()) 2531 return 0; 2532 2533 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2534 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2535 vcpu->kvm->debugfs_dentry); 2536 if (!vcpu->debugfs_dentry) 2537 return -ENOMEM; 2538 2539 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2540 if (ret < 0) { 2541 debugfs_remove_recursive(vcpu->debugfs_dentry); 2542 return ret; 2543 } 2544 2545 return 0; 2546 } 2547 2548 /* 2549 * Creates some virtual cpus. Good luck creating more than one. 2550 */ 2551 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2552 { 2553 int r; 2554 struct kvm_vcpu *vcpu; 2555 2556 if (id >= KVM_MAX_VCPU_ID) 2557 return -EINVAL; 2558 2559 mutex_lock(&kvm->lock); 2560 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2561 mutex_unlock(&kvm->lock); 2562 return -EINVAL; 2563 } 2564 2565 kvm->created_vcpus++; 2566 mutex_unlock(&kvm->lock); 2567 2568 vcpu = kvm_arch_vcpu_create(kvm, id); 2569 if (IS_ERR(vcpu)) { 2570 r = PTR_ERR(vcpu); 2571 goto vcpu_decrement; 2572 } 2573 2574 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2575 2576 r = kvm_arch_vcpu_setup(vcpu); 2577 if (r) 2578 goto vcpu_destroy; 2579 2580 r = kvm_create_vcpu_debugfs(vcpu); 2581 if (r) 2582 goto vcpu_destroy; 2583 2584 mutex_lock(&kvm->lock); 2585 if (kvm_get_vcpu_by_id(kvm, id)) { 2586 r = -EEXIST; 2587 goto unlock_vcpu_destroy; 2588 } 2589 2590 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2591 2592 /* Now it's all set up, let userspace reach it */ 2593 kvm_get_kvm(kvm); 2594 r = create_vcpu_fd(vcpu); 2595 if (r < 0) { 2596 kvm_put_kvm(kvm); 2597 goto unlock_vcpu_destroy; 2598 } 2599 2600 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2601 2602 /* 2603 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2604 * before kvm->online_vcpu's incremented value. 2605 */ 2606 smp_wmb(); 2607 atomic_inc(&kvm->online_vcpus); 2608 2609 mutex_unlock(&kvm->lock); 2610 kvm_arch_vcpu_postcreate(vcpu); 2611 return r; 2612 2613 unlock_vcpu_destroy: 2614 mutex_unlock(&kvm->lock); 2615 debugfs_remove_recursive(vcpu->debugfs_dentry); 2616 vcpu_destroy: 2617 kvm_arch_vcpu_destroy(vcpu); 2618 vcpu_decrement: 2619 mutex_lock(&kvm->lock); 2620 kvm->created_vcpus--; 2621 mutex_unlock(&kvm->lock); 2622 return r; 2623 } 2624 2625 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2626 { 2627 if (sigset) { 2628 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2629 vcpu->sigset_active = 1; 2630 vcpu->sigset = *sigset; 2631 } else 2632 vcpu->sigset_active = 0; 2633 return 0; 2634 } 2635 2636 static long kvm_vcpu_ioctl(struct file *filp, 2637 unsigned int ioctl, unsigned long arg) 2638 { 2639 struct kvm_vcpu *vcpu = filp->private_data; 2640 void __user *argp = (void __user *)arg; 2641 int r; 2642 struct kvm_fpu *fpu = NULL; 2643 struct kvm_sregs *kvm_sregs = NULL; 2644 2645 if (vcpu->kvm->mm != current->mm) 2646 return -EIO; 2647 2648 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2649 return -EINVAL; 2650 2651 /* 2652 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2653 * execution; mutex_lock() would break them. 2654 */ 2655 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2656 if (r != -ENOIOCTLCMD) 2657 return r; 2658 2659 if (mutex_lock_killable(&vcpu->mutex)) 2660 return -EINTR; 2661 switch (ioctl) { 2662 case KVM_RUN: { 2663 struct pid *oldpid; 2664 r = -EINVAL; 2665 if (arg) 2666 goto out; 2667 oldpid = rcu_access_pointer(vcpu->pid); 2668 if (unlikely(oldpid != task_pid(current))) { 2669 /* The thread running this VCPU changed. */ 2670 struct pid *newpid; 2671 2672 r = kvm_arch_vcpu_run_pid_change(vcpu); 2673 if (r) 2674 break; 2675 2676 newpid = get_task_pid(current, PIDTYPE_PID); 2677 rcu_assign_pointer(vcpu->pid, newpid); 2678 if (oldpid) 2679 synchronize_rcu(); 2680 put_pid(oldpid); 2681 } 2682 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2683 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2684 break; 2685 } 2686 case KVM_GET_REGS: { 2687 struct kvm_regs *kvm_regs; 2688 2689 r = -ENOMEM; 2690 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2691 if (!kvm_regs) 2692 goto out; 2693 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2694 if (r) 2695 goto out_free1; 2696 r = -EFAULT; 2697 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2698 goto out_free1; 2699 r = 0; 2700 out_free1: 2701 kfree(kvm_regs); 2702 break; 2703 } 2704 case KVM_SET_REGS: { 2705 struct kvm_regs *kvm_regs; 2706 2707 r = -ENOMEM; 2708 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2709 if (IS_ERR(kvm_regs)) { 2710 r = PTR_ERR(kvm_regs); 2711 goto out; 2712 } 2713 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2714 kfree(kvm_regs); 2715 break; 2716 } 2717 case KVM_GET_SREGS: { 2718 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2719 r = -ENOMEM; 2720 if (!kvm_sregs) 2721 goto out; 2722 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2723 if (r) 2724 goto out; 2725 r = -EFAULT; 2726 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2727 goto out; 2728 r = 0; 2729 break; 2730 } 2731 case KVM_SET_SREGS: { 2732 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2733 if (IS_ERR(kvm_sregs)) { 2734 r = PTR_ERR(kvm_sregs); 2735 kvm_sregs = NULL; 2736 goto out; 2737 } 2738 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2739 break; 2740 } 2741 case KVM_GET_MP_STATE: { 2742 struct kvm_mp_state mp_state; 2743 2744 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2745 if (r) 2746 goto out; 2747 r = -EFAULT; 2748 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2749 goto out; 2750 r = 0; 2751 break; 2752 } 2753 case KVM_SET_MP_STATE: { 2754 struct kvm_mp_state mp_state; 2755 2756 r = -EFAULT; 2757 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2758 goto out; 2759 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2760 break; 2761 } 2762 case KVM_TRANSLATE: { 2763 struct kvm_translation tr; 2764 2765 r = -EFAULT; 2766 if (copy_from_user(&tr, argp, sizeof(tr))) 2767 goto out; 2768 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2769 if (r) 2770 goto out; 2771 r = -EFAULT; 2772 if (copy_to_user(argp, &tr, sizeof(tr))) 2773 goto out; 2774 r = 0; 2775 break; 2776 } 2777 case KVM_SET_GUEST_DEBUG: { 2778 struct kvm_guest_debug dbg; 2779 2780 r = -EFAULT; 2781 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2782 goto out; 2783 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2784 break; 2785 } 2786 case KVM_SET_SIGNAL_MASK: { 2787 struct kvm_signal_mask __user *sigmask_arg = argp; 2788 struct kvm_signal_mask kvm_sigmask; 2789 sigset_t sigset, *p; 2790 2791 p = NULL; 2792 if (argp) { 2793 r = -EFAULT; 2794 if (copy_from_user(&kvm_sigmask, argp, 2795 sizeof(kvm_sigmask))) 2796 goto out; 2797 r = -EINVAL; 2798 if (kvm_sigmask.len != sizeof(sigset)) 2799 goto out; 2800 r = -EFAULT; 2801 if (copy_from_user(&sigset, sigmask_arg->sigset, 2802 sizeof(sigset))) 2803 goto out; 2804 p = &sigset; 2805 } 2806 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2807 break; 2808 } 2809 case KVM_GET_FPU: { 2810 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2811 r = -ENOMEM; 2812 if (!fpu) 2813 goto out; 2814 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2815 if (r) 2816 goto out; 2817 r = -EFAULT; 2818 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2819 goto out; 2820 r = 0; 2821 break; 2822 } 2823 case KVM_SET_FPU: { 2824 fpu = memdup_user(argp, sizeof(*fpu)); 2825 if (IS_ERR(fpu)) { 2826 r = PTR_ERR(fpu); 2827 fpu = NULL; 2828 goto out; 2829 } 2830 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2831 break; 2832 } 2833 default: 2834 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2835 } 2836 out: 2837 mutex_unlock(&vcpu->mutex); 2838 kfree(fpu); 2839 kfree(kvm_sregs); 2840 return r; 2841 } 2842 2843 #ifdef CONFIG_KVM_COMPAT 2844 static long kvm_vcpu_compat_ioctl(struct file *filp, 2845 unsigned int ioctl, unsigned long arg) 2846 { 2847 struct kvm_vcpu *vcpu = filp->private_data; 2848 void __user *argp = compat_ptr(arg); 2849 int r; 2850 2851 if (vcpu->kvm->mm != current->mm) 2852 return -EIO; 2853 2854 switch (ioctl) { 2855 case KVM_SET_SIGNAL_MASK: { 2856 struct kvm_signal_mask __user *sigmask_arg = argp; 2857 struct kvm_signal_mask kvm_sigmask; 2858 sigset_t sigset; 2859 2860 if (argp) { 2861 r = -EFAULT; 2862 if (copy_from_user(&kvm_sigmask, argp, 2863 sizeof(kvm_sigmask))) 2864 goto out; 2865 r = -EINVAL; 2866 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2867 goto out; 2868 r = -EFAULT; 2869 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2870 goto out; 2871 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2872 } else 2873 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2874 break; 2875 } 2876 default: 2877 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2878 } 2879 2880 out: 2881 return r; 2882 } 2883 #endif 2884 2885 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2886 int (*accessor)(struct kvm_device *dev, 2887 struct kvm_device_attr *attr), 2888 unsigned long arg) 2889 { 2890 struct kvm_device_attr attr; 2891 2892 if (!accessor) 2893 return -EPERM; 2894 2895 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2896 return -EFAULT; 2897 2898 return accessor(dev, &attr); 2899 } 2900 2901 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2902 unsigned long arg) 2903 { 2904 struct kvm_device *dev = filp->private_data; 2905 2906 if (dev->kvm->mm != current->mm) 2907 return -EIO; 2908 2909 switch (ioctl) { 2910 case KVM_SET_DEVICE_ATTR: 2911 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2912 case KVM_GET_DEVICE_ATTR: 2913 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2914 case KVM_HAS_DEVICE_ATTR: 2915 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2916 default: 2917 if (dev->ops->ioctl) 2918 return dev->ops->ioctl(dev, ioctl, arg); 2919 2920 return -ENOTTY; 2921 } 2922 } 2923 2924 static int kvm_device_release(struct inode *inode, struct file *filp) 2925 { 2926 struct kvm_device *dev = filp->private_data; 2927 struct kvm *kvm = dev->kvm; 2928 2929 kvm_put_kvm(kvm); 2930 return 0; 2931 } 2932 2933 static const struct file_operations kvm_device_fops = { 2934 .unlocked_ioctl = kvm_device_ioctl, 2935 .release = kvm_device_release, 2936 KVM_COMPAT(kvm_device_ioctl), 2937 }; 2938 2939 struct kvm_device *kvm_device_from_filp(struct file *filp) 2940 { 2941 if (filp->f_op != &kvm_device_fops) 2942 return NULL; 2943 2944 return filp->private_data; 2945 } 2946 2947 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2948 #ifdef CONFIG_KVM_MPIC 2949 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2950 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2951 #endif 2952 }; 2953 2954 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2955 { 2956 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2957 return -ENOSPC; 2958 2959 if (kvm_device_ops_table[type] != NULL) 2960 return -EEXIST; 2961 2962 kvm_device_ops_table[type] = ops; 2963 return 0; 2964 } 2965 2966 void kvm_unregister_device_ops(u32 type) 2967 { 2968 if (kvm_device_ops_table[type] != NULL) 2969 kvm_device_ops_table[type] = NULL; 2970 } 2971 2972 static int kvm_ioctl_create_device(struct kvm *kvm, 2973 struct kvm_create_device *cd) 2974 { 2975 struct kvm_device_ops *ops = NULL; 2976 struct kvm_device *dev; 2977 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2978 int type; 2979 int ret; 2980 2981 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2982 return -ENODEV; 2983 2984 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 2985 ops = kvm_device_ops_table[type]; 2986 if (ops == NULL) 2987 return -ENODEV; 2988 2989 if (test) 2990 return 0; 2991 2992 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2993 if (!dev) 2994 return -ENOMEM; 2995 2996 dev->ops = ops; 2997 dev->kvm = kvm; 2998 2999 mutex_lock(&kvm->lock); 3000 ret = ops->create(dev, type); 3001 if (ret < 0) { 3002 mutex_unlock(&kvm->lock); 3003 kfree(dev); 3004 return ret; 3005 } 3006 list_add(&dev->vm_node, &kvm->devices); 3007 mutex_unlock(&kvm->lock); 3008 3009 if (ops->init) 3010 ops->init(dev); 3011 3012 kvm_get_kvm(kvm); 3013 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3014 if (ret < 0) { 3015 kvm_put_kvm(kvm); 3016 mutex_lock(&kvm->lock); 3017 list_del(&dev->vm_node); 3018 mutex_unlock(&kvm->lock); 3019 ops->destroy(dev); 3020 return ret; 3021 } 3022 3023 cd->fd = ret; 3024 return 0; 3025 } 3026 3027 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3028 { 3029 switch (arg) { 3030 case KVM_CAP_USER_MEMORY: 3031 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3032 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3033 case KVM_CAP_INTERNAL_ERROR_DATA: 3034 #ifdef CONFIG_HAVE_KVM_MSI 3035 case KVM_CAP_SIGNAL_MSI: 3036 #endif 3037 #ifdef CONFIG_HAVE_KVM_IRQFD 3038 case KVM_CAP_IRQFD: 3039 case KVM_CAP_IRQFD_RESAMPLE: 3040 #endif 3041 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3042 case KVM_CAP_CHECK_EXTENSION_VM: 3043 case KVM_CAP_ENABLE_CAP_VM: 3044 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3045 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3046 #endif 3047 return 1; 3048 #ifdef CONFIG_KVM_MMIO 3049 case KVM_CAP_COALESCED_MMIO: 3050 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3051 case KVM_CAP_COALESCED_PIO: 3052 return 1; 3053 #endif 3054 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3055 case KVM_CAP_IRQ_ROUTING: 3056 return KVM_MAX_IRQ_ROUTES; 3057 #endif 3058 #if KVM_ADDRESS_SPACE_NUM > 1 3059 case KVM_CAP_MULTI_ADDRESS_SPACE: 3060 return KVM_ADDRESS_SPACE_NUM; 3061 #endif 3062 case KVM_CAP_MAX_VCPU_ID: 3063 return KVM_MAX_VCPU_ID; 3064 default: 3065 break; 3066 } 3067 return kvm_vm_ioctl_check_extension(kvm, arg); 3068 } 3069 3070 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3071 struct kvm_enable_cap *cap) 3072 { 3073 return -EINVAL; 3074 } 3075 3076 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3077 struct kvm_enable_cap *cap) 3078 { 3079 switch (cap->cap) { 3080 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3081 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3082 if (cap->flags || (cap->args[0] & ~1)) 3083 return -EINVAL; 3084 kvm->manual_dirty_log_protect = cap->args[0]; 3085 return 0; 3086 #endif 3087 default: 3088 return kvm_vm_ioctl_enable_cap(kvm, cap); 3089 } 3090 } 3091 3092 static long kvm_vm_ioctl(struct file *filp, 3093 unsigned int ioctl, unsigned long arg) 3094 { 3095 struct kvm *kvm = filp->private_data; 3096 void __user *argp = (void __user *)arg; 3097 int r; 3098 3099 if (kvm->mm != current->mm) 3100 return -EIO; 3101 switch (ioctl) { 3102 case KVM_CREATE_VCPU: 3103 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3104 break; 3105 case KVM_ENABLE_CAP: { 3106 struct kvm_enable_cap cap; 3107 3108 r = -EFAULT; 3109 if (copy_from_user(&cap, argp, sizeof(cap))) 3110 goto out; 3111 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3112 break; 3113 } 3114 case KVM_SET_USER_MEMORY_REGION: { 3115 struct kvm_userspace_memory_region kvm_userspace_mem; 3116 3117 r = -EFAULT; 3118 if (copy_from_user(&kvm_userspace_mem, argp, 3119 sizeof(kvm_userspace_mem))) 3120 goto out; 3121 3122 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3123 break; 3124 } 3125 case KVM_GET_DIRTY_LOG: { 3126 struct kvm_dirty_log log; 3127 3128 r = -EFAULT; 3129 if (copy_from_user(&log, argp, sizeof(log))) 3130 goto out; 3131 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3132 break; 3133 } 3134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3135 case KVM_CLEAR_DIRTY_LOG: { 3136 struct kvm_clear_dirty_log log; 3137 3138 r = -EFAULT; 3139 if (copy_from_user(&log, argp, sizeof(log))) 3140 goto out; 3141 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3142 break; 3143 } 3144 #endif 3145 #ifdef CONFIG_KVM_MMIO 3146 case KVM_REGISTER_COALESCED_MMIO: { 3147 struct kvm_coalesced_mmio_zone zone; 3148 3149 r = -EFAULT; 3150 if (copy_from_user(&zone, argp, sizeof(zone))) 3151 goto out; 3152 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3153 break; 3154 } 3155 case KVM_UNREGISTER_COALESCED_MMIO: { 3156 struct kvm_coalesced_mmio_zone zone; 3157 3158 r = -EFAULT; 3159 if (copy_from_user(&zone, argp, sizeof(zone))) 3160 goto out; 3161 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3162 break; 3163 } 3164 #endif 3165 case KVM_IRQFD: { 3166 struct kvm_irqfd data; 3167 3168 r = -EFAULT; 3169 if (copy_from_user(&data, argp, sizeof(data))) 3170 goto out; 3171 r = kvm_irqfd(kvm, &data); 3172 break; 3173 } 3174 case KVM_IOEVENTFD: { 3175 struct kvm_ioeventfd data; 3176 3177 r = -EFAULT; 3178 if (copy_from_user(&data, argp, sizeof(data))) 3179 goto out; 3180 r = kvm_ioeventfd(kvm, &data); 3181 break; 3182 } 3183 #ifdef CONFIG_HAVE_KVM_MSI 3184 case KVM_SIGNAL_MSI: { 3185 struct kvm_msi msi; 3186 3187 r = -EFAULT; 3188 if (copy_from_user(&msi, argp, sizeof(msi))) 3189 goto out; 3190 r = kvm_send_userspace_msi(kvm, &msi); 3191 break; 3192 } 3193 #endif 3194 #ifdef __KVM_HAVE_IRQ_LINE 3195 case KVM_IRQ_LINE_STATUS: 3196 case KVM_IRQ_LINE: { 3197 struct kvm_irq_level irq_event; 3198 3199 r = -EFAULT; 3200 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3201 goto out; 3202 3203 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3204 ioctl == KVM_IRQ_LINE_STATUS); 3205 if (r) 3206 goto out; 3207 3208 r = -EFAULT; 3209 if (ioctl == KVM_IRQ_LINE_STATUS) { 3210 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3211 goto out; 3212 } 3213 3214 r = 0; 3215 break; 3216 } 3217 #endif 3218 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3219 case KVM_SET_GSI_ROUTING: { 3220 struct kvm_irq_routing routing; 3221 struct kvm_irq_routing __user *urouting; 3222 struct kvm_irq_routing_entry *entries = NULL; 3223 3224 r = -EFAULT; 3225 if (copy_from_user(&routing, argp, sizeof(routing))) 3226 goto out; 3227 r = -EINVAL; 3228 if (!kvm_arch_can_set_irq_routing(kvm)) 3229 goto out; 3230 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3231 goto out; 3232 if (routing.flags) 3233 goto out; 3234 if (routing.nr) { 3235 r = -ENOMEM; 3236 entries = vmalloc(array_size(sizeof(*entries), 3237 routing.nr)); 3238 if (!entries) 3239 goto out; 3240 r = -EFAULT; 3241 urouting = argp; 3242 if (copy_from_user(entries, urouting->entries, 3243 routing.nr * sizeof(*entries))) 3244 goto out_free_irq_routing; 3245 } 3246 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3247 routing.flags); 3248 out_free_irq_routing: 3249 vfree(entries); 3250 break; 3251 } 3252 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3253 case KVM_CREATE_DEVICE: { 3254 struct kvm_create_device cd; 3255 3256 r = -EFAULT; 3257 if (copy_from_user(&cd, argp, sizeof(cd))) 3258 goto out; 3259 3260 r = kvm_ioctl_create_device(kvm, &cd); 3261 if (r) 3262 goto out; 3263 3264 r = -EFAULT; 3265 if (copy_to_user(argp, &cd, sizeof(cd))) 3266 goto out; 3267 3268 r = 0; 3269 break; 3270 } 3271 case KVM_CHECK_EXTENSION: 3272 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3273 break; 3274 default: 3275 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3276 } 3277 out: 3278 return r; 3279 } 3280 3281 #ifdef CONFIG_KVM_COMPAT 3282 struct compat_kvm_dirty_log { 3283 __u32 slot; 3284 __u32 padding1; 3285 union { 3286 compat_uptr_t dirty_bitmap; /* one bit per page */ 3287 __u64 padding2; 3288 }; 3289 }; 3290 3291 static long kvm_vm_compat_ioctl(struct file *filp, 3292 unsigned int ioctl, unsigned long arg) 3293 { 3294 struct kvm *kvm = filp->private_data; 3295 int r; 3296 3297 if (kvm->mm != current->mm) 3298 return -EIO; 3299 switch (ioctl) { 3300 case KVM_GET_DIRTY_LOG: { 3301 struct compat_kvm_dirty_log compat_log; 3302 struct kvm_dirty_log log; 3303 3304 if (copy_from_user(&compat_log, (void __user *)arg, 3305 sizeof(compat_log))) 3306 return -EFAULT; 3307 log.slot = compat_log.slot; 3308 log.padding1 = compat_log.padding1; 3309 log.padding2 = compat_log.padding2; 3310 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3311 3312 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3313 break; 3314 } 3315 default: 3316 r = kvm_vm_ioctl(filp, ioctl, arg); 3317 } 3318 return r; 3319 } 3320 #endif 3321 3322 static struct file_operations kvm_vm_fops = { 3323 .release = kvm_vm_release, 3324 .unlocked_ioctl = kvm_vm_ioctl, 3325 .llseek = noop_llseek, 3326 KVM_COMPAT(kvm_vm_compat_ioctl), 3327 }; 3328 3329 static int kvm_dev_ioctl_create_vm(unsigned long type) 3330 { 3331 int r; 3332 struct kvm *kvm; 3333 struct file *file; 3334 3335 kvm = kvm_create_vm(type); 3336 if (IS_ERR(kvm)) 3337 return PTR_ERR(kvm); 3338 #ifdef CONFIG_KVM_MMIO 3339 r = kvm_coalesced_mmio_init(kvm); 3340 if (r < 0) 3341 goto put_kvm; 3342 #endif 3343 r = get_unused_fd_flags(O_CLOEXEC); 3344 if (r < 0) 3345 goto put_kvm; 3346 3347 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3348 if (IS_ERR(file)) { 3349 put_unused_fd(r); 3350 r = PTR_ERR(file); 3351 goto put_kvm; 3352 } 3353 3354 /* 3355 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3356 * already set, with ->release() being kvm_vm_release(). In error 3357 * cases it will be called by the final fput(file) and will take 3358 * care of doing kvm_put_kvm(kvm). 3359 */ 3360 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3361 put_unused_fd(r); 3362 fput(file); 3363 return -ENOMEM; 3364 } 3365 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3366 3367 fd_install(r, file); 3368 return r; 3369 3370 put_kvm: 3371 kvm_put_kvm(kvm); 3372 return r; 3373 } 3374 3375 static long kvm_dev_ioctl(struct file *filp, 3376 unsigned int ioctl, unsigned long arg) 3377 { 3378 long r = -EINVAL; 3379 3380 switch (ioctl) { 3381 case KVM_GET_API_VERSION: 3382 if (arg) 3383 goto out; 3384 r = KVM_API_VERSION; 3385 break; 3386 case KVM_CREATE_VM: 3387 r = kvm_dev_ioctl_create_vm(arg); 3388 break; 3389 case KVM_CHECK_EXTENSION: 3390 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3391 break; 3392 case KVM_GET_VCPU_MMAP_SIZE: 3393 if (arg) 3394 goto out; 3395 r = PAGE_SIZE; /* struct kvm_run */ 3396 #ifdef CONFIG_X86 3397 r += PAGE_SIZE; /* pio data page */ 3398 #endif 3399 #ifdef CONFIG_KVM_MMIO 3400 r += PAGE_SIZE; /* coalesced mmio ring page */ 3401 #endif 3402 break; 3403 case KVM_TRACE_ENABLE: 3404 case KVM_TRACE_PAUSE: 3405 case KVM_TRACE_DISABLE: 3406 r = -EOPNOTSUPP; 3407 break; 3408 default: 3409 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3410 } 3411 out: 3412 return r; 3413 } 3414 3415 static struct file_operations kvm_chardev_ops = { 3416 .unlocked_ioctl = kvm_dev_ioctl, 3417 .llseek = noop_llseek, 3418 KVM_COMPAT(kvm_dev_ioctl), 3419 }; 3420 3421 static struct miscdevice kvm_dev = { 3422 KVM_MINOR, 3423 "kvm", 3424 &kvm_chardev_ops, 3425 }; 3426 3427 static void hardware_enable_nolock(void *junk) 3428 { 3429 int cpu = raw_smp_processor_id(); 3430 int r; 3431 3432 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3433 return; 3434 3435 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3436 3437 r = kvm_arch_hardware_enable(); 3438 3439 if (r) { 3440 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3441 atomic_inc(&hardware_enable_failed); 3442 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3443 } 3444 } 3445 3446 static int kvm_starting_cpu(unsigned int cpu) 3447 { 3448 raw_spin_lock(&kvm_count_lock); 3449 if (kvm_usage_count) 3450 hardware_enable_nolock(NULL); 3451 raw_spin_unlock(&kvm_count_lock); 3452 return 0; 3453 } 3454 3455 static void hardware_disable_nolock(void *junk) 3456 { 3457 int cpu = raw_smp_processor_id(); 3458 3459 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3460 return; 3461 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3462 kvm_arch_hardware_disable(); 3463 } 3464 3465 static int kvm_dying_cpu(unsigned int cpu) 3466 { 3467 raw_spin_lock(&kvm_count_lock); 3468 if (kvm_usage_count) 3469 hardware_disable_nolock(NULL); 3470 raw_spin_unlock(&kvm_count_lock); 3471 return 0; 3472 } 3473 3474 static void hardware_disable_all_nolock(void) 3475 { 3476 BUG_ON(!kvm_usage_count); 3477 3478 kvm_usage_count--; 3479 if (!kvm_usage_count) 3480 on_each_cpu(hardware_disable_nolock, NULL, 1); 3481 } 3482 3483 static void hardware_disable_all(void) 3484 { 3485 raw_spin_lock(&kvm_count_lock); 3486 hardware_disable_all_nolock(); 3487 raw_spin_unlock(&kvm_count_lock); 3488 } 3489 3490 static int hardware_enable_all(void) 3491 { 3492 int r = 0; 3493 3494 raw_spin_lock(&kvm_count_lock); 3495 3496 kvm_usage_count++; 3497 if (kvm_usage_count == 1) { 3498 atomic_set(&hardware_enable_failed, 0); 3499 on_each_cpu(hardware_enable_nolock, NULL, 1); 3500 3501 if (atomic_read(&hardware_enable_failed)) { 3502 hardware_disable_all_nolock(); 3503 r = -EBUSY; 3504 } 3505 } 3506 3507 raw_spin_unlock(&kvm_count_lock); 3508 3509 return r; 3510 } 3511 3512 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3513 void *v) 3514 { 3515 /* 3516 * Some (well, at least mine) BIOSes hang on reboot if 3517 * in vmx root mode. 3518 * 3519 * And Intel TXT required VMX off for all cpu when system shutdown. 3520 */ 3521 pr_info("kvm: exiting hardware virtualization\n"); 3522 kvm_rebooting = true; 3523 on_each_cpu(hardware_disable_nolock, NULL, 1); 3524 return NOTIFY_OK; 3525 } 3526 3527 static struct notifier_block kvm_reboot_notifier = { 3528 .notifier_call = kvm_reboot, 3529 .priority = 0, 3530 }; 3531 3532 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3533 { 3534 int i; 3535 3536 for (i = 0; i < bus->dev_count; i++) { 3537 struct kvm_io_device *pos = bus->range[i].dev; 3538 3539 kvm_iodevice_destructor(pos); 3540 } 3541 kfree(bus); 3542 } 3543 3544 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3545 const struct kvm_io_range *r2) 3546 { 3547 gpa_t addr1 = r1->addr; 3548 gpa_t addr2 = r2->addr; 3549 3550 if (addr1 < addr2) 3551 return -1; 3552 3553 /* If r2->len == 0, match the exact address. If r2->len != 0, 3554 * accept any overlapping write. Any order is acceptable for 3555 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3556 * we process all of them. 3557 */ 3558 if (r2->len) { 3559 addr1 += r1->len; 3560 addr2 += r2->len; 3561 } 3562 3563 if (addr1 > addr2) 3564 return 1; 3565 3566 return 0; 3567 } 3568 3569 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3570 { 3571 return kvm_io_bus_cmp(p1, p2); 3572 } 3573 3574 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3575 gpa_t addr, int len) 3576 { 3577 struct kvm_io_range *range, key; 3578 int off; 3579 3580 key = (struct kvm_io_range) { 3581 .addr = addr, 3582 .len = len, 3583 }; 3584 3585 range = bsearch(&key, bus->range, bus->dev_count, 3586 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3587 if (range == NULL) 3588 return -ENOENT; 3589 3590 off = range - bus->range; 3591 3592 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3593 off--; 3594 3595 return off; 3596 } 3597 3598 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3599 struct kvm_io_range *range, const void *val) 3600 { 3601 int idx; 3602 3603 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3604 if (idx < 0) 3605 return -EOPNOTSUPP; 3606 3607 while (idx < bus->dev_count && 3608 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3609 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3610 range->len, val)) 3611 return idx; 3612 idx++; 3613 } 3614 3615 return -EOPNOTSUPP; 3616 } 3617 3618 /* kvm_io_bus_write - called under kvm->slots_lock */ 3619 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3620 int len, const void *val) 3621 { 3622 struct kvm_io_bus *bus; 3623 struct kvm_io_range range; 3624 int r; 3625 3626 range = (struct kvm_io_range) { 3627 .addr = addr, 3628 .len = len, 3629 }; 3630 3631 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3632 if (!bus) 3633 return -ENOMEM; 3634 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3635 return r < 0 ? r : 0; 3636 } 3637 3638 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3639 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3640 gpa_t addr, int len, const void *val, long cookie) 3641 { 3642 struct kvm_io_bus *bus; 3643 struct kvm_io_range range; 3644 3645 range = (struct kvm_io_range) { 3646 .addr = addr, 3647 .len = len, 3648 }; 3649 3650 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3651 if (!bus) 3652 return -ENOMEM; 3653 3654 /* First try the device referenced by cookie. */ 3655 if ((cookie >= 0) && (cookie < bus->dev_count) && 3656 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3657 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3658 val)) 3659 return cookie; 3660 3661 /* 3662 * cookie contained garbage; fall back to search and return the 3663 * correct cookie value. 3664 */ 3665 return __kvm_io_bus_write(vcpu, bus, &range, val); 3666 } 3667 3668 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3669 struct kvm_io_range *range, void *val) 3670 { 3671 int idx; 3672 3673 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3674 if (idx < 0) 3675 return -EOPNOTSUPP; 3676 3677 while (idx < bus->dev_count && 3678 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3679 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3680 range->len, val)) 3681 return idx; 3682 idx++; 3683 } 3684 3685 return -EOPNOTSUPP; 3686 } 3687 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3688 3689 /* kvm_io_bus_read - called under kvm->slots_lock */ 3690 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3691 int len, void *val) 3692 { 3693 struct kvm_io_bus *bus; 3694 struct kvm_io_range range; 3695 int r; 3696 3697 range = (struct kvm_io_range) { 3698 .addr = addr, 3699 .len = len, 3700 }; 3701 3702 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3703 if (!bus) 3704 return -ENOMEM; 3705 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3706 return r < 0 ? r : 0; 3707 } 3708 3709 3710 /* Caller must hold slots_lock. */ 3711 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3712 int len, struct kvm_io_device *dev) 3713 { 3714 int i; 3715 struct kvm_io_bus *new_bus, *bus; 3716 struct kvm_io_range range; 3717 3718 bus = kvm_get_bus(kvm, bus_idx); 3719 if (!bus) 3720 return -ENOMEM; 3721 3722 /* exclude ioeventfd which is limited by maximum fd */ 3723 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3724 return -ENOSPC; 3725 3726 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3727 sizeof(struct kvm_io_range)), GFP_KERNEL); 3728 if (!new_bus) 3729 return -ENOMEM; 3730 3731 range = (struct kvm_io_range) { 3732 .addr = addr, 3733 .len = len, 3734 .dev = dev, 3735 }; 3736 3737 for (i = 0; i < bus->dev_count; i++) 3738 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3739 break; 3740 3741 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3742 new_bus->dev_count++; 3743 new_bus->range[i] = range; 3744 memcpy(new_bus->range + i + 1, bus->range + i, 3745 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3746 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3747 synchronize_srcu_expedited(&kvm->srcu); 3748 kfree(bus); 3749 3750 return 0; 3751 } 3752 3753 /* Caller must hold slots_lock. */ 3754 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3755 struct kvm_io_device *dev) 3756 { 3757 int i; 3758 struct kvm_io_bus *new_bus, *bus; 3759 3760 bus = kvm_get_bus(kvm, bus_idx); 3761 if (!bus) 3762 return; 3763 3764 for (i = 0; i < bus->dev_count; i++) 3765 if (bus->range[i].dev == dev) { 3766 break; 3767 } 3768 3769 if (i == bus->dev_count) 3770 return; 3771 3772 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3773 sizeof(struct kvm_io_range)), GFP_KERNEL); 3774 if (!new_bus) { 3775 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3776 goto broken; 3777 } 3778 3779 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3780 new_bus->dev_count--; 3781 memcpy(new_bus->range + i, bus->range + i + 1, 3782 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3783 3784 broken: 3785 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3786 synchronize_srcu_expedited(&kvm->srcu); 3787 kfree(bus); 3788 return; 3789 } 3790 3791 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3792 gpa_t addr) 3793 { 3794 struct kvm_io_bus *bus; 3795 int dev_idx, srcu_idx; 3796 struct kvm_io_device *iodev = NULL; 3797 3798 srcu_idx = srcu_read_lock(&kvm->srcu); 3799 3800 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3801 if (!bus) 3802 goto out_unlock; 3803 3804 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3805 if (dev_idx < 0) 3806 goto out_unlock; 3807 3808 iodev = bus->range[dev_idx].dev; 3809 3810 out_unlock: 3811 srcu_read_unlock(&kvm->srcu, srcu_idx); 3812 3813 return iodev; 3814 } 3815 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3816 3817 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3818 int (*get)(void *, u64 *), int (*set)(void *, u64), 3819 const char *fmt) 3820 { 3821 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3822 inode->i_private; 3823 3824 /* The debugfs files are a reference to the kvm struct which 3825 * is still valid when kvm_destroy_vm is called. 3826 * To avoid the race between open and the removal of the debugfs 3827 * directory we test against the users count. 3828 */ 3829 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3830 return -ENOENT; 3831 3832 if (simple_attr_open(inode, file, get, set, fmt)) { 3833 kvm_put_kvm(stat_data->kvm); 3834 return -ENOMEM; 3835 } 3836 3837 return 0; 3838 } 3839 3840 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3841 { 3842 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3843 inode->i_private; 3844 3845 simple_attr_release(inode, file); 3846 kvm_put_kvm(stat_data->kvm); 3847 3848 return 0; 3849 } 3850 3851 static int vm_stat_get_per_vm(void *data, u64 *val) 3852 { 3853 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3854 3855 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3856 3857 return 0; 3858 } 3859 3860 static int vm_stat_clear_per_vm(void *data, u64 val) 3861 { 3862 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3863 3864 if (val) 3865 return -EINVAL; 3866 3867 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3868 3869 return 0; 3870 } 3871 3872 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3873 { 3874 __simple_attr_check_format("%llu\n", 0ull); 3875 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3876 vm_stat_clear_per_vm, "%llu\n"); 3877 } 3878 3879 static const struct file_operations vm_stat_get_per_vm_fops = { 3880 .owner = THIS_MODULE, 3881 .open = vm_stat_get_per_vm_open, 3882 .release = kvm_debugfs_release, 3883 .read = simple_attr_read, 3884 .write = simple_attr_write, 3885 .llseek = no_llseek, 3886 }; 3887 3888 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3889 { 3890 int i; 3891 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3892 struct kvm_vcpu *vcpu; 3893 3894 *val = 0; 3895 3896 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3897 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3898 3899 return 0; 3900 } 3901 3902 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3903 { 3904 int i; 3905 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3906 struct kvm_vcpu *vcpu; 3907 3908 if (val) 3909 return -EINVAL; 3910 3911 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3912 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3913 3914 return 0; 3915 } 3916 3917 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3918 { 3919 __simple_attr_check_format("%llu\n", 0ull); 3920 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3921 vcpu_stat_clear_per_vm, "%llu\n"); 3922 } 3923 3924 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3925 .owner = THIS_MODULE, 3926 .open = vcpu_stat_get_per_vm_open, 3927 .release = kvm_debugfs_release, 3928 .read = simple_attr_read, 3929 .write = simple_attr_write, 3930 .llseek = no_llseek, 3931 }; 3932 3933 static const struct file_operations *stat_fops_per_vm[] = { 3934 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3935 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3936 }; 3937 3938 static int vm_stat_get(void *_offset, u64 *val) 3939 { 3940 unsigned offset = (long)_offset; 3941 struct kvm *kvm; 3942 struct kvm_stat_data stat_tmp = {.offset = offset}; 3943 u64 tmp_val; 3944 3945 *val = 0; 3946 spin_lock(&kvm_lock); 3947 list_for_each_entry(kvm, &vm_list, vm_list) { 3948 stat_tmp.kvm = kvm; 3949 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3950 *val += tmp_val; 3951 } 3952 spin_unlock(&kvm_lock); 3953 return 0; 3954 } 3955 3956 static int vm_stat_clear(void *_offset, u64 val) 3957 { 3958 unsigned offset = (long)_offset; 3959 struct kvm *kvm; 3960 struct kvm_stat_data stat_tmp = {.offset = offset}; 3961 3962 if (val) 3963 return -EINVAL; 3964 3965 spin_lock(&kvm_lock); 3966 list_for_each_entry(kvm, &vm_list, vm_list) { 3967 stat_tmp.kvm = kvm; 3968 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3969 } 3970 spin_unlock(&kvm_lock); 3971 3972 return 0; 3973 } 3974 3975 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3976 3977 static int vcpu_stat_get(void *_offset, u64 *val) 3978 { 3979 unsigned offset = (long)_offset; 3980 struct kvm *kvm; 3981 struct kvm_stat_data stat_tmp = {.offset = offset}; 3982 u64 tmp_val; 3983 3984 *val = 0; 3985 spin_lock(&kvm_lock); 3986 list_for_each_entry(kvm, &vm_list, vm_list) { 3987 stat_tmp.kvm = kvm; 3988 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3989 *val += tmp_val; 3990 } 3991 spin_unlock(&kvm_lock); 3992 return 0; 3993 } 3994 3995 static int vcpu_stat_clear(void *_offset, u64 val) 3996 { 3997 unsigned offset = (long)_offset; 3998 struct kvm *kvm; 3999 struct kvm_stat_data stat_tmp = {.offset = offset}; 4000 4001 if (val) 4002 return -EINVAL; 4003 4004 spin_lock(&kvm_lock); 4005 list_for_each_entry(kvm, &vm_list, vm_list) { 4006 stat_tmp.kvm = kvm; 4007 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4008 } 4009 spin_unlock(&kvm_lock); 4010 4011 return 0; 4012 } 4013 4014 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4015 "%llu\n"); 4016 4017 static const struct file_operations *stat_fops[] = { 4018 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4019 [KVM_STAT_VM] = &vm_stat_fops, 4020 }; 4021 4022 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4023 { 4024 struct kobj_uevent_env *env; 4025 unsigned long long created, active; 4026 4027 if (!kvm_dev.this_device || !kvm) 4028 return; 4029 4030 spin_lock(&kvm_lock); 4031 if (type == KVM_EVENT_CREATE_VM) { 4032 kvm_createvm_count++; 4033 kvm_active_vms++; 4034 } else if (type == KVM_EVENT_DESTROY_VM) { 4035 kvm_active_vms--; 4036 } 4037 created = kvm_createvm_count; 4038 active = kvm_active_vms; 4039 spin_unlock(&kvm_lock); 4040 4041 env = kzalloc(sizeof(*env), GFP_KERNEL); 4042 if (!env) 4043 return; 4044 4045 add_uevent_var(env, "CREATED=%llu", created); 4046 add_uevent_var(env, "COUNT=%llu", active); 4047 4048 if (type == KVM_EVENT_CREATE_VM) { 4049 add_uevent_var(env, "EVENT=create"); 4050 kvm->userspace_pid = task_pid_nr(current); 4051 } else if (type == KVM_EVENT_DESTROY_VM) { 4052 add_uevent_var(env, "EVENT=destroy"); 4053 } 4054 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4055 4056 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4057 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 4058 4059 if (p) { 4060 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4061 if (!IS_ERR(tmp)) 4062 add_uevent_var(env, "STATS_PATH=%s", tmp); 4063 kfree(p); 4064 } 4065 } 4066 /* no need for checks, since we are adding at most only 5 keys */ 4067 env->envp[env->envp_idx++] = NULL; 4068 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4069 kfree(env); 4070 } 4071 4072 static void kvm_init_debug(void) 4073 { 4074 struct kvm_stats_debugfs_item *p; 4075 4076 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4077 4078 kvm_debugfs_num_entries = 0; 4079 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4080 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 4081 (void *)(long)p->offset, 4082 stat_fops[p->kind]); 4083 } 4084 } 4085 4086 static int kvm_suspend(void) 4087 { 4088 if (kvm_usage_count) 4089 hardware_disable_nolock(NULL); 4090 return 0; 4091 } 4092 4093 static void kvm_resume(void) 4094 { 4095 if (kvm_usage_count) { 4096 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 4097 hardware_enable_nolock(NULL); 4098 } 4099 } 4100 4101 static struct syscore_ops kvm_syscore_ops = { 4102 .suspend = kvm_suspend, 4103 .resume = kvm_resume, 4104 }; 4105 4106 static inline 4107 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4108 { 4109 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4110 } 4111 4112 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4113 { 4114 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4115 4116 if (vcpu->preempted) 4117 vcpu->preempted = false; 4118 4119 kvm_arch_sched_in(vcpu, cpu); 4120 4121 kvm_arch_vcpu_load(vcpu, cpu); 4122 } 4123 4124 static void kvm_sched_out(struct preempt_notifier *pn, 4125 struct task_struct *next) 4126 { 4127 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4128 4129 if (current->state == TASK_RUNNING) 4130 vcpu->preempted = true; 4131 kvm_arch_vcpu_put(vcpu); 4132 } 4133 4134 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4135 struct module *module) 4136 { 4137 int r; 4138 int cpu; 4139 4140 r = kvm_arch_init(opaque); 4141 if (r) 4142 goto out_fail; 4143 4144 /* 4145 * kvm_arch_init makes sure there's at most one caller 4146 * for architectures that support multiple implementations, 4147 * like intel and amd on x86. 4148 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4149 * conflicts in case kvm is already setup for another implementation. 4150 */ 4151 r = kvm_irqfd_init(); 4152 if (r) 4153 goto out_irqfd; 4154 4155 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4156 r = -ENOMEM; 4157 goto out_free_0; 4158 } 4159 4160 r = kvm_arch_hardware_setup(); 4161 if (r < 0) 4162 goto out_free_0a; 4163 4164 for_each_online_cpu(cpu) { 4165 smp_call_function_single(cpu, 4166 kvm_arch_check_processor_compat, 4167 &r, 1); 4168 if (r < 0) 4169 goto out_free_1; 4170 } 4171 4172 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4173 kvm_starting_cpu, kvm_dying_cpu); 4174 if (r) 4175 goto out_free_2; 4176 register_reboot_notifier(&kvm_reboot_notifier); 4177 4178 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4179 if (!vcpu_align) 4180 vcpu_align = __alignof__(struct kvm_vcpu); 4181 kvm_vcpu_cache = 4182 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4183 SLAB_ACCOUNT, 4184 offsetof(struct kvm_vcpu, arch), 4185 sizeof_field(struct kvm_vcpu, arch), 4186 NULL); 4187 if (!kvm_vcpu_cache) { 4188 r = -ENOMEM; 4189 goto out_free_3; 4190 } 4191 4192 r = kvm_async_pf_init(); 4193 if (r) 4194 goto out_free; 4195 4196 kvm_chardev_ops.owner = module; 4197 kvm_vm_fops.owner = module; 4198 kvm_vcpu_fops.owner = module; 4199 4200 r = misc_register(&kvm_dev); 4201 if (r) { 4202 pr_err("kvm: misc device register failed\n"); 4203 goto out_unreg; 4204 } 4205 4206 register_syscore_ops(&kvm_syscore_ops); 4207 4208 kvm_preempt_ops.sched_in = kvm_sched_in; 4209 kvm_preempt_ops.sched_out = kvm_sched_out; 4210 4211 kvm_init_debug(); 4212 4213 r = kvm_vfio_ops_init(); 4214 WARN_ON(r); 4215 4216 return 0; 4217 4218 out_unreg: 4219 kvm_async_pf_deinit(); 4220 out_free: 4221 kmem_cache_destroy(kvm_vcpu_cache); 4222 out_free_3: 4223 unregister_reboot_notifier(&kvm_reboot_notifier); 4224 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4225 out_free_2: 4226 out_free_1: 4227 kvm_arch_hardware_unsetup(); 4228 out_free_0a: 4229 free_cpumask_var(cpus_hardware_enabled); 4230 out_free_0: 4231 kvm_irqfd_exit(); 4232 out_irqfd: 4233 kvm_arch_exit(); 4234 out_fail: 4235 return r; 4236 } 4237 EXPORT_SYMBOL_GPL(kvm_init); 4238 4239 void kvm_exit(void) 4240 { 4241 debugfs_remove_recursive(kvm_debugfs_dir); 4242 misc_deregister(&kvm_dev); 4243 kmem_cache_destroy(kvm_vcpu_cache); 4244 kvm_async_pf_deinit(); 4245 unregister_syscore_ops(&kvm_syscore_ops); 4246 unregister_reboot_notifier(&kvm_reboot_notifier); 4247 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4248 on_each_cpu(hardware_disable_nolock, NULL, 1); 4249 kvm_arch_hardware_unsetup(); 4250 kvm_arch_exit(); 4251 kvm_irqfd_exit(); 4252 free_cpumask_var(cpus_hardware_enabled); 4253 kvm_vfio_ops_exit(); 4254 } 4255 EXPORT_SYMBOL_GPL(kvm_exit); 4256
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.