~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/virt/kvm/kvm_main.c

Version: ~ [ linux-6.6-rc1 ] ~ [ linux-6.5.2 ] ~ [ linux-6.4.15 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.52 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.131 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.194 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.256 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.294 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.325 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Kernel-based Virtual Machine driver for Linux
  3  *
  4  * This module enables machines with Intel VT-x extensions to run virtual
  5  * machines without emulation or binary translation.
  6  *
  7  * Copyright (C) 2006 Qumranet, Inc.
  8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9  *
 10  * Authors:
 11  *   Avi Kivity   <avi@qumranet.com>
 12  *   Yaniv Kamay  <yaniv@qumranet.com>
 13  *
 14  * This work is licensed under the terms of the GNU GPL, version 2.  See
 15  * the COPYING file in the top-level directory.
 16  *
 17  */
 18 
 19 #include <kvm/iodev.h>
 20 
 21 #include <linux/kvm_host.h>
 22 #include <linux/kvm.h>
 23 #include <linux/module.h>
 24 #include <linux/errno.h>
 25 #include <linux/percpu.h>
 26 #include <linux/mm.h>
 27 #include <linux/miscdevice.h>
 28 #include <linux/vmalloc.h>
 29 #include <linux/reboot.h>
 30 #include <linux/debugfs.h>
 31 #include <linux/highmem.h>
 32 #include <linux/file.h>
 33 #include <linux/syscore_ops.h>
 34 #include <linux/cpu.h>
 35 #include <linux/sched/signal.h>
 36 #include <linux/sched/mm.h>
 37 #include <linux/sched/stat.h>
 38 #include <linux/cpumask.h>
 39 #include <linux/smp.h>
 40 #include <linux/anon_inodes.h>
 41 #include <linux/profile.h>
 42 #include <linux/kvm_para.h>
 43 #include <linux/pagemap.h>
 44 #include <linux/mman.h>
 45 #include <linux/swap.h>
 46 #include <linux/bitops.h>
 47 #include <linux/spinlock.h>
 48 #include <linux/compat.h>
 49 #include <linux/srcu.h>
 50 #include <linux/hugetlb.h>
 51 #include <linux/slab.h>
 52 #include <linux/sort.h>
 53 #include <linux/bsearch.h>
 54 
 55 #include <asm/processor.h>
 56 #include <asm/io.h>
 57 #include <asm/ioctl.h>
 58 #include <linux/uaccess.h>
 59 #include <asm/pgtable.h>
 60 
 61 #include "coalesced_mmio.h"
 62 #include "async_pf.h"
 63 #include "vfio.h"
 64 
 65 #define CREATE_TRACE_POINTS
 66 #include <trace/events/kvm.h>
 67 
 68 /* Worst case buffer size needed for holding an integer. */
 69 #define ITOA_MAX_LEN 12
 70 
 71 MODULE_AUTHOR("Qumranet");
 72 MODULE_LICENSE("GPL");
 73 
 74 /* Architectures should define their poll value according to the halt latency */
 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
 76 module_param(halt_poll_ns, uint, 0644);
 77 EXPORT_SYMBOL_GPL(halt_poll_ns);
 78 
 79 /* Default doubles per-vcpu halt_poll_ns. */
 80 unsigned int halt_poll_ns_grow = 2;
 81 module_param(halt_poll_ns_grow, uint, 0644);
 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
 83 
 84 /* Default resets per-vcpu halt_poll_ns . */
 85 unsigned int halt_poll_ns_shrink;
 86 module_param(halt_poll_ns_shrink, uint, 0644);
 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
 88 
 89 /*
 90  * Ordering of locks:
 91  *
 92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
 93  */
 94 
 95 DEFINE_SPINLOCK(kvm_lock);
 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
 97 LIST_HEAD(vm_list);
 98 
 99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122                                 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127 
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129 
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131 
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134 
135 static bool largepages_enabled = true;
136 
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142 
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144                 unsigned long start, unsigned long end, bool blockable)
145 {
146         return 0;
147 }
148 
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151         if (pfn_valid(pfn))
152                 return PageReserved(pfn_to_page(pfn));
153 
154         return true;
155 }
156 
157 /*
158  * Switches to specified vcpu, until a matching vcpu_put()
159  */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162         int cpu = get_cpu();
163         preempt_notifier_register(&vcpu->preempt_notifier);
164         kvm_arch_vcpu_load(vcpu, cpu);
165         put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168 
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171         preempt_disable();
172         kvm_arch_vcpu_put(vcpu);
173         preempt_notifier_unregister(&vcpu->preempt_notifier);
174         preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177 
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182 
183         /*
184          * We need to wait for the VCPU to reenable interrupts and get out of
185          * READING_SHADOW_PAGE_TABLES mode.
186          */
187         if (req & KVM_REQUEST_WAIT)
188                 return mode != OUTSIDE_GUEST_MODE;
189 
190         /*
191          * Need to kick a running VCPU, but otherwise there is nothing to do.
192          */
193         return mode == IN_GUEST_MODE;
194 }
195 
196 static void ack_flush(void *_completed)
197 {
198 }
199 
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202         if (unlikely(!cpus))
203                 cpus = cpu_online_mask;
204 
205         if (cpumask_empty(cpus))
206                 return false;
207 
208         smp_call_function_many(cpus, ack_flush, NULL, wait);
209         return true;
210 }
211 
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215         int i, cpu, me;
216         struct kvm_vcpu *vcpu;
217         bool called;
218 
219         me = get_cpu();
220 
221         kvm_for_each_vcpu(i, vcpu, kvm) {
222                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223                         continue;
224 
225                 kvm_make_request(req, vcpu);
226                 cpu = vcpu->cpu;
227 
228                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229                         continue;
230 
231                 if (tmp != NULL && cpu != -1 && cpu != me &&
232                     kvm_request_needs_ipi(vcpu, req))
233                         __cpumask_set_cpu(cpu, tmp);
234         }
235 
236         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237         put_cpu();
238 
239         return called;
240 }
241 
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244         cpumask_var_t cpus;
245         bool called;
246 
247         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248 
249         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250 
251         free_cpumask_var(cpus);
252         return called;
253 }
254 
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258         /*
259          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260          * kvm_make_all_cpus_request.
261          */
262         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263 
264         /*
265          * We want to publish modifications to the page tables before reading
266          * mode. Pairs with a memory barrier in arch-specific code.
267          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268          * and smp_mb in walk_shadow_page_lockless_begin/end.
269          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270          *
271          * There is already an smp_mb__after_atomic() before
272          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273          * barrier here.
274          */
275         if (!kvm_arch_flush_remote_tlb(kvm)
276             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277                 ++kvm->stat.remote_tlb_flush;
278         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282 
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287 
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290         struct page *page;
291         int r;
292 
293         mutex_init(&vcpu->mutex);
294         vcpu->cpu = -1;
295         vcpu->kvm = kvm;
296         vcpu->vcpu_id = id;
297         vcpu->pid = NULL;
298         init_swait_queue_head(&vcpu->wq);
299         kvm_async_pf_vcpu_init(vcpu);
300 
301         vcpu->pre_pcpu = -1;
302         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303 
304         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305         if (!page) {
306                 r = -ENOMEM;
307                 goto fail;
308         }
309         vcpu->run = page_address(page);
310 
311         kvm_vcpu_set_in_spin_loop(vcpu, false);
312         kvm_vcpu_set_dy_eligible(vcpu, false);
313         vcpu->preempted = false;
314 
315         r = kvm_arch_vcpu_init(vcpu);
316         if (r < 0)
317                 goto fail_free_run;
318         return 0;
319 
320 fail_free_run:
321         free_page((unsigned long)vcpu->run);
322 fail:
323         return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326 
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329         /*
330          * no need for rcu_read_lock as VCPU_RUN is the only place that
331          * will change the vcpu->pid pointer and on uninit all file
332          * descriptors are already gone.
333          */
334         put_pid(rcu_dereference_protected(vcpu->pid, 1));
335         kvm_arch_vcpu_uninit(vcpu);
336         free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339 
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343         return container_of(mn, struct kvm, mmu_notifier);
344 }
345 
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347                                         struct mm_struct *mm,
348                                         unsigned long address,
349                                         pte_t pte)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int idx;
353 
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         kvm->mmu_notifier_seq++;
357 
358         if (kvm_set_spte_hva(kvm, address, pte))
359                 kvm_flush_remote_tlbs(kvm);
360 
361         spin_unlock(&kvm->mmu_lock);
362         srcu_read_unlock(&kvm->srcu, idx);
363 }
364 
365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366                                         const struct mmu_notifier_range *range)
367 {
368         struct kvm *kvm = mmu_notifier_to_kvm(mn);
369         int need_tlb_flush = 0, idx;
370         int ret;
371 
372         idx = srcu_read_lock(&kvm->srcu);
373         spin_lock(&kvm->mmu_lock);
374         /*
375          * The count increase must become visible at unlock time as no
376          * spte can be established without taking the mmu_lock and
377          * count is also read inside the mmu_lock critical section.
378          */
379         kvm->mmu_notifier_count++;
380         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
381         need_tlb_flush |= kvm->tlbs_dirty;
382         /* we've to flush the tlb before the pages can be freed */
383         if (need_tlb_flush)
384                 kvm_flush_remote_tlbs(kvm);
385 
386         spin_unlock(&kvm->mmu_lock);
387 
388         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
389                                         range->end, range->blockable);
390 
391         srcu_read_unlock(&kvm->srcu, idx);
392 
393         return ret;
394 }
395 
396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
397                                         const struct mmu_notifier_range *range)
398 {
399         struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 
401         spin_lock(&kvm->mmu_lock);
402         /*
403          * This sequence increase will notify the kvm page fault that
404          * the page that is going to be mapped in the spte could have
405          * been freed.
406          */
407         kvm->mmu_notifier_seq++;
408         smp_wmb();
409         /*
410          * The above sequence increase must be visible before the
411          * below count decrease, which is ensured by the smp_wmb above
412          * in conjunction with the smp_rmb in mmu_notifier_retry().
413          */
414         kvm->mmu_notifier_count--;
415         spin_unlock(&kvm->mmu_lock);
416 
417         BUG_ON(kvm->mmu_notifier_count < 0);
418 }
419 
420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
421                                               struct mm_struct *mm,
422                                               unsigned long start,
423                                               unsigned long end)
424 {
425         struct kvm *kvm = mmu_notifier_to_kvm(mn);
426         int young, idx;
427 
428         idx = srcu_read_lock(&kvm->srcu);
429         spin_lock(&kvm->mmu_lock);
430 
431         young = kvm_age_hva(kvm, start, end);
432         if (young)
433                 kvm_flush_remote_tlbs(kvm);
434 
435         spin_unlock(&kvm->mmu_lock);
436         srcu_read_unlock(&kvm->srcu, idx);
437 
438         return young;
439 }
440 
441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
442                                         struct mm_struct *mm,
443                                         unsigned long start,
444                                         unsigned long end)
445 {
446         struct kvm *kvm = mmu_notifier_to_kvm(mn);
447         int young, idx;
448 
449         idx = srcu_read_lock(&kvm->srcu);
450         spin_lock(&kvm->mmu_lock);
451         /*
452          * Even though we do not flush TLB, this will still adversely
453          * affect performance on pre-Haswell Intel EPT, where there is
454          * no EPT Access Bit to clear so that we have to tear down EPT
455          * tables instead. If we find this unacceptable, we can always
456          * add a parameter to kvm_age_hva so that it effectively doesn't
457          * do anything on clear_young.
458          *
459          * Also note that currently we never issue secondary TLB flushes
460          * from clear_young, leaving this job up to the regular system
461          * cadence. If we find this inaccurate, we might come up with a
462          * more sophisticated heuristic later.
463          */
464         young = kvm_age_hva(kvm, start, end);
465         spin_unlock(&kvm->mmu_lock);
466         srcu_read_unlock(&kvm->srcu, idx);
467 
468         return young;
469 }
470 
471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
472                                        struct mm_struct *mm,
473                                        unsigned long address)
474 {
475         struct kvm *kvm = mmu_notifier_to_kvm(mn);
476         int young, idx;
477 
478         idx = srcu_read_lock(&kvm->srcu);
479         spin_lock(&kvm->mmu_lock);
480         young = kvm_test_age_hva(kvm, address);
481         spin_unlock(&kvm->mmu_lock);
482         srcu_read_unlock(&kvm->srcu, idx);
483 
484         return young;
485 }
486 
487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
488                                      struct mm_struct *mm)
489 {
490         struct kvm *kvm = mmu_notifier_to_kvm(mn);
491         int idx;
492 
493         idx = srcu_read_lock(&kvm->srcu);
494         kvm_arch_flush_shadow_all(kvm);
495         srcu_read_unlock(&kvm->srcu, idx);
496 }
497 
498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
499         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
500         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
501         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
502         .clear_young            = kvm_mmu_notifier_clear_young,
503         .test_young             = kvm_mmu_notifier_test_young,
504         .change_pte             = kvm_mmu_notifier_change_pte,
505         .release                = kvm_mmu_notifier_release,
506 };
507 
508 static int kvm_init_mmu_notifier(struct kvm *kvm)
509 {
510         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
511         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
512 }
513 
514 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
515 
516 static int kvm_init_mmu_notifier(struct kvm *kvm)
517 {
518         return 0;
519 }
520 
521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
522 
523 static struct kvm_memslots *kvm_alloc_memslots(void)
524 {
525         int i;
526         struct kvm_memslots *slots;
527 
528         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
529         if (!slots)
530                 return NULL;
531 
532         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
533                 slots->id_to_index[i] = slots->memslots[i].id = i;
534 
535         return slots;
536 }
537 
538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
539 {
540         if (!memslot->dirty_bitmap)
541                 return;
542 
543         kvfree(memslot->dirty_bitmap);
544         memslot->dirty_bitmap = NULL;
545 }
546 
547 /*
548  * Free any memory in @free but not in @dont.
549  */
550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
551                               struct kvm_memory_slot *dont)
552 {
553         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
554                 kvm_destroy_dirty_bitmap(free);
555 
556         kvm_arch_free_memslot(kvm, free, dont);
557 
558         free->npages = 0;
559 }
560 
561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
562 {
563         struct kvm_memory_slot *memslot;
564 
565         if (!slots)
566                 return;
567 
568         kvm_for_each_memslot(memslot, slots)
569                 kvm_free_memslot(kvm, memslot, NULL);
570 
571         kvfree(slots);
572 }
573 
574 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
575 {
576         int i;
577 
578         if (!kvm->debugfs_dentry)
579                 return;
580 
581         debugfs_remove_recursive(kvm->debugfs_dentry);
582 
583         if (kvm->debugfs_stat_data) {
584                 for (i = 0; i < kvm_debugfs_num_entries; i++)
585                         kfree(kvm->debugfs_stat_data[i]);
586                 kfree(kvm->debugfs_stat_data);
587         }
588 }
589 
590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
591 {
592         char dir_name[ITOA_MAX_LEN * 2];
593         struct kvm_stat_data *stat_data;
594         struct kvm_stats_debugfs_item *p;
595 
596         if (!debugfs_initialized())
597                 return 0;
598 
599         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
600         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
601 
602         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
603                                          sizeof(*kvm->debugfs_stat_data),
604                                          GFP_KERNEL);
605         if (!kvm->debugfs_stat_data)
606                 return -ENOMEM;
607 
608         for (p = debugfs_entries; p->name; p++) {
609                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
610                 if (!stat_data)
611                         return -ENOMEM;
612 
613                 stat_data->kvm = kvm;
614                 stat_data->offset = p->offset;
615                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
616                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
617                                     stat_data, stat_fops_per_vm[p->kind]);
618         }
619         return 0;
620 }
621 
622 static struct kvm *kvm_create_vm(unsigned long type)
623 {
624         int r, i;
625         struct kvm *kvm = kvm_arch_alloc_vm();
626 
627         if (!kvm)
628                 return ERR_PTR(-ENOMEM);
629 
630         spin_lock_init(&kvm->mmu_lock);
631         mmgrab(current->mm);
632         kvm->mm = current->mm;
633         kvm_eventfd_init(kvm);
634         mutex_init(&kvm->lock);
635         mutex_init(&kvm->irq_lock);
636         mutex_init(&kvm->slots_lock);
637         refcount_set(&kvm->users_count, 1);
638         INIT_LIST_HEAD(&kvm->devices);
639 
640         r = kvm_arch_init_vm(kvm, type);
641         if (r)
642                 goto out_err_no_disable;
643 
644         r = hardware_enable_all();
645         if (r)
646                 goto out_err_no_disable;
647 
648 #ifdef CONFIG_HAVE_KVM_IRQFD
649         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
650 #endif
651 
652         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
653 
654         r = -ENOMEM;
655         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
656                 struct kvm_memslots *slots = kvm_alloc_memslots();
657                 if (!slots)
658                         goto out_err_no_srcu;
659                 /*
660                  * Generations must be different for each address space.
661                  * Init kvm generation close to the maximum to easily test the
662                  * code of handling generation number wrap-around.
663                  */
664                 slots->generation = i * 2 - 150;
665                 rcu_assign_pointer(kvm->memslots[i], slots);
666         }
667 
668         if (init_srcu_struct(&kvm->srcu))
669                 goto out_err_no_srcu;
670         if (init_srcu_struct(&kvm->irq_srcu))
671                 goto out_err_no_irq_srcu;
672         for (i = 0; i < KVM_NR_BUSES; i++) {
673                 rcu_assign_pointer(kvm->buses[i],
674                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
675                 if (!kvm->buses[i])
676                         goto out_err;
677         }
678 
679         r = kvm_init_mmu_notifier(kvm);
680         if (r)
681                 goto out_err;
682 
683         spin_lock(&kvm_lock);
684         list_add(&kvm->vm_list, &vm_list);
685         spin_unlock(&kvm_lock);
686 
687         preempt_notifier_inc();
688 
689         return kvm;
690 
691 out_err:
692         cleanup_srcu_struct(&kvm->irq_srcu);
693 out_err_no_irq_srcu:
694         cleanup_srcu_struct(&kvm->srcu);
695 out_err_no_srcu:
696         hardware_disable_all();
697 out_err_no_disable:
698         refcount_set(&kvm->users_count, 0);
699         for (i = 0; i < KVM_NR_BUSES; i++)
700                 kfree(kvm_get_bus(kvm, i));
701         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
702                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
703         kvm_arch_free_vm(kvm);
704         mmdrop(current->mm);
705         return ERR_PTR(r);
706 }
707 
708 static void kvm_destroy_devices(struct kvm *kvm)
709 {
710         struct kvm_device *dev, *tmp;
711 
712         /*
713          * We do not need to take the kvm->lock here, because nobody else
714          * has a reference to the struct kvm at this point and therefore
715          * cannot access the devices list anyhow.
716          */
717         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
718                 list_del(&dev->vm_node);
719                 dev->ops->destroy(dev);
720         }
721 }
722 
723 static void kvm_destroy_vm(struct kvm *kvm)
724 {
725         int i;
726         struct mm_struct *mm = kvm->mm;
727 
728         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
729         kvm_destroy_vm_debugfs(kvm);
730         kvm_arch_sync_events(kvm);
731         spin_lock(&kvm_lock);
732         list_del(&kvm->vm_list);
733         spin_unlock(&kvm_lock);
734         kvm_free_irq_routing(kvm);
735         for (i = 0; i < KVM_NR_BUSES; i++) {
736                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
737 
738                 if (bus)
739                         kvm_io_bus_destroy(bus);
740                 kvm->buses[i] = NULL;
741         }
742         kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746         kvm_arch_flush_shadow_all(kvm);
747 #endif
748         kvm_arch_destroy_vm(kvm);
749         kvm_destroy_devices(kvm);
750         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752         cleanup_srcu_struct(&kvm->irq_srcu);
753         cleanup_srcu_struct(&kvm->srcu);
754         kvm_arch_free_vm(kvm);
755         preempt_notifier_dec();
756         hardware_disable_all();
757         mmdrop(mm);
758 }
759 
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762         refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765 
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768         if (refcount_dec_and_test(&kvm->users_count))
769                 kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772 
773 
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776         struct kvm *kvm = filp->private_data;
777 
778         kvm_irqfd_release(kvm);
779 
780         kvm_put_kvm(kvm);
781         return 0;
782 }
783 
784 /*
785  * Allocation size is twice as large as the actual dirty bitmap size.
786  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787  */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791 
792         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793         if (!memslot->dirty_bitmap)
794                 return -ENOMEM;
795 
796         return 0;
797 }
798 
799 /*
800  * Insert memslot and re-sort memslots based on their GFN,
801  * so binary search could be used to lookup GFN.
802  * Sorting algorithm takes advantage of having initially
803  * sorted array and known changed memslot position.
804  */
805 static void update_memslots(struct kvm_memslots *slots,
806                             struct kvm_memory_slot *new,
807                             enum kvm_mr_change change)
808 {
809         int id = new->id;
810         int i = slots->id_to_index[id];
811         struct kvm_memory_slot *mslots = slots->memslots;
812 
813         WARN_ON(mslots[i].id != id);
814         switch (change) {
815         case KVM_MR_CREATE:
816                 slots->used_slots++;
817                 WARN_ON(mslots[i].npages || !new->npages);
818                 break;
819         case KVM_MR_DELETE:
820                 slots->used_slots--;
821                 WARN_ON(new->npages || !mslots[i].npages);
822                 break;
823         default:
824                 break;
825         }
826 
827         while (i < KVM_MEM_SLOTS_NUM - 1 &&
828                new->base_gfn <= mslots[i + 1].base_gfn) {
829                 if (!mslots[i + 1].npages)
830                         break;
831                 mslots[i] = mslots[i + 1];
832                 slots->id_to_index[mslots[i].id] = i;
833                 i++;
834         }
835 
836         /*
837          * The ">=" is needed when creating a slot with base_gfn == 0,
838          * so that it moves before all those with base_gfn == npages == 0.
839          *
840          * On the other hand, if new->npages is zero, the above loop has
841          * already left i pointing to the beginning of the empty part of
842          * mslots, and the ">=" would move the hole backwards in this
843          * case---which is wrong.  So skip the loop when deleting a slot.
844          */
845         if (new->npages) {
846                 while (i > 0 &&
847                        new->base_gfn >= mslots[i - 1].base_gfn) {
848                         mslots[i] = mslots[i - 1];
849                         slots->id_to_index[mslots[i].id] = i;
850                         i--;
851                 }
852         } else
853                 WARN_ON_ONCE(i != slots->used_slots);
854 
855         mslots[i] = *new;
856         slots->id_to_index[mslots[i].id] = i;
857 }
858 
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
860 {
861         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
862 
863 #ifdef __KVM_HAVE_READONLY_MEM
864         valid_flags |= KVM_MEM_READONLY;
865 #endif
866 
867         if (mem->flags & ~valid_flags)
868                 return -EINVAL;
869 
870         return 0;
871 }
872 
873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
874                 int as_id, struct kvm_memslots *slots)
875 {
876         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
877         u64 gen;
878 
879         /*
880          * Set the low bit in the generation, which disables SPTE caching
881          * until the end of synchronize_srcu_expedited.
882          */
883         WARN_ON(old_memslots->generation & 1);
884         slots->generation = old_memslots->generation + 1;
885 
886         rcu_assign_pointer(kvm->memslots[as_id], slots);
887         synchronize_srcu_expedited(&kvm->srcu);
888 
889         /*
890          * Increment the new memslot generation a second time. This prevents
891          * vm exits that race with memslot updates from caching a memslot
892          * generation that will (potentially) be valid forever.
893          *
894          * Generations must be unique even across address spaces.  We do not need
895          * a global counter for that, instead the generation space is evenly split
896          * across address spaces.  For example, with two address spaces, address
897          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
898          * use generations 2, 6, 10, 14, ...
899          */
900         gen = slots->generation + KVM_ADDRESS_SPACE_NUM * 2 - 1;
901 
902         kvm_arch_memslots_updated(kvm, gen);
903 
904         slots->generation = gen;
905 
906         return old_memslots;
907 }
908 
909 /*
910  * Allocate some memory and give it an address in the guest physical address
911  * space.
912  *
913  * Discontiguous memory is allowed, mostly for framebuffers.
914  *
915  * Must be called holding kvm->slots_lock for write.
916  */
917 int __kvm_set_memory_region(struct kvm *kvm,
918                             const struct kvm_userspace_memory_region *mem)
919 {
920         int r;
921         gfn_t base_gfn;
922         unsigned long npages;
923         struct kvm_memory_slot *slot;
924         struct kvm_memory_slot old, new;
925         struct kvm_memslots *slots = NULL, *old_memslots;
926         int as_id, id;
927         enum kvm_mr_change change;
928 
929         r = check_memory_region_flags(mem);
930         if (r)
931                 goto out;
932 
933         r = -EINVAL;
934         as_id = mem->slot >> 16;
935         id = (u16)mem->slot;
936 
937         /* General sanity checks */
938         if (mem->memory_size & (PAGE_SIZE - 1))
939                 goto out;
940         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
941                 goto out;
942         /* We can read the guest memory with __xxx_user() later on. */
943         if ((id < KVM_USER_MEM_SLOTS) &&
944             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
945              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
946                         mem->memory_size)))
947                 goto out;
948         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
949                 goto out;
950         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
951                 goto out;
952 
953         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
954         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
955         npages = mem->memory_size >> PAGE_SHIFT;
956 
957         if (npages > KVM_MEM_MAX_NR_PAGES)
958                 goto out;
959 
960         new = old = *slot;
961 
962         new.id = id;
963         new.base_gfn = base_gfn;
964         new.npages = npages;
965         new.flags = mem->flags;
966 
967         if (npages) {
968                 if (!old.npages)
969                         change = KVM_MR_CREATE;
970                 else { /* Modify an existing slot. */
971                         if ((mem->userspace_addr != old.userspace_addr) ||
972                             (npages != old.npages) ||
973                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
974                                 goto out;
975 
976                         if (base_gfn != old.base_gfn)
977                                 change = KVM_MR_MOVE;
978                         else if (new.flags != old.flags)
979                                 change = KVM_MR_FLAGS_ONLY;
980                         else { /* Nothing to change. */
981                                 r = 0;
982                                 goto out;
983                         }
984                 }
985         } else {
986                 if (!old.npages)
987                         goto out;
988 
989                 change = KVM_MR_DELETE;
990                 new.base_gfn = 0;
991                 new.flags = 0;
992         }
993 
994         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
995                 /* Check for overlaps */
996                 r = -EEXIST;
997                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
998                         if (slot->id == id)
999                                 continue;
1000                         if (!((base_gfn + npages <= slot->base_gfn) ||
1001                               (base_gfn >= slot->base_gfn + slot->npages)))
1002                                 goto out;
1003                 }
1004         }
1005 
1006         /* Free page dirty bitmap if unneeded */
1007         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1008                 new.dirty_bitmap = NULL;
1009 
1010         r = -ENOMEM;
1011         if (change == KVM_MR_CREATE) {
1012                 new.userspace_addr = mem->userspace_addr;
1013 
1014                 if (kvm_arch_create_memslot(kvm, &new, npages))
1015                         goto out_free;
1016         }
1017 
1018         /* Allocate page dirty bitmap if needed */
1019         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1020                 if (kvm_create_dirty_bitmap(&new) < 0)
1021                         goto out_free;
1022         }
1023 
1024         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1025         if (!slots)
1026                 goto out_free;
1027         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1028 
1029         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1030                 slot = id_to_memslot(slots, id);
1031                 slot->flags |= KVM_MEMSLOT_INVALID;
1032 
1033                 old_memslots = install_new_memslots(kvm, as_id, slots);
1034 
1035                 /* From this point no new shadow pages pointing to a deleted,
1036                  * or moved, memslot will be created.
1037                  *
1038                  * validation of sp->gfn happens in:
1039                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1040                  *      - kvm_is_visible_gfn (mmu_check_roots)
1041                  */
1042                 kvm_arch_flush_shadow_memslot(kvm, slot);
1043 
1044                 /*
1045                  * We can re-use the old_memslots from above, the only difference
1046                  * from the currently installed memslots is the invalid flag.  This
1047                  * will get overwritten by update_memslots anyway.
1048                  */
1049                 slots = old_memslots;
1050         }
1051 
1052         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1053         if (r)
1054                 goto out_slots;
1055 
1056         /* actual memory is freed via old in kvm_free_memslot below */
1057         if (change == KVM_MR_DELETE) {
1058                 new.dirty_bitmap = NULL;
1059                 memset(&new.arch, 0, sizeof(new.arch));
1060         }
1061 
1062         update_memslots(slots, &new, change);
1063         old_memslots = install_new_memslots(kvm, as_id, slots);
1064 
1065         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1066 
1067         kvm_free_memslot(kvm, &old, &new);
1068         kvfree(old_memslots);
1069         return 0;
1070 
1071 out_slots:
1072         kvfree(slots);
1073 out_free:
1074         kvm_free_memslot(kvm, &new, &old);
1075 out:
1076         return r;
1077 }
1078 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1079 
1080 int kvm_set_memory_region(struct kvm *kvm,
1081                           const struct kvm_userspace_memory_region *mem)
1082 {
1083         int r;
1084 
1085         mutex_lock(&kvm->slots_lock);
1086         r = __kvm_set_memory_region(kvm, mem);
1087         mutex_unlock(&kvm->slots_lock);
1088         return r;
1089 }
1090 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1091 
1092 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1093                                           struct kvm_userspace_memory_region *mem)
1094 {
1095         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1096                 return -EINVAL;
1097 
1098         return kvm_set_memory_region(kvm, mem);
1099 }
1100 
1101 int kvm_get_dirty_log(struct kvm *kvm,
1102                         struct kvm_dirty_log *log, int *is_dirty)
1103 {
1104         struct kvm_memslots *slots;
1105         struct kvm_memory_slot *memslot;
1106         int i, as_id, id;
1107         unsigned long n;
1108         unsigned long any = 0;
1109 
1110         as_id = log->slot >> 16;
1111         id = (u16)log->slot;
1112         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1113                 return -EINVAL;
1114 
1115         slots = __kvm_memslots(kvm, as_id);
1116         memslot = id_to_memslot(slots, id);
1117         if (!memslot->dirty_bitmap)
1118                 return -ENOENT;
1119 
1120         n = kvm_dirty_bitmap_bytes(memslot);
1121 
1122         for (i = 0; !any && i < n/sizeof(long); ++i)
1123                 any = memslot->dirty_bitmap[i];
1124 
1125         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1126                 return -EFAULT;
1127 
1128         if (any)
1129                 *is_dirty = 1;
1130         return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1133 
1134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1135 /**
1136  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1137  *      and reenable dirty page tracking for the corresponding pages.
1138  * @kvm:        pointer to kvm instance
1139  * @log:        slot id and address to which we copy the log
1140  * @is_dirty:   flag set if any page is dirty
1141  *
1142  * We need to keep it in mind that VCPU threads can write to the bitmap
1143  * concurrently. So, to avoid losing track of dirty pages we keep the
1144  * following order:
1145  *
1146  *    1. Take a snapshot of the bit and clear it if needed.
1147  *    2. Write protect the corresponding page.
1148  *    3. Copy the snapshot to the userspace.
1149  *    4. Upon return caller flushes TLB's if needed.
1150  *
1151  * Between 2 and 4, the guest may write to the page using the remaining TLB
1152  * entry.  This is not a problem because the page is reported dirty using
1153  * the snapshot taken before and step 4 ensures that writes done after
1154  * exiting to userspace will be logged for the next call.
1155  *
1156  */
1157 int kvm_get_dirty_log_protect(struct kvm *kvm,
1158                         struct kvm_dirty_log *log, bool *flush)
1159 {
1160         struct kvm_memslots *slots;
1161         struct kvm_memory_slot *memslot;
1162         int i, as_id, id;
1163         unsigned long n;
1164         unsigned long *dirty_bitmap;
1165         unsigned long *dirty_bitmap_buffer;
1166 
1167         as_id = log->slot >> 16;
1168         id = (u16)log->slot;
1169         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1170                 return -EINVAL;
1171 
1172         slots = __kvm_memslots(kvm, as_id);
1173         memslot = id_to_memslot(slots, id);
1174 
1175         dirty_bitmap = memslot->dirty_bitmap;
1176         if (!dirty_bitmap)
1177                 return -ENOENT;
1178 
1179         n = kvm_dirty_bitmap_bytes(memslot);
1180         *flush = false;
1181         if (kvm->manual_dirty_log_protect) {
1182                 /*
1183                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1184                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1185                  * is some code duplication between this function and
1186                  * kvm_get_dirty_log, but hopefully all architecture
1187                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1188                  * can be eliminated.
1189                  */
1190                 dirty_bitmap_buffer = dirty_bitmap;
1191         } else {
1192                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1193                 memset(dirty_bitmap_buffer, 0, n);
1194 
1195                 spin_lock(&kvm->mmu_lock);
1196                 for (i = 0; i < n / sizeof(long); i++) {
1197                         unsigned long mask;
1198                         gfn_t offset;
1199 
1200                         if (!dirty_bitmap[i])
1201                                 continue;
1202 
1203                         *flush = true;
1204                         mask = xchg(&dirty_bitmap[i], 0);
1205                         dirty_bitmap_buffer[i] = mask;
1206 
1207                         if (mask) {
1208                                 offset = i * BITS_PER_LONG;
1209                                 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1210                                                                         offset, mask);
1211                         }
1212                 }
1213                 spin_unlock(&kvm->mmu_lock);
1214         }
1215 
1216         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1217                 return -EFAULT;
1218         return 0;
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1221 
1222 /**
1223  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1224  *      and reenable dirty page tracking for the corresponding pages.
1225  * @kvm:        pointer to kvm instance
1226  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1227  */
1228 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1229                                 struct kvm_clear_dirty_log *log, bool *flush)
1230 {
1231         struct kvm_memslots *slots;
1232         struct kvm_memory_slot *memslot;
1233         int as_id, id;
1234         gfn_t offset;
1235         unsigned long i, n;
1236         unsigned long *dirty_bitmap;
1237         unsigned long *dirty_bitmap_buffer;
1238 
1239         as_id = log->slot >> 16;
1240         id = (u16)log->slot;
1241         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1242                 return -EINVAL;
1243 
1244         if (log->first_page & 63)
1245                 return -EINVAL;
1246 
1247         slots = __kvm_memslots(kvm, as_id);
1248         memslot = id_to_memslot(slots, id);
1249 
1250         dirty_bitmap = memslot->dirty_bitmap;
1251         if (!dirty_bitmap)
1252                 return -ENOENT;
1253 
1254         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1255 
1256         if (log->first_page > memslot->npages ||
1257             log->num_pages > memslot->npages - log->first_page ||
1258             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1259             return -EINVAL;
1260 
1261         *flush = false;
1262         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1263         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1264                 return -EFAULT;
1265 
1266         spin_lock(&kvm->mmu_lock);
1267         for (offset = log->first_page,
1268              i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1269              i++, offset += BITS_PER_LONG) {
1270                 unsigned long mask = *dirty_bitmap_buffer++;
1271                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1272                 if (!mask)
1273                         continue;
1274 
1275                 mask &= atomic_long_fetch_andnot(mask, p);
1276 
1277                 /*
1278                  * mask contains the bits that really have been cleared.  This
1279                  * never includes any bits beyond the length of the memslot (if
1280                  * the length is not aligned to 64 pages), therefore it is not
1281                  * a problem if userspace sets them in log->dirty_bitmap.
1282                 */
1283                 if (mask) {
1284                         *flush = true;
1285                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1286                                                                 offset, mask);
1287                 }
1288         }
1289         spin_unlock(&kvm->mmu_lock);
1290 
1291         return 0;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1294 #endif
1295 
1296 bool kvm_largepages_enabled(void)
1297 {
1298         return largepages_enabled;
1299 }
1300 
1301 void kvm_disable_largepages(void)
1302 {
1303         largepages_enabled = false;
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1306 
1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1308 {
1309         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1310 }
1311 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1312 
1313 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1314 {
1315         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1316 }
1317 
1318 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1319 {
1320         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1321 
1322         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1323               memslot->flags & KVM_MEMSLOT_INVALID)
1324                 return false;
1325 
1326         return true;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1329 
1330 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1331 {
1332         struct vm_area_struct *vma;
1333         unsigned long addr, size;
1334 
1335         size = PAGE_SIZE;
1336 
1337         addr = gfn_to_hva(kvm, gfn);
1338         if (kvm_is_error_hva(addr))
1339                 return PAGE_SIZE;
1340 
1341         down_read(&current->mm->mmap_sem);
1342         vma = find_vma(current->mm, addr);
1343         if (!vma)
1344                 goto out;
1345 
1346         size = vma_kernel_pagesize(vma);
1347 
1348 out:
1349         up_read(&current->mm->mmap_sem);
1350 
1351         return size;
1352 }
1353 
1354 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1355 {
1356         return slot->flags & KVM_MEM_READONLY;
1357 }
1358 
1359 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1360                                        gfn_t *nr_pages, bool write)
1361 {
1362         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1363                 return KVM_HVA_ERR_BAD;
1364 
1365         if (memslot_is_readonly(slot) && write)
1366                 return KVM_HVA_ERR_RO_BAD;
1367 
1368         if (nr_pages)
1369                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1370 
1371         return __gfn_to_hva_memslot(slot, gfn);
1372 }
1373 
1374 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1375                                      gfn_t *nr_pages)
1376 {
1377         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1378 }
1379 
1380 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1381                                         gfn_t gfn)
1382 {
1383         return gfn_to_hva_many(slot, gfn, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1386 
1387 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1388 {
1389         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1390 }
1391 EXPORT_SYMBOL_GPL(gfn_to_hva);
1392 
1393 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1394 {
1395         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1398 
1399 /*
1400  * Return the hva of a @gfn and the R/W attribute if possible.
1401  *
1402  * @slot: the kvm_memory_slot which contains @gfn
1403  * @gfn: the gfn to be translated
1404  * @writable: used to return the read/write attribute of the @slot if the hva
1405  * is valid and @writable is not NULL
1406  */
1407 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1408                                       gfn_t gfn, bool *writable)
1409 {
1410         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1411 
1412         if (!kvm_is_error_hva(hva) && writable)
1413                 *writable = !memslot_is_readonly(slot);
1414 
1415         return hva;
1416 }
1417 
1418 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1419 {
1420         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1421 
1422         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1423 }
1424 
1425 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1426 {
1427         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1428 
1429         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1430 }
1431 
1432 static inline int check_user_page_hwpoison(unsigned long addr)
1433 {
1434         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1435 
1436         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1437         return rc == -EHWPOISON;
1438 }
1439 
1440 /*
1441  * The fast path to get the writable pfn which will be stored in @pfn,
1442  * true indicates success, otherwise false is returned.  It's also the
1443  * only part that runs if we can are in atomic context.
1444  */
1445 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1446                             bool *writable, kvm_pfn_t *pfn)
1447 {
1448         struct page *page[1];
1449         int npages;
1450 
1451         /*
1452          * Fast pin a writable pfn only if it is a write fault request
1453          * or the caller allows to map a writable pfn for a read fault
1454          * request.
1455          */
1456         if (!(write_fault || writable))
1457                 return false;
1458 
1459         npages = __get_user_pages_fast(addr, 1, 1, page);
1460         if (npages == 1) {
1461                 *pfn = page_to_pfn(page[0]);
1462 
1463                 if (writable)
1464                         *writable = true;
1465                 return true;
1466         }
1467 
1468         return false;
1469 }
1470 
1471 /*
1472  * The slow path to get the pfn of the specified host virtual address,
1473  * 1 indicates success, -errno is returned if error is detected.
1474  */
1475 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1476                            bool *writable, kvm_pfn_t *pfn)
1477 {
1478         unsigned int flags = FOLL_HWPOISON;
1479         struct page *page;
1480         int npages = 0;
1481 
1482         might_sleep();
1483 
1484         if (writable)
1485                 *writable = write_fault;
1486 
1487         if (write_fault)
1488                 flags |= FOLL_WRITE;
1489         if (async)
1490                 flags |= FOLL_NOWAIT;
1491 
1492         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1493         if (npages != 1)
1494                 return npages;
1495 
1496         /* map read fault as writable if possible */
1497         if (unlikely(!write_fault) && writable) {
1498                 struct page *wpage;
1499 
1500                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1501                         *writable = true;
1502                         put_page(page);
1503                         page = wpage;
1504                 }
1505         }
1506         *pfn = page_to_pfn(page);
1507         return npages;
1508 }
1509 
1510 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1511 {
1512         if (unlikely(!(vma->vm_flags & VM_READ)))
1513                 return false;
1514 
1515         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1516                 return false;
1517 
1518         return true;
1519 }
1520 
1521 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1522                                unsigned long addr, bool *async,
1523                                bool write_fault, bool *writable,
1524                                kvm_pfn_t *p_pfn)
1525 {
1526         unsigned long pfn;
1527         int r;
1528 
1529         r = follow_pfn(vma, addr, &pfn);
1530         if (r) {
1531                 /*
1532                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1533                  * not call the fault handler, so do it here.
1534                  */
1535                 bool unlocked = false;
1536                 r = fixup_user_fault(current, current->mm, addr,
1537                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1538                                      &unlocked);
1539                 if (unlocked)
1540                         return -EAGAIN;
1541                 if (r)
1542                         return r;
1543 
1544                 r = follow_pfn(vma, addr, &pfn);
1545                 if (r)
1546                         return r;
1547 
1548         }
1549 
1550         if (writable)
1551                 *writable = true;
1552 
1553         /*
1554          * Get a reference here because callers of *hva_to_pfn* and
1555          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1556          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1557          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1558          * simply do nothing for reserved pfns.
1559          *
1560          * Whoever called remap_pfn_range is also going to call e.g.
1561          * unmap_mapping_range before the underlying pages are freed,
1562          * causing a call to our MMU notifier.
1563          */ 
1564         kvm_get_pfn(pfn);
1565 
1566         *p_pfn = pfn;
1567         return 0;
1568 }
1569 
1570 /*
1571  * Pin guest page in memory and return its pfn.
1572  * @addr: host virtual address which maps memory to the guest
1573  * @atomic: whether this function can sleep
1574  * @async: whether this function need to wait IO complete if the
1575  *         host page is not in the memory
1576  * @write_fault: whether we should get a writable host page
1577  * @writable: whether it allows to map a writable host page for !@write_fault
1578  *
1579  * The function will map a writable host page for these two cases:
1580  * 1): @write_fault = true
1581  * 2): @write_fault = false && @writable, @writable will tell the caller
1582  *     whether the mapping is writable.
1583  */
1584 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1585                         bool write_fault, bool *writable)
1586 {
1587         struct vm_area_struct *vma;
1588         kvm_pfn_t pfn = 0;
1589         int npages, r;
1590 
1591         /* we can do it either atomically or asynchronously, not both */
1592         BUG_ON(atomic && async);
1593 
1594         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1595                 return pfn;
1596 
1597         if (atomic)
1598                 return KVM_PFN_ERR_FAULT;
1599 
1600         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1601         if (npages == 1)
1602                 return pfn;
1603 
1604         down_read(&current->mm->mmap_sem);
1605         if (npages == -EHWPOISON ||
1606               (!async && check_user_page_hwpoison(addr))) {
1607                 pfn = KVM_PFN_ERR_HWPOISON;
1608                 goto exit;
1609         }
1610 
1611 retry:
1612         vma = find_vma_intersection(current->mm, addr, addr + 1);
1613 
1614         if (vma == NULL)
1615                 pfn = KVM_PFN_ERR_FAULT;
1616         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1617                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1618                 if (r == -EAGAIN)
1619                         goto retry;
1620                 if (r < 0)
1621                         pfn = KVM_PFN_ERR_FAULT;
1622         } else {
1623                 if (async && vma_is_valid(vma, write_fault))
1624                         *async = true;
1625                 pfn = KVM_PFN_ERR_FAULT;
1626         }
1627 exit:
1628         up_read(&current->mm->mmap_sem);
1629         return pfn;
1630 }
1631 
1632 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1633                                bool atomic, bool *async, bool write_fault,
1634                                bool *writable)
1635 {
1636         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1637 
1638         if (addr == KVM_HVA_ERR_RO_BAD) {
1639                 if (writable)
1640                         *writable = false;
1641                 return KVM_PFN_ERR_RO_FAULT;
1642         }
1643 
1644         if (kvm_is_error_hva(addr)) {
1645                 if (writable)
1646                         *writable = false;
1647                 return KVM_PFN_NOSLOT;
1648         }
1649 
1650         /* Do not map writable pfn in the readonly memslot. */
1651         if (writable && memslot_is_readonly(slot)) {
1652                 *writable = false;
1653                 writable = NULL;
1654         }
1655 
1656         return hva_to_pfn(addr, atomic, async, write_fault,
1657                           writable);
1658 }
1659 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1660 
1661 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1662                       bool *writable)
1663 {
1664         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1665                                     write_fault, writable);
1666 }
1667 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1668 
1669 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1670 {
1671         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1674 
1675 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1676 {
1677         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1680 
1681 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1682 {
1683         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1684 }
1685 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1686 
1687 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1688 {
1689         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1692 
1693 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1694 {
1695         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1696 }
1697 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1698 
1699 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1700 {
1701         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1704 
1705 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1706                             struct page **pages, int nr_pages)
1707 {
1708         unsigned long addr;
1709         gfn_t entry = 0;
1710 
1711         addr = gfn_to_hva_many(slot, gfn, &entry);
1712         if (kvm_is_error_hva(addr))
1713                 return -1;
1714 
1715         if (entry < nr_pages)
1716                 return 0;
1717 
1718         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1719 }
1720 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1721 
1722 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1723 {
1724         if (is_error_noslot_pfn(pfn))
1725                 return KVM_ERR_PTR_BAD_PAGE;
1726 
1727         if (kvm_is_reserved_pfn(pfn)) {
1728                 WARN_ON(1);
1729                 return KVM_ERR_PTR_BAD_PAGE;
1730         }
1731 
1732         return pfn_to_page(pfn);
1733 }
1734 
1735 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1736 {
1737         kvm_pfn_t pfn;
1738 
1739         pfn = gfn_to_pfn(kvm, gfn);
1740 
1741         return kvm_pfn_to_page(pfn);
1742 }
1743 EXPORT_SYMBOL_GPL(gfn_to_page);
1744 
1745 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1746 {
1747         kvm_pfn_t pfn;
1748 
1749         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1750 
1751         return kvm_pfn_to_page(pfn);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1754 
1755 void kvm_release_page_clean(struct page *page)
1756 {
1757         WARN_ON(is_error_page(page));
1758 
1759         kvm_release_pfn_clean(page_to_pfn(page));
1760 }
1761 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1762 
1763 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1764 {
1765         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1766                 put_page(pfn_to_page(pfn));
1767 }
1768 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1769 
1770 void kvm_release_page_dirty(struct page *page)
1771 {
1772         WARN_ON(is_error_page(page));
1773 
1774         kvm_release_pfn_dirty(page_to_pfn(page));
1775 }
1776 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1777 
1778 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1779 {
1780         kvm_set_pfn_dirty(pfn);
1781         kvm_release_pfn_clean(pfn);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1784 
1785 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1786 {
1787         if (!kvm_is_reserved_pfn(pfn)) {
1788                 struct page *page = pfn_to_page(pfn);
1789 
1790                 if (!PageReserved(page))
1791                         SetPageDirty(page);
1792         }
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1795 
1796 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1797 {
1798         if (!kvm_is_reserved_pfn(pfn))
1799                 mark_page_accessed(pfn_to_page(pfn));
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1802 
1803 void kvm_get_pfn(kvm_pfn_t pfn)
1804 {
1805         if (!kvm_is_reserved_pfn(pfn))
1806                 get_page(pfn_to_page(pfn));
1807 }
1808 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1809 
1810 static int next_segment(unsigned long len, int offset)
1811 {
1812         if (len > PAGE_SIZE - offset)
1813                 return PAGE_SIZE - offset;
1814         else
1815                 return len;
1816 }
1817 
1818 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1819                                  void *data, int offset, int len)
1820 {
1821         int r;
1822         unsigned long addr;
1823 
1824         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1825         if (kvm_is_error_hva(addr))
1826                 return -EFAULT;
1827         r = __copy_from_user(data, (void __user *)addr + offset, len);
1828         if (r)
1829                 return -EFAULT;
1830         return 0;
1831 }
1832 
1833 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1834                         int len)
1835 {
1836         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1837 
1838         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1839 }
1840 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1841 
1842 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1843                              int offset, int len)
1844 {
1845         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1846 
1847         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1850 
1851 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1852 {
1853         gfn_t gfn = gpa >> PAGE_SHIFT;
1854         int seg;
1855         int offset = offset_in_page(gpa);
1856         int ret;
1857 
1858         while ((seg = next_segment(len, offset)) != 0) {
1859                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1860                 if (ret < 0)
1861                         return ret;
1862                 offset = 0;
1863                 len -= seg;
1864                 data += seg;
1865                 ++gfn;
1866         }
1867         return 0;
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_read_guest);
1870 
1871 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1872 {
1873         gfn_t gfn = gpa >> PAGE_SHIFT;
1874         int seg;
1875         int offset = offset_in_page(gpa);
1876         int ret;
1877 
1878         while ((seg = next_segment(len, offset)) != 0) {
1879                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1880                 if (ret < 0)
1881                         return ret;
1882                 offset = 0;
1883                 len -= seg;
1884                 data += seg;
1885                 ++gfn;
1886         }
1887         return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1890 
1891 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1892                                    void *data, int offset, unsigned long len)
1893 {
1894         int r;
1895         unsigned long addr;
1896 
1897         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1898         if (kvm_is_error_hva(addr))
1899                 return -EFAULT;
1900         pagefault_disable();
1901         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1902         pagefault_enable();
1903         if (r)
1904                 return -EFAULT;
1905         return 0;
1906 }
1907 
1908 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1909                           unsigned long len)
1910 {
1911         gfn_t gfn = gpa >> PAGE_SHIFT;
1912         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1913         int offset = offset_in_page(gpa);
1914 
1915         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1918 
1919 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1920                                void *data, unsigned long len)
1921 {
1922         gfn_t gfn = gpa >> PAGE_SHIFT;
1923         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1924         int offset = offset_in_page(gpa);
1925 
1926         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1929 
1930 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1931                                   const void *data, int offset, int len)
1932 {
1933         int r;
1934         unsigned long addr;
1935 
1936         addr = gfn_to_hva_memslot(memslot, gfn);
1937         if (kvm_is_error_hva(addr))
1938                 return -EFAULT;
1939         r = __copy_to_user((void __user *)addr + offset, data, len);
1940         if (r)
1941                 return -EFAULT;
1942         mark_page_dirty_in_slot(memslot, gfn);
1943         return 0;
1944 }
1945 
1946 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1947                          const void *data, int offset, int len)
1948 {
1949         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1950 
1951         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1952 }
1953 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1954 
1955 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1956                               const void *data, int offset, int len)
1957 {
1958         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1959 
1960         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1961 }
1962 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1963 
1964 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1965                     unsigned long len)
1966 {
1967         gfn_t gfn = gpa >> PAGE_SHIFT;
1968         int seg;
1969         int offset = offset_in_page(gpa);
1970         int ret;
1971 
1972         while ((seg = next_segment(len, offset)) != 0) {
1973                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1974                 if (ret < 0)
1975                         return ret;
1976                 offset = 0;
1977                 len -= seg;
1978                 data += seg;
1979                 ++gfn;
1980         }
1981         return 0;
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_write_guest);
1984 
1985 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1986                          unsigned long len)
1987 {
1988         gfn_t gfn = gpa >> PAGE_SHIFT;
1989         int seg;
1990         int offset = offset_in_page(gpa);
1991         int ret;
1992 
1993         while ((seg = next_segment(len, offset)) != 0) {
1994                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1995                 if (ret < 0)
1996                         return ret;
1997                 offset = 0;
1998                 len -= seg;
1999                 data += seg;
2000                 ++gfn;
2001         }
2002         return 0;
2003 }
2004 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2005 
2006 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2007                                        struct gfn_to_hva_cache *ghc,
2008                                        gpa_t gpa, unsigned long len)
2009 {
2010         int offset = offset_in_page(gpa);
2011         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2012         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2013         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2014         gfn_t nr_pages_avail;
2015         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2016 
2017         ghc->gpa = gpa;
2018         ghc->generation = slots->generation;
2019         ghc->len = len;
2020         ghc->hva = KVM_HVA_ERR_BAD;
2021 
2022         /*
2023          * If the requested region crosses two memslots, we still
2024          * verify that the entire region is valid here.
2025          */
2026         while (!r && start_gfn <= end_gfn) {
2027                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2028                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2029                                            &nr_pages_avail);
2030                 if (kvm_is_error_hva(ghc->hva))
2031                         r = -EFAULT;
2032                 start_gfn += nr_pages_avail;
2033         }
2034 
2035         /* Use the slow path for cross page reads and writes. */
2036         if (!r && nr_pages_needed == 1)
2037                 ghc->hva += offset;
2038         else
2039                 ghc->memslot = NULL;
2040 
2041         return r;
2042 }
2043 
2044 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2045                               gpa_t gpa, unsigned long len)
2046 {
2047         struct kvm_memslots *slots = kvm_memslots(kvm);
2048         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2049 }
2050 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2051 
2052 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2053                                   void *data, unsigned int offset,
2054                                   unsigned long len)
2055 {
2056         struct kvm_memslots *slots = kvm_memslots(kvm);
2057         int r;
2058         gpa_t gpa = ghc->gpa + offset;
2059 
2060         BUG_ON(len + offset > ghc->len);
2061 
2062         if (slots->generation != ghc->generation)
2063                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2064 
2065         if (unlikely(!ghc->memslot))
2066                 return kvm_write_guest(kvm, gpa, data, len);
2067 
2068         if (kvm_is_error_hva(ghc->hva))
2069                 return -EFAULT;
2070 
2071         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2072         if (r)
2073                 return -EFAULT;
2074         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2075 
2076         return 0;
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2079 
2080 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2081                            void *data, unsigned long len)
2082 {
2083         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2086 
2087 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2088                            void *data, unsigned long len)
2089 {
2090         struct kvm_memslots *slots = kvm_memslots(kvm);
2091         int r;
2092 
2093         BUG_ON(len > ghc->len);
2094 
2095         if (slots->generation != ghc->generation)
2096                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2097 
2098         if (unlikely(!ghc->memslot))
2099                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2100 
2101         if (kvm_is_error_hva(ghc->hva))
2102                 return -EFAULT;
2103 
2104         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2105         if (r)
2106                 return -EFAULT;
2107 
2108         return 0;
2109 }
2110 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2111 
2112 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2113 {
2114         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2115 
2116         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2117 }
2118 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2119 
2120 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2121 {
2122         gfn_t gfn = gpa >> PAGE_SHIFT;
2123         int seg;
2124         int offset = offset_in_page(gpa);
2125         int ret;
2126 
2127         while ((seg = next_segment(len, offset)) != 0) {
2128                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2129                 if (ret < 0)
2130                         return ret;
2131                 offset = 0;
2132                 len -= seg;
2133                 ++gfn;
2134         }
2135         return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2138 
2139 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2140                                     gfn_t gfn)
2141 {
2142         if (memslot && memslot->dirty_bitmap) {
2143                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2144 
2145                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2146         }
2147 }
2148 
2149 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2150 {
2151         struct kvm_memory_slot *memslot;
2152 
2153         memslot = gfn_to_memslot(kvm, gfn);
2154         mark_page_dirty_in_slot(memslot, gfn);
2155 }
2156 EXPORT_SYMBOL_GPL(mark_page_dirty);
2157 
2158 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2159 {
2160         struct kvm_memory_slot *memslot;
2161 
2162         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2163         mark_page_dirty_in_slot(memslot, gfn);
2164 }
2165 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2166 
2167 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2168 {
2169         if (!vcpu->sigset_active)
2170                 return;
2171 
2172         /*
2173          * This does a lockless modification of ->real_blocked, which is fine
2174          * because, only current can change ->real_blocked and all readers of
2175          * ->real_blocked don't care as long ->real_blocked is always a subset
2176          * of ->blocked.
2177          */
2178         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2179 }
2180 
2181 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2182 {
2183         if (!vcpu->sigset_active)
2184                 return;
2185 
2186         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2187         sigemptyset(&current->real_blocked);
2188 }
2189 
2190 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2191 {
2192         unsigned int old, val, grow;
2193 
2194         old = val = vcpu->halt_poll_ns;
2195         grow = READ_ONCE(halt_poll_ns_grow);
2196         /* 10us base */
2197         if (val == 0 && grow)
2198                 val = 10000;
2199         else
2200                 val *= grow;
2201 
2202         if (val > halt_poll_ns)
2203                 val = halt_poll_ns;
2204 
2205         vcpu->halt_poll_ns = val;
2206         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2207 }
2208 
2209 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2210 {
2211         unsigned int old, val, shrink;
2212 
2213         old = val = vcpu->halt_poll_ns;
2214         shrink = READ_ONCE(halt_poll_ns_shrink);
2215         if (shrink == 0)
2216                 val = 0;
2217         else
2218                 val /= shrink;
2219 
2220         vcpu->halt_poll_ns = val;
2221         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2222 }
2223 
2224 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2225 {
2226         int ret = -EINTR;
2227         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2228 
2229         if (kvm_arch_vcpu_runnable(vcpu)) {
2230                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2231                 goto out;
2232         }
2233         if (kvm_cpu_has_pending_timer(vcpu))
2234                 goto out;
2235         if (signal_pending(current))
2236                 goto out;
2237 
2238         ret = 0;
2239 out:
2240         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2241         return ret;
2242 }
2243 
2244 /*
2245  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2246  */
2247 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2248 {
2249         ktime_t start, cur;
2250         DECLARE_SWAITQUEUE(wait);
2251         bool waited = false;
2252         u64 block_ns;
2253 
2254         start = cur = ktime_get();
2255         if (vcpu->halt_poll_ns) {
2256                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2257 
2258                 ++vcpu->stat.halt_attempted_poll;
2259                 do {
2260                         /*
2261                          * This sets KVM_REQ_UNHALT if an interrupt
2262                          * arrives.
2263                          */
2264                         if (kvm_vcpu_check_block(vcpu) < 0) {
2265                                 ++vcpu->stat.halt_successful_poll;
2266                                 if (!vcpu_valid_wakeup(vcpu))
2267                                         ++vcpu->stat.halt_poll_invalid;
2268                                 goto out;
2269                         }
2270                         cur = ktime_get();
2271                 } while (single_task_running() && ktime_before(cur, stop));
2272         }
2273 
2274         kvm_arch_vcpu_blocking(vcpu);
2275 
2276         for (;;) {
2277                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2278 
2279                 if (kvm_vcpu_check_block(vcpu) < 0)
2280                         break;
2281 
2282                 waited = true;
2283                 schedule();
2284         }
2285 
2286         finish_swait(&vcpu->wq, &wait);
2287         cur = ktime_get();
2288 
2289         kvm_arch_vcpu_unblocking(vcpu);
2290 out:
2291         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2292 
2293         if (!vcpu_valid_wakeup(vcpu))
2294                 shrink_halt_poll_ns(vcpu);
2295         else if (halt_poll_ns) {
2296                 if (block_ns <= vcpu->halt_poll_ns)
2297                         ;
2298                 /* we had a long block, shrink polling */
2299                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2300                         shrink_halt_poll_ns(vcpu);
2301                 /* we had a short halt and our poll time is too small */
2302                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2303                         block_ns < halt_poll_ns)
2304                         grow_halt_poll_ns(vcpu);
2305         } else
2306                 vcpu->halt_poll_ns = 0;
2307 
2308         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2309         kvm_arch_vcpu_block_finish(vcpu);
2310 }
2311 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2312 
2313 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2314 {
2315         struct swait_queue_head *wqp;
2316 
2317         wqp = kvm_arch_vcpu_wq(vcpu);
2318         if (swq_has_sleeper(wqp)) {
2319                 swake_up_one(wqp);
2320                 ++vcpu->stat.halt_wakeup;
2321                 return true;
2322         }
2323 
2324         return false;
2325 }
2326 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2327 
2328 #ifndef CONFIG_S390
2329 /*
2330  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2331  */
2332 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2333 {
2334         int me;
2335         int cpu = vcpu->cpu;
2336 
2337         if (kvm_vcpu_wake_up(vcpu))
2338                 return;
2339 
2340         me = get_cpu();
2341         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2342                 if (kvm_arch_vcpu_should_kick(vcpu))
2343                         smp_send_reschedule(cpu);
2344         put_cpu();
2345 }
2346 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2347 #endif /* !CONFIG_S390 */
2348 
2349 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2350 {
2351         struct pid *pid;
2352         struct task_struct *task = NULL;
2353         int ret = 0;
2354 
2355         rcu_read_lock();
2356         pid = rcu_dereference(target->pid);
2357         if (pid)
2358                 task = get_pid_task(pid, PIDTYPE_PID);
2359         rcu_read_unlock();
2360         if (!task)
2361                 return ret;
2362         ret = yield_to(task, 1);
2363         put_task_struct(task);
2364 
2365         return ret;
2366 }
2367 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2368 
2369 /*
2370  * Helper that checks whether a VCPU is eligible for directed yield.
2371  * Most eligible candidate to yield is decided by following heuristics:
2372  *
2373  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2374  *  (preempted lock holder), indicated by @in_spin_loop.
2375  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2376  *
2377  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2378  *  chance last time (mostly it has become eligible now since we have probably
2379  *  yielded to lockholder in last iteration. This is done by toggling
2380  *  @dy_eligible each time a VCPU checked for eligibility.)
2381  *
2382  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2383  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2384  *  burning. Giving priority for a potential lock-holder increases lock
2385  *  progress.
2386  *
2387  *  Since algorithm is based on heuristics, accessing another VCPU data without
2388  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2389  *  and continue with next VCPU and so on.
2390  */
2391 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2392 {
2393 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2394         bool eligible;
2395 
2396         eligible = !vcpu->spin_loop.in_spin_loop ||
2397                     vcpu->spin_loop.dy_eligible;
2398 
2399         if (vcpu->spin_loop.in_spin_loop)
2400                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2401 
2402         return eligible;
2403 #else
2404         return true;
2405 #endif
2406 }
2407 
2408 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2409 {
2410         struct kvm *kvm = me->kvm;
2411         struct kvm_vcpu *vcpu;
2412         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2413         int yielded = 0;
2414         int try = 3;
2415         int pass;
2416         int i;
2417 
2418         kvm_vcpu_set_in_spin_loop(me, true);
2419         /*
2420          * We boost the priority of a VCPU that is runnable but not
2421          * currently running, because it got preempted by something
2422          * else and called schedule in __vcpu_run.  Hopefully that
2423          * VCPU is holding the lock that we need and will release it.
2424          * We approximate round-robin by starting at the last boosted VCPU.
2425          */
2426         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2427                 kvm_for_each_vcpu(i, vcpu, kvm) {
2428                         if (!pass && i <= last_boosted_vcpu) {
2429                                 i = last_boosted_vcpu;
2430                                 continue;
2431                         } else if (pass && i > last_boosted_vcpu)
2432                                 break;
2433                         if (!READ_ONCE(vcpu->preempted))
2434                                 continue;
2435                         if (vcpu == me)
2436                                 continue;
2437                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2438                                 continue;
2439                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2440                                 continue;
2441                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2442                                 continue;
2443 
2444                         yielded = kvm_vcpu_yield_to(vcpu);
2445                         if (yielded > 0) {
2446                                 kvm->last_boosted_vcpu = i;
2447                                 break;
2448                         } else if (yielded < 0) {
2449                                 try--;
2450                                 if (!try)
2451                                         break;
2452                         }
2453                 }
2454         }
2455         kvm_vcpu_set_in_spin_loop(me, false);
2456 
2457         /* Ensure vcpu is not eligible during next spinloop */
2458         kvm_vcpu_set_dy_eligible(me, false);
2459 }
2460 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2461 
2462 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2463 {
2464         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2465         struct page *page;
2466 
2467         if (vmf->pgoff == 0)
2468                 page = virt_to_page(vcpu->run);
2469 #ifdef CONFIG_X86
2470         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2471                 page = virt_to_page(vcpu->arch.pio_data);
2472 #endif
2473 #ifdef CONFIG_KVM_MMIO
2474         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2475                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2476 #endif
2477         else
2478                 return kvm_arch_vcpu_fault(vcpu, vmf);
2479         get_page(page);
2480         vmf->page = page;
2481         return 0;
2482 }
2483 
2484 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2485         .fault = kvm_vcpu_fault,
2486 };
2487 
2488 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2489 {
2490         vma->vm_ops = &kvm_vcpu_vm_ops;
2491         return 0;
2492 }
2493 
2494 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2495 {
2496         struct kvm_vcpu *vcpu = filp->private_data;
2497 
2498         debugfs_remove_recursive(vcpu->debugfs_dentry);
2499         kvm_put_kvm(vcpu->kvm);
2500         return 0;
2501 }
2502 
2503 static struct file_operations kvm_vcpu_fops = {
2504         .release        = kvm_vcpu_release,
2505         .unlocked_ioctl = kvm_vcpu_ioctl,
2506         .mmap           = kvm_vcpu_mmap,
2507         .llseek         = noop_llseek,
2508         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2509 };
2510 
2511 /*
2512  * Allocates an inode for the vcpu.
2513  */
2514 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2515 {
2516         char name[8 + 1 + ITOA_MAX_LEN + 1];
2517 
2518         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2519         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2520 }
2521 
2522 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2523 {
2524         char dir_name[ITOA_MAX_LEN * 2];
2525         int ret;
2526 
2527         if (!kvm_arch_has_vcpu_debugfs())
2528                 return 0;
2529 
2530         if (!debugfs_initialized())
2531                 return 0;
2532 
2533         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2534         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2535                                                                 vcpu->kvm->debugfs_dentry);
2536         if (!vcpu->debugfs_dentry)
2537                 return -ENOMEM;
2538 
2539         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2540         if (ret < 0) {
2541                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2542                 return ret;
2543         }
2544 
2545         return 0;
2546 }
2547 
2548 /*
2549  * Creates some virtual cpus.  Good luck creating more than one.
2550  */
2551 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2552 {
2553         int r;
2554         struct kvm_vcpu *vcpu;
2555 
2556         if (id >= KVM_MAX_VCPU_ID)
2557                 return -EINVAL;
2558 
2559         mutex_lock(&kvm->lock);
2560         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2561                 mutex_unlock(&kvm->lock);
2562                 return -EINVAL;
2563         }
2564 
2565         kvm->created_vcpus++;
2566         mutex_unlock(&kvm->lock);
2567 
2568         vcpu = kvm_arch_vcpu_create(kvm, id);
2569         if (IS_ERR(vcpu)) {
2570                 r = PTR_ERR(vcpu);
2571                 goto vcpu_decrement;
2572         }
2573 
2574         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2575 
2576         r = kvm_arch_vcpu_setup(vcpu);
2577         if (r)
2578                 goto vcpu_destroy;
2579 
2580         r = kvm_create_vcpu_debugfs(vcpu);
2581         if (r)
2582                 goto vcpu_destroy;
2583 
2584         mutex_lock(&kvm->lock);
2585         if (kvm_get_vcpu_by_id(kvm, id)) {
2586                 r = -EEXIST;
2587                 goto unlock_vcpu_destroy;
2588         }
2589 
2590         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2591 
2592         /* Now it's all set up, let userspace reach it */
2593         kvm_get_kvm(kvm);
2594         r = create_vcpu_fd(vcpu);
2595         if (r < 0) {
2596                 kvm_put_kvm(kvm);
2597                 goto unlock_vcpu_destroy;
2598         }
2599 
2600         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2601 
2602         /*
2603          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2604          * before kvm->online_vcpu's incremented value.
2605          */
2606         smp_wmb();
2607         atomic_inc(&kvm->online_vcpus);
2608 
2609         mutex_unlock(&kvm->lock);
2610         kvm_arch_vcpu_postcreate(vcpu);
2611         return r;
2612 
2613 unlock_vcpu_destroy:
2614         mutex_unlock(&kvm->lock);
2615         debugfs_remove_recursive(vcpu->debugfs_dentry);
2616 vcpu_destroy:
2617         kvm_arch_vcpu_destroy(vcpu);
2618 vcpu_decrement:
2619         mutex_lock(&kvm->lock);
2620         kvm->created_vcpus--;
2621         mutex_unlock(&kvm->lock);
2622         return r;
2623 }
2624 
2625 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2626 {
2627         if (sigset) {
2628                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2629                 vcpu->sigset_active = 1;
2630                 vcpu->sigset = *sigset;
2631         } else
2632                 vcpu->sigset_active = 0;
2633         return 0;
2634 }
2635 
2636 static long kvm_vcpu_ioctl(struct file *filp,
2637                            unsigned int ioctl, unsigned long arg)
2638 {
2639         struct kvm_vcpu *vcpu = filp->private_data;
2640         void __user *argp = (void __user *)arg;
2641         int r;
2642         struct kvm_fpu *fpu = NULL;
2643         struct kvm_sregs *kvm_sregs = NULL;
2644 
2645         if (vcpu->kvm->mm != current->mm)
2646                 return -EIO;
2647 
2648         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2649                 return -EINVAL;
2650 
2651         /*
2652          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2653          * execution; mutex_lock() would break them.
2654          */
2655         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2656         if (r != -ENOIOCTLCMD)
2657                 return r;
2658 
2659         if (mutex_lock_killable(&vcpu->mutex))
2660                 return -EINTR;
2661         switch (ioctl) {
2662         case KVM_RUN: {
2663                 struct pid *oldpid;
2664                 r = -EINVAL;
2665                 if (arg)
2666                         goto out;
2667                 oldpid = rcu_access_pointer(vcpu->pid);
2668                 if (unlikely(oldpid != task_pid(current))) {
2669                         /* The thread running this VCPU changed. */
2670                         struct pid *newpid;
2671 
2672                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2673                         if (r)
2674                                 break;
2675 
2676                         newpid = get_task_pid(current, PIDTYPE_PID);
2677                         rcu_assign_pointer(vcpu->pid, newpid);
2678                         if (oldpid)
2679                                 synchronize_rcu();
2680                         put_pid(oldpid);
2681                 }
2682                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2683                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2684                 break;
2685         }
2686         case KVM_GET_REGS: {
2687                 struct kvm_regs *kvm_regs;
2688 
2689                 r = -ENOMEM;
2690                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2691                 if (!kvm_regs)
2692                         goto out;
2693                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2694                 if (r)
2695                         goto out_free1;
2696                 r = -EFAULT;
2697                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2698                         goto out_free1;
2699                 r = 0;
2700 out_free1:
2701                 kfree(kvm_regs);
2702                 break;
2703         }
2704         case KVM_SET_REGS: {
2705                 struct kvm_regs *kvm_regs;
2706 
2707                 r = -ENOMEM;
2708                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2709                 if (IS_ERR(kvm_regs)) {
2710                         r = PTR_ERR(kvm_regs);
2711                         goto out;
2712                 }
2713                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2714                 kfree(kvm_regs);
2715                 break;
2716         }
2717         case KVM_GET_SREGS: {
2718                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2719                 r = -ENOMEM;
2720                 if (!kvm_sregs)
2721                         goto out;
2722                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2723                 if (r)
2724                         goto out;
2725                 r = -EFAULT;
2726                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2727                         goto out;
2728                 r = 0;
2729                 break;
2730         }
2731         case KVM_SET_SREGS: {
2732                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2733                 if (IS_ERR(kvm_sregs)) {
2734                         r = PTR_ERR(kvm_sregs);
2735                         kvm_sregs = NULL;
2736                         goto out;
2737                 }
2738                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2739                 break;
2740         }
2741         case KVM_GET_MP_STATE: {
2742                 struct kvm_mp_state mp_state;
2743 
2744                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2745                 if (r)
2746                         goto out;
2747                 r = -EFAULT;
2748                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2749                         goto out;
2750                 r = 0;
2751                 break;
2752         }
2753         case KVM_SET_MP_STATE: {
2754                 struct kvm_mp_state mp_state;
2755 
2756                 r = -EFAULT;
2757                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2758                         goto out;
2759                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2760                 break;
2761         }
2762         case KVM_TRANSLATE: {
2763                 struct kvm_translation tr;
2764 
2765                 r = -EFAULT;
2766                 if (copy_from_user(&tr, argp, sizeof(tr)))
2767                         goto out;
2768                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2769                 if (r)
2770                         goto out;
2771                 r = -EFAULT;
2772                 if (copy_to_user(argp, &tr, sizeof(tr)))
2773                         goto out;
2774                 r = 0;
2775                 break;
2776         }
2777         case KVM_SET_GUEST_DEBUG: {
2778                 struct kvm_guest_debug dbg;
2779 
2780                 r = -EFAULT;
2781                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2782                         goto out;
2783                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2784                 break;
2785         }
2786         case KVM_SET_SIGNAL_MASK: {
2787                 struct kvm_signal_mask __user *sigmask_arg = argp;
2788                 struct kvm_signal_mask kvm_sigmask;
2789                 sigset_t sigset, *p;
2790 
2791                 p = NULL;
2792                 if (argp) {
2793                         r = -EFAULT;
2794                         if (copy_from_user(&kvm_sigmask, argp,
2795                                            sizeof(kvm_sigmask)))
2796                                 goto out;
2797                         r = -EINVAL;
2798                         if (kvm_sigmask.len != sizeof(sigset))
2799                                 goto out;
2800                         r = -EFAULT;
2801                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2802                                            sizeof(sigset)))
2803                                 goto out;
2804                         p = &sigset;
2805                 }
2806                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2807                 break;
2808         }
2809         case KVM_GET_FPU: {
2810                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2811                 r = -ENOMEM;
2812                 if (!fpu)
2813                         goto out;
2814                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2815                 if (r)
2816                         goto out;
2817                 r = -EFAULT;
2818                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2819                         goto out;
2820                 r = 0;
2821                 break;
2822         }
2823         case KVM_SET_FPU: {
2824                 fpu = memdup_user(argp, sizeof(*fpu));
2825                 if (IS_ERR(fpu)) {
2826                         r = PTR_ERR(fpu);
2827                         fpu = NULL;
2828                         goto out;
2829                 }
2830                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2831                 break;
2832         }
2833         default:
2834                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2835         }
2836 out:
2837         mutex_unlock(&vcpu->mutex);
2838         kfree(fpu);
2839         kfree(kvm_sregs);
2840         return r;
2841 }
2842 
2843 #ifdef CONFIG_KVM_COMPAT
2844 static long kvm_vcpu_compat_ioctl(struct file *filp,
2845                                   unsigned int ioctl, unsigned long arg)
2846 {
2847         struct kvm_vcpu *vcpu = filp->private_data;
2848         void __user *argp = compat_ptr(arg);
2849         int r;
2850 
2851         if (vcpu->kvm->mm != current->mm)
2852                 return -EIO;
2853 
2854         switch (ioctl) {
2855         case KVM_SET_SIGNAL_MASK: {
2856                 struct kvm_signal_mask __user *sigmask_arg = argp;
2857                 struct kvm_signal_mask kvm_sigmask;
2858                 sigset_t sigset;
2859 
2860                 if (argp) {
2861                         r = -EFAULT;
2862                         if (copy_from_user(&kvm_sigmask, argp,
2863                                            sizeof(kvm_sigmask)))
2864                                 goto out;
2865                         r = -EINVAL;
2866                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2867                                 goto out;
2868                         r = -EFAULT;
2869                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2870                                 goto out;
2871                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2872                 } else
2873                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2874                 break;
2875         }
2876         default:
2877                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2878         }
2879 
2880 out:
2881         return r;
2882 }
2883 #endif
2884 
2885 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2886                                  int (*accessor)(struct kvm_device *dev,
2887                                                  struct kvm_device_attr *attr),
2888                                  unsigned long arg)
2889 {
2890         struct kvm_device_attr attr;
2891 
2892         if (!accessor)
2893                 return -EPERM;
2894 
2895         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2896                 return -EFAULT;
2897 
2898         return accessor(dev, &attr);
2899 }
2900 
2901 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2902                              unsigned long arg)
2903 {
2904         struct kvm_device *dev = filp->private_data;
2905 
2906         if (dev->kvm->mm != current->mm)
2907                 return -EIO;
2908 
2909         switch (ioctl) {
2910         case KVM_SET_DEVICE_ATTR:
2911                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2912         case KVM_GET_DEVICE_ATTR:
2913                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2914         case KVM_HAS_DEVICE_ATTR:
2915                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2916         default:
2917                 if (dev->ops->ioctl)
2918                         return dev->ops->ioctl(dev, ioctl, arg);
2919 
2920                 return -ENOTTY;
2921         }
2922 }
2923 
2924 static int kvm_device_release(struct inode *inode, struct file *filp)
2925 {
2926         struct kvm_device *dev = filp->private_data;
2927         struct kvm *kvm = dev->kvm;
2928 
2929         kvm_put_kvm(kvm);
2930         return 0;
2931 }
2932 
2933 static const struct file_operations kvm_device_fops = {
2934         .unlocked_ioctl = kvm_device_ioctl,
2935         .release = kvm_device_release,
2936         KVM_COMPAT(kvm_device_ioctl),
2937 };
2938 
2939 struct kvm_device *kvm_device_from_filp(struct file *filp)
2940 {
2941         if (filp->f_op != &kvm_device_fops)
2942                 return NULL;
2943 
2944         return filp->private_data;
2945 }
2946 
2947 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2948 #ifdef CONFIG_KVM_MPIC
2949         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2950         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2951 #endif
2952 };
2953 
2954 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2955 {
2956         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2957                 return -ENOSPC;
2958 
2959         if (kvm_device_ops_table[type] != NULL)
2960                 return -EEXIST;
2961 
2962         kvm_device_ops_table[type] = ops;
2963         return 0;
2964 }
2965 
2966 void kvm_unregister_device_ops(u32 type)
2967 {
2968         if (kvm_device_ops_table[type] != NULL)
2969                 kvm_device_ops_table[type] = NULL;
2970 }
2971 
2972 static int kvm_ioctl_create_device(struct kvm *kvm,
2973                                    struct kvm_create_device *cd)
2974 {
2975         struct kvm_device_ops *ops = NULL;
2976         struct kvm_device *dev;
2977         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2978         int type;
2979         int ret;
2980 
2981         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2982                 return -ENODEV;
2983 
2984         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
2985         ops = kvm_device_ops_table[type];
2986         if (ops == NULL)
2987                 return -ENODEV;
2988 
2989         if (test)
2990                 return 0;
2991 
2992         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2993         if (!dev)
2994                 return -ENOMEM;
2995 
2996         dev->ops = ops;
2997         dev->kvm = kvm;
2998 
2999         mutex_lock(&kvm->lock);
3000         ret = ops->create(dev, type);
3001         if (ret < 0) {
3002                 mutex_unlock(&kvm->lock);
3003                 kfree(dev);
3004                 return ret;
3005         }
3006         list_add(&dev->vm_node, &kvm->devices);
3007         mutex_unlock(&kvm->lock);
3008 
3009         if (ops->init)
3010                 ops->init(dev);
3011 
3012         kvm_get_kvm(kvm);
3013         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3014         if (ret < 0) {
3015                 kvm_put_kvm(kvm);
3016                 mutex_lock(&kvm->lock);
3017                 list_del(&dev->vm_node);
3018                 mutex_unlock(&kvm->lock);
3019                 ops->destroy(dev);
3020                 return ret;
3021         }
3022 
3023         cd->fd = ret;
3024         return 0;
3025 }
3026 
3027 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3028 {
3029         switch (arg) {
3030         case KVM_CAP_USER_MEMORY:
3031         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3032         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3033         case KVM_CAP_INTERNAL_ERROR_DATA:
3034 #ifdef CONFIG_HAVE_KVM_MSI
3035         case KVM_CAP_SIGNAL_MSI:
3036 #endif
3037 #ifdef CONFIG_HAVE_KVM_IRQFD
3038         case KVM_CAP_IRQFD:
3039         case KVM_CAP_IRQFD_RESAMPLE:
3040 #endif
3041         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3042         case KVM_CAP_CHECK_EXTENSION_VM:
3043         case KVM_CAP_ENABLE_CAP_VM:
3044 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3045         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3046 #endif
3047                 return 1;
3048 #ifdef CONFIG_KVM_MMIO
3049         case KVM_CAP_COALESCED_MMIO:
3050                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3051         case KVM_CAP_COALESCED_PIO:
3052                 return 1;
3053 #endif
3054 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3055         case KVM_CAP_IRQ_ROUTING:
3056                 return KVM_MAX_IRQ_ROUTES;
3057 #endif
3058 #if KVM_ADDRESS_SPACE_NUM > 1
3059         case KVM_CAP_MULTI_ADDRESS_SPACE:
3060                 return KVM_ADDRESS_SPACE_NUM;
3061 #endif
3062         case KVM_CAP_MAX_VCPU_ID:
3063                 return KVM_MAX_VCPU_ID;
3064         default:
3065                 break;
3066         }
3067         return kvm_vm_ioctl_check_extension(kvm, arg);
3068 }
3069 
3070 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3071                                                   struct kvm_enable_cap *cap)
3072 {
3073         return -EINVAL;
3074 }
3075 
3076 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3077                                            struct kvm_enable_cap *cap)
3078 {
3079         switch (cap->cap) {
3080 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3081         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3082                 if (cap->flags || (cap->args[0] & ~1))
3083                         return -EINVAL;
3084                 kvm->manual_dirty_log_protect = cap->args[0];
3085                 return 0;
3086 #endif
3087         default:
3088                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3089         }
3090 }
3091 
3092 static long kvm_vm_ioctl(struct file *filp,
3093                            unsigned int ioctl, unsigned long arg)
3094 {
3095         struct kvm *kvm = filp->private_data;
3096         void __user *argp = (void __user *)arg;
3097         int r;
3098 
3099         if (kvm->mm != current->mm)
3100                 return -EIO;
3101         switch (ioctl) {
3102         case KVM_CREATE_VCPU:
3103                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3104                 break;
3105         case KVM_ENABLE_CAP: {
3106                 struct kvm_enable_cap cap;
3107 
3108                 r = -EFAULT;
3109                 if (copy_from_user(&cap, argp, sizeof(cap)))
3110                         goto out;
3111                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3112                 break;
3113         }
3114         case KVM_SET_USER_MEMORY_REGION: {
3115                 struct kvm_userspace_memory_region kvm_userspace_mem;
3116 
3117                 r = -EFAULT;
3118                 if (copy_from_user(&kvm_userspace_mem, argp,
3119                                                 sizeof(kvm_userspace_mem)))
3120                         goto out;
3121 
3122                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3123                 break;
3124         }
3125         case KVM_GET_DIRTY_LOG: {
3126                 struct kvm_dirty_log log;
3127 
3128                 r = -EFAULT;
3129                 if (copy_from_user(&log, argp, sizeof(log)))
3130                         goto out;
3131                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3132                 break;
3133         }
3134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3135         case KVM_CLEAR_DIRTY_LOG: {
3136                 struct kvm_clear_dirty_log log;
3137 
3138                 r = -EFAULT;
3139                 if (copy_from_user(&log, argp, sizeof(log)))
3140                         goto out;
3141                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3142                 break;
3143         }
3144 #endif
3145 #ifdef CONFIG_KVM_MMIO
3146         case KVM_REGISTER_COALESCED_MMIO: {
3147                 struct kvm_coalesced_mmio_zone zone;
3148 
3149                 r = -EFAULT;
3150                 if (copy_from_user(&zone, argp, sizeof(zone)))
3151                         goto out;
3152                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3153                 break;
3154         }
3155         case KVM_UNREGISTER_COALESCED_MMIO: {
3156                 struct kvm_coalesced_mmio_zone zone;
3157 
3158                 r = -EFAULT;
3159                 if (copy_from_user(&zone, argp, sizeof(zone)))
3160                         goto out;
3161                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3162                 break;
3163         }
3164 #endif
3165         case KVM_IRQFD: {
3166                 struct kvm_irqfd data;
3167 
3168                 r = -EFAULT;
3169                 if (copy_from_user(&data, argp, sizeof(data)))
3170                         goto out;
3171                 r = kvm_irqfd(kvm, &data);
3172                 break;
3173         }
3174         case KVM_IOEVENTFD: {
3175                 struct kvm_ioeventfd data;
3176 
3177                 r = -EFAULT;
3178                 if (copy_from_user(&data, argp, sizeof(data)))
3179                         goto out;
3180                 r = kvm_ioeventfd(kvm, &data);
3181                 break;
3182         }
3183 #ifdef CONFIG_HAVE_KVM_MSI
3184         case KVM_SIGNAL_MSI: {
3185                 struct kvm_msi msi;
3186 
3187                 r = -EFAULT;
3188                 if (copy_from_user(&msi, argp, sizeof(msi)))
3189                         goto out;
3190                 r = kvm_send_userspace_msi(kvm, &msi);
3191                 break;
3192         }
3193 #endif
3194 #ifdef __KVM_HAVE_IRQ_LINE
3195         case KVM_IRQ_LINE_STATUS:
3196         case KVM_IRQ_LINE: {
3197                 struct kvm_irq_level irq_event;
3198 
3199                 r = -EFAULT;
3200                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3201                         goto out;
3202 
3203                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3204                                         ioctl == KVM_IRQ_LINE_STATUS);
3205                 if (r)
3206                         goto out;
3207 
3208                 r = -EFAULT;
3209                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3210                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3211                                 goto out;
3212                 }
3213 
3214                 r = 0;
3215                 break;
3216         }
3217 #endif
3218 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3219         case KVM_SET_GSI_ROUTING: {
3220                 struct kvm_irq_routing routing;
3221                 struct kvm_irq_routing __user *urouting;
3222                 struct kvm_irq_routing_entry *entries = NULL;
3223 
3224                 r = -EFAULT;
3225                 if (copy_from_user(&routing, argp, sizeof(routing)))
3226                         goto out;
3227                 r = -EINVAL;
3228                 if (!kvm_arch_can_set_irq_routing(kvm))
3229                         goto out;
3230                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3231                         goto out;
3232                 if (routing.flags)
3233                         goto out;
3234                 if (routing.nr) {
3235                         r = -ENOMEM;
3236                         entries = vmalloc(array_size(sizeof(*entries),
3237                                                      routing.nr));
3238                         if (!entries)
3239                                 goto out;
3240                         r = -EFAULT;
3241                         urouting = argp;
3242                         if (copy_from_user(entries, urouting->entries,
3243                                            routing.nr * sizeof(*entries)))
3244                                 goto out_free_irq_routing;
3245                 }
3246                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3247                                         routing.flags);
3248 out_free_irq_routing:
3249                 vfree(entries);
3250                 break;
3251         }
3252 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3253         case KVM_CREATE_DEVICE: {
3254                 struct kvm_create_device cd;
3255 
3256                 r = -EFAULT;
3257                 if (copy_from_user(&cd, argp, sizeof(cd)))
3258                         goto out;
3259 
3260                 r = kvm_ioctl_create_device(kvm, &cd);
3261                 if (r)
3262                         goto out;
3263 
3264                 r = -EFAULT;
3265                 if (copy_to_user(argp, &cd, sizeof(cd)))
3266                         goto out;
3267 
3268                 r = 0;
3269                 break;
3270         }
3271         case KVM_CHECK_EXTENSION:
3272                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3273                 break;
3274         default:
3275                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3276         }
3277 out:
3278         return r;
3279 }
3280 
3281 #ifdef CONFIG_KVM_COMPAT
3282 struct compat_kvm_dirty_log {
3283         __u32 slot;
3284         __u32 padding1;
3285         union {
3286                 compat_uptr_t dirty_bitmap; /* one bit per page */
3287                 __u64 padding2;
3288         };
3289 };
3290 
3291 static long kvm_vm_compat_ioctl(struct file *filp,
3292                            unsigned int ioctl, unsigned long arg)
3293 {
3294         struct kvm *kvm = filp->private_data;
3295         int r;
3296 
3297         if (kvm->mm != current->mm)
3298                 return -EIO;
3299         switch (ioctl) {
3300         case KVM_GET_DIRTY_LOG: {
3301                 struct compat_kvm_dirty_log compat_log;
3302                 struct kvm_dirty_log log;
3303 
3304                 if (copy_from_user(&compat_log, (void __user *)arg,
3305                                    sizeof(compat_log)))
3306                         return -EFAULT;
3307                 log.slot         = compat_log.slot;
3308                 log.padding1     = compat_log.padding1;
3309                 log.padding2     = compat_log.padding2;
3310                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3311 
3312                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3313                 break;
3314         }
3315         default:
3316                 r = kvm_vm_ioctl(filp, ioctl, arg);
3317         }
3318         return r;
3319 }
3320 #endif
3321 
3322 static struct file_operations kvm_vm_fops = {
3323         .release        = kvm_vm_release,
3324         .unlocked_ioctl = kvm_vm_ioctl,
3325         .llseek         = noop_llseek,
3326         KVM_COMPAT(kvm_vm_compat_ioctl),
3327 };
3328 
3329 static int kvm_dev_ioctl_create_vm(unsigned long type)
3330 {
3331         int r;
3332         struct kvm *kvm;
3333         struct file *file;
3334 
3335         kvm = kvm_create_vm(type);
3336         if (IS_ERR(kvm))
3337                 return PTR_ERR(kvm);
3338 #ifdef CONFIG_KVM_MMIO
3339         r = kvm_coalesced_mmio_init(kvm);
3340         if (r < 0)
3341                 goto put_kvm;
3342 #endif
3343         r = get_unused_fd_flags(O_CLOEXEC);
3344         if (r < 0)
3345                 goto put_kvm;
3346 
3347         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3348         if (IS_ERR(file)) {
3349                 put_unused_fd(r);
3350                 r = PTR_ERR(file);
3351                 goto put_kvm;
3352         }
3353 
3354         /*
3355          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3356          * already set, with ->release() being kvm_vm_release().  In error
3357          * cases it will be called by the final fput(file) and will take
3358          * care of doing kvm_put_kvm(kvm).
3359          */
3360         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3361                 put_unused_fd(r);
3362                 fput(file);
3363                 return -ENOMEM;
3364         }
3365         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3366 
3367         fd_install(r, file);
3368         return r;
3369 
3370 put_kvm:
3371         kvm_put_kvm(kvm);
3372         return r;
3373 }
3374 
3375 static long kvm_dev_ioctl(struct file *filp,
3376                           unsigned int ioctl, unsigned long arg)
3377 {
3378         long r = -EINVAL;
3379 
3380         switch (ioctl) {
3381         case KVM_GET_API_VERSION:
3382                 if (arg)
3383                         goto out;
3384                 r = KVM_API_VERSION;
3385                 break;
3386         case KVM_CREATE_VM:
3387                 r = kvm_dev_ioctl_create_vm(arg);
3388                 break;
3389         case KVM_CHECK_EXTENSION:
3390                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3391                 break;
3392         case KVM_GET_VCPU_MMAP_SIZE:
3393                 if (arg)
3394                         goto out;
3395                 r = PAGE_SIZE;     /* struct kvm_run */
3396 #ifdef CONFIG_X86
3397                 r += PAGE_SIZE;    /* pio data page */
3398 #endif
3399 #ifdef CONFIG_KVM_MMIO
3400                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3401 #endif
3402                 break;
3403         case KVM_TRACE_ENABLE:
3404         case KVM_TRACE_PAUSE:
3405         case KVM_TRACE_DISABLE:
3406                 r = -EOPNOTSUPP;
3407                 break;
3408         default:
3409                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3410         }
3411 out:
3412         return r;
3413 }
3414 
3415 static struct file_operations kvm_chardev_ops = {
3416         .unlocked_ioctl = kvm_dev_ioctl,
3417         .llseek         = noop_llseek,
3418         KVM_COMPAT(kvm_dev_ioctl),
3419 };
3420 
3421 static struct miscdevice kvm_dev = {
3422         KVM_MINOR,
3423         "kvm",
3424         &kvm_chardev_ops,
3425 };
3426 
3427 static void hardware_enable_nolock(void *junk)
3428 {
3429         int cpu = raw_smp_processor_id();
3430         int r;
3431 
3432         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3433                 return;
3434 
3435         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3436 
3437         r = kvm_arch_hardware_enable();
3438 
3439         if (r) {
3440                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3441                 atomic_inc(&hardware_enable_failed);
3442                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3443         }
3444 }
3445 
3446 static int kvm_starting_cpu(unsigned int cpu)
3447 {
3448         raw_spin_lock(&kvm_count_lock);
3449         if (kvm_usage_count)
3450                 hardware_enable_nolock(NULL);
3451         raw_spin_unlock(&kvm_count_lock);
3452         return 0;
3453 }
3454 
3455 static void hardware_disable_nolock(void *junk)
3456 {
3457         int cpu = raw_smp_processor_id();
3458 
3459         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3460                 return;
3461         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3462         kvm_arch_hardware_disable();
3463 }
3464 
3465 static int kvm_dying_cpu(unsigned int cpu)
3466 {
3467         raw_spin_lock(&kvm_count_lock);
3468         if (kvm_usage_count)
3469                 hardware_disable_nolock(NULL);
3470         raw_spin_unlock(&kvm_count_lock);
3471         return 0;
3472 }
3473 
3474 static void hardware_disable_all_nolock(void)
3475 {
3476         BUG_ON(!kvm_usage_count);
3477 
3478         kvm_usage_count--;
3479         if (!kvm_usage_count)
3480                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3481 }
3482 
3483 static void hardware_disable_all(void)
3484 {
3485         raw_spin_lock(&kvm_count_lock);
3486         hardware_disable_all_nolock();
3487         raw_spin_unlock(&kvm_count_lock);
3488 }
3489 
3490 static int hardware_enable_all(void)
3491 {
3492         int r = 0;
3493 
3494         raw_spin_lock(&kvm_count_lock);
3495 
3496         kvm_usage_count++;
3497         if (kvm_usage_count == 1) {
3498                 atomic_set(&hardware_enable_failed, 0);
3499                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3500 
3501                 if (atomic_read(&hardware_enable_failed)) {
3502                         hardware_disable_all_nolock();
3503                         r = -EBUSY;
3504                 }
3505         }
3506 
3507         raw_spin_unlock(&kvm_count_lock);
3508 
3509         return r;
3510 }
3511 
3512 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3513                       void *v)
3514 {
3515         /*
3516          * Some (well, at least mine) BIOSes hang on reboot if
3517          * in vmx root mode.
3518          *
3519          * And Intel TXT required VMX off for all cpu when system shutdown.
3520          */
3521         pr_info("kvm: exiting hardware virtualization\n");
3522         kvm_rebooting = true;
3523         on_each_cpu(hardware_disable_nolock, NULL, 1);
3524         return NOTIFY_OK;
3525 }
3526 
3527 static struct notifier_block kvm_reboot_notifier = {
3528         .notifier_call = kvm_reboot,
3529         .priority = 0,
3530 };
3531 
3532 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3533 {
3534         int i;
3535 
3536         for (i = 0; i < bus->dev_count; i++) {
3537                 struct kvm_io_device *pos = bus->range[i].dev;
3538 
3539                 kvm_iodevice_destructor(pos);
3540         }
3541         kfree(bus);
3542 }
3543 
3544 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3545                                  const struct kvm_io_range *r2)
3546 {
3547         gpa_t addr1 = r1->addr;
3548         gpa_t addr2 = r2->addr;
3549 
3550         if (addr1 < addr2)
3551                 return -1;
3552 
3553         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3554          * accept any overlapping write.  Any order is acceptable for
3555          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3556          * we process all of them.
3557          */
3558         if (r2->len) {
3559                 addr1 += r1->len;
3560                 addr2 += r2->len;
3561         }
3562 
3563         if (addr1 > addr2)
3564                 return 1;
3565 
3566         return 0;
3567 }
3568 
3569 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3570 {
3571         return kvm_io_bus_cmp(p1, p2);
3572 }
3573 
3574 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3575                              gpa_t addr, int len)
3576 {
3577         struct kvm_io_range *range, key;
3578         int off;
3579 
3580         key = (struct kvm_io_range) {
3581                 .addr = addr,
3582                 .len = len,
3583         };
3584 
3585         range = bsearch(&key, bus->range, bus->dev_count,
3586                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3587         if (range == NULL)
3588                 return -ENOENT;
3589 
3590         off = range - bus->range;
3591 
3592         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3593                 off--;
3594 
3595         return off;
3596 }
3597 
3598 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3599                               struct kvm_io_range *range, const void *val)
3600 {
3601         int idx;
3602 
3603         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3604         if (idx < 0)
3605                 return -EOPNOTSUPP;
3606 
3607         while (idx < bus->dev_count &&
3608                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3609                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3610                                         range->len, val))
3611                         return idx;
3612                 idx++;
3613         }
3614 
3615         return -EOPNOTSUPP;
3616 }
3617 
3618 /* kvm_io_bus_write - called under kvm->slots_lock */
3619 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3620                      int len, const void *val)
3621 {
3622         struct kvm_io_bus *bus;
3623         struct kvm_io_range range;
3624         int r;
3625 
3626         range = (struct kvm_io_range) {
3627                 .addr = addr,
3628                 .len = len,
3629         };
3630 
3631         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3632         if (!bus)
3633                 return -ENOMEM;
3634         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3635         return r < 0 ? r : 0;
3636 }
3637 
3638 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3639 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3640                             gpa_t addr, int len, const void *val, long cookie)
3641 {
3642         struct kvm_io_bus *bus;
3643         struct kvm_io_range range;
3644 
3645         range = (struct kvm_io_range) {
3646                 .addr = addr,
3647                 .len = len,
3648         };
3649 
3650         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3651         if (!bus)
3652                 return -ENOMEM;
3653 
3654         /* First try the device referenced by cookie. */
3655         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3656             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3657                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3658                                         val))
3659                         return cookie;
3660 
3661         /*
3662          * cookie contained garbage; fall back to search and return the
3663          * correct cookie value.
3664          */
3665         return __kvm_io_bus_write(vcpu, bus, &range, val);
3666 }
3667 
3668 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3669                              struct kvm_io_range *range, void *val)
3670 {
3671         int idx;
3672 
3673         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3674         if (idx < 0)
3675                 return -EOPNOTSUPP;
3676 
3677         while (idx < bus->dev_count &&
3678                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3679                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3680                                        range->len, val))
3681                         return idx;
3682                 idx++;
3683         }
3684 
3685         return -EOPNOTSUPP;
3686 }
3687 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3688 
3689 /* kvm_io_bus_read - called under kvm->slots_lock */
3690 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3691                     int len, void *val)
3692 {
3693         struct kvm_io_bus *bus;
3694         struct kvm_io_range range;
3695         int r;
3696 
3697         range = (struct kvm_io_range) {
3698                 .addr = addr,
3699                 .len = len,
3700         };
3701 
3702         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3703         if (!bus)
3704                 return -ENOMEM;
3705         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3706         return r < 0 ? r : 0;
3707 }
3708 
3709 
3710 /* Caller must hold slots_lock. */
3711 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3712                             int len, struct kvm_io_device *dev)
3713 {
3714         int i;
3715         struct kvm_io_bus *new_bus, *bus;
3716         struct kvm_io_range range;
3717 
3718         bus = kvm_get_bus(kvm, bus_idx);
3719         if (!bus)
3720                 return -ENOMEM;
3721 
3722         /* exclude ioeventfd which is limited by maximum fd */
3723         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3724                 return -ENOSPC;
3725 
3726         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3727                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3728         if (!new_bus)
3729                 return -ENOMEM;
3730 
3731         range = (struct kvm_io_range) {
3732                 .addr = addr,
3733                 .len = len,
3734                 .dev = dev,
3735         };
3736 
3737         for (i = 0; i < bus->dev_count; i++)
3738                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3739                         break;
3740 
3741         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3742         new_bus->dev_count++;
3743         new_bus->range[i] = range;
3744         memcpy(new_bus->range + i + 1, bus->range + i,
3745                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3746         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3747         synchronize_srcu_expedited(&kvm->srcu);
3748         kfree(bus);
3749 
3750         return 0;
3751 }
3752 
3753 /* Caller must hold slots_lock. */
3754 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3755                                struct kvm_io_device *dev)
3756 {
3757         int i;
3758         struct kvm_io_bus *new_bus, *bus;
3759 
3760         bus = kvm_get_bus(kvm, bus_idx);
3761         if (!bus)
3762                 return;
3763 
3764         for (i = 0; i < bus->dev_count; i++)
3765                 if (bus->range[i].dev == dev) {
3766                         break;
3767                 }
3768 
3769         if (i == bus->dev_count)
3770                 return;
3771 
3772         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3773                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3774         if (!new_bus)  {
3775                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3776                 goto broken;
3777         }
3778 
3779         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3780         new_bus->dev_count--;
3781         memcpy(new_bus->range + i, bus->range + i + 1,
3782                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3783 
3784 broken:
3785         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3786         synchronize_srcu_expedited(&kvm->srcu);
3787         kfree(bus);
3788         return;
3789 }
3790 
3791 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3792                                          gpa_t addr)
3793 {
3794         struct kvm_io_bus *bus;
3795         int dev_idx, srcu_idx;
3796         struct kvm_io_device *iodev = NULL;
3797 
3798         srcu_idx = srcu_read_lock(&kvm->srcu);
3799 
3800         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3801         if (!bus)
3802                 goto out_unlock;
3803 
3804         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3805         if (dev_idx < 0)
3806                 goto out_unlock;
3807 
3808         iodev = bus->range[dev_idx].dev;
3809 
3810 out_unlock:
3811         srcu_read_unlock(&kvm->srcu, srcu_idx);
3812 
3813         return iodev;
3814 }
3815 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3816 
3817 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3818                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3819                            const char *fmt)
3820 {
3821         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3822                                           inode->i_private;
3823 
3824         /* The debugfs files are a reference to the kvm struct which
3825          * is still valid when kvm_destroy_vm is called.
3826          * To avoid the race between open and the removal of the debugfs
3827          * directory we test against the users count.
3828          */
3829         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3830                 return -ENOENT;
3831 
3832         if (simple_attr_open(inode, file, get, set, fmt)) {
3833                 kvm_put_kvm(stat_data->kvm);
3834                 return -ENOMEM;
3835         }
3836 
3837         return 0;
3838 }
3839 
3840 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3841 {
3842         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3843                                           inode->i_private;
3844 
3845         simple_attr_release(inode, file);
3846         kvm_put_kvm(stat_data->kvm);
3847 
3848         return 0;
3849 }
3850 
3851 static int vm_stat_get_per_vm(void *data, u64 *val)
3852 {
3853         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3854 
3855         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3856 
3857         return 0;
3858 }
3859 
3860 static int vm_stat_clear_per_vm(void *data, u64 val)
3861 {
3862         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3863 
3864         if (val)
3865                 return -EINVAL;
3866 
3867         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3868 
3869         return 0;
3870 }
3871 
3872 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3873 {
3874         __simple_attr_check_format("%llu\n", 0ull);
3875         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3876                                 vm_stat_clear_per_vm, "%llu\n");
3877 }
3878 
3879 static const struct file_operations vm_stat_get_per_vm_fops = {
3880         .owner   = THIS_MODULE,
3881         .open    = vm_stat_get_per_vm_open,
3882         .release = kvm_debugfs_release,
3883         .read    = simple_attr_read,
3884         .write   = simple_attr_write,
3885         .llseek  = no_llseek,
3886 };
3887 
3888 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3889 {
3890         int i;
3891         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3892         struct kvm_vcpu *vcpu;
3893 
3894         *val = 0;
3895 
3896         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3897                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3898 
3899         return 0;
3900 }
3901 
3902 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3903 {
3904         int i;
3905         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3906         struct kvm_vcpu *vcpu;
3907 
3908         if (val)
3909                 return -EINVAL;
3910 
3911         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3912                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3913 
3914         return 0;
3915 }
3916 
3917 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3918 {
3919         __simple_attr_check_format("%llu\n", 0ull);
3920         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3921                                  vcpu_stat_clear_per_vm, "%llu\n");
3922 }
3923 
3924 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3925         .owner   = THIS_MODULE,
3926         .open    = vcpu_stat_get_per_vm_open,
3927         .release = kvm_debugfs_release,
3928         .read    = simple_attr_read,
3929         .write   = simple_attr_write,
3930         .llseek  = no_llseek,
3931 };
3932 
3933 static const struct file_operations *stat_fops_per_vm[] = {
3934         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3935         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3936 };
3937 
3938 static int vm_stat_get(void *_offset, u64 *val)
3939 {
3940         unsigned offset = (long)_offset;
3941         struct kvm *kvm;
3942         struct kvm_stat_data stat_tmp = {.offset = offset};
3943         u64 tmp_val;
3944 
3945         *val = 0;
3946         spin_lock(&kvm_lock);
3947         list_for_each_entry(kvm, &vm_list, vm_list) {
3948                 stat_tmp.kvm = kvm;
3949                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3950                 *val += tmp_val;
3951         }
3952         spin_unlock(&kvm_lock);
3953         return 0;
3954 }
3955 
3956 static int vm_stat_clear(void *_offset, u64 val)
3957 {
3958         unsigned offset = (long)_offset;
3959         struct kvm *kvm;
3960         struct kvm_stat_data stat_tmp = {.offset = offset};
3961 
3962         if (val)
3963                 return -EINVAL;
3964 
3965         spin_lock(&kvm_lock);
3966         list_for_each_entry(kvm, &vm_list, vm_list) {
3967                 stat_tmp.kvm = kvm;
3968                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3969         }
3970         spin_unlock(&kvm_lock);
3971 
3972         return 0;
3973 }
3974 
3975 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3976 
3977 static int vcpu_stat_get(void *_offset, u64 *val)
3978 {
3979         unsigned offset = (long)_offset;
3980         struct kvm *kvm;
3981         struct kvm_stat_data stat_tmp = {.offset = offset};
3982         u64 tmp_val;
3983 
3984         *val = 0;
3985         spin_lock(&kvm_lock);
3986         list_for_each_entry(kvm, &vm_list, vm_list) {
3987                 stat_tmp.kvm = kvm;
3988                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3989                 *val += tmp_val;
3990         }
3991         spin_unlock(&kvm_lock);
3992         return 0;
3993 }
3994 
3995 static int vcpu_stat_clear(void *_offset, u64 val)
3996 {
3997         unsigned offset = (long)_offset;
3998         struct kvm *kvm;
3999         struct kvm_stat_data stat_tmp = {.offset = offset};
4000 
4001         if (val)
4002                 return -EINVAL;
4003 
4004         spin_lock(&kvm_lock);
4005         list_for_each_entry(kvm, &vm_list, vm_list) {
4006                 stat_tmp.kvm = kvm;
4007                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4008         }
4009         spin_unlock(&kvm_lock);
4010 
4011         return 0;
4012 }
4013 
4014 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4015                         "%llu\n");
4016 
4017 static const struct file_operations *stat_fops[] = {
4018         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4019         [KVM_STAT_VM]   = &vm_stat_fops,
4020 };
4021 
4022 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4023 {
4024         struct kobj_uevent_env *env;
4025         unsigned long long created, active;
4026 
4027         if (!kvm_dev.this_device || !kvm)
4028                 return;
4029 
4030         spin_lock(&kvm_lock);
4031         if (type == KVM_EVENT_CREATE_VM) {
4032                 kvm_createvm_count++;
4033                 kvm_active_vms++;
4034         } else if (type == KVM_EVENT_DESTROY_VM) {
4035                 kvm_active_vms--;
4036         }
4037         created = kvm_createvm_count;
4038         active = kvm_active_vms;
4039         spin_unlock(&kvm_lock);
4040 
4041         env = kzalloc(sizeof(*env), GFP_KERNEL);
4042         if (!env)
4043                 return;
4044 
4045         add_uevent_var(env, "CREATED=%llu", created);
4046         add_uevent_var(env, "COUNT=%llu", active);
4047 
4048         if (type == KVM_EVENT_CREATE_VM) {
4049                 add_uevent_var(env, "EVENT=create");
4050                 kvm->userspace_pid = task_pid_nr(current);
4051         } else if (type == KVM_EVENT_DESTROY_VM) {
4052                 add_uevent_var(env, "EVENT=destroy");
4053         }
4054         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4055 
4056         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4057                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4058 
4059                 if (p) {
4060                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4061                         if (!IS_ERR(tmp))
4062                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4063                         kfree(p);
4064                 }
4065         }
4066         /* no need for checks, since we are adding at most only 5 keys */
4067         env->envp[env->envp_idx++] = NULL;
4068         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4069         kfree(env);
4070 }
4071 
4072 static void kvm_init_debug(void)
4073 {
4074         struct kvm_stats_debugfs_item *p;
4075 
4076         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4077 
4078         kvm_debugfs_num_entries = 0;
4079         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4080                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4081                                     (void *)(long)p->offset,
4082                                     stat_fops[p->kind]);
4083         }
4084 }
4085 
4086 static int kvm_suspend(void)
4087 {
4088         if (kvm_usage_count)
4089                 hardware_disable_nolock(NULL);
4090         return 0;
4091 }
4092 
4093 static void kvm_resume(void)
4094 {
4095         if (kvm_usage_count) {
4096                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
4097                 hardware_enable_nolock(NULL);
4098         }
4099 }
4100 
4101 static struct syscore_ops kvm_syscore_ops = {
4102         .suspend = kvm_suspend,
4103         .resume = kvm_resume,
4104 };
4105 
4106 static inline
4107 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4108 {
4109         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4110 }
4111 
4112 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4113 {
4114         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4115 
4116         if (vcpu->preempted)
4117                 vcpu->preempted = false;
4118 
4119         kvm_arch_sched_in(vcpu, cpu);
4120 
4121         kvm_arch_vcpu_load(vcpu, cpu);
4122 }
4123 
4124 static void kvm_sched_out(struct preempt_notifier *pn,
4125                           struct task_struct *next)
4126 {
4127         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4128 
4129         if (current->state == TASK_RUNNING)
4130                 vcpu->preempted = true;
4131         kvm_arch_vcpu_put(vcpu);
4132 }
4133 
4134 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4135                   struct module *module)
4136 {
4137         int r;
4138         int cpu;
4139 
4140         r = kvm_arch_init(opaque);
4141         if (r)
4142                 goto out_fail;
4143 
4144         /*
4145          * kvm_arch_init makes sure there's at most one caller
4146          * for architectures that support multiple implementations,
4147          * like intel and amd on x86.
4148          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4149          * conflicts in case kvm is already setup for another implementation.
4150          */
4151         r = kvm_irqfd_init();
4152         if (r)
4153                 goto out_irqfd;
4154 
4155         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4156                 r = -ENOMEM;
4157                 goto out_free_0;
4158         }
4159 
4160         r = kvm_arch_hardware_setup();
4161         if (r < 0)
4162                 goto out_free_0a;
4163 
4164         for_each_online_cpu(cpu) {
4165                 smp_call_function_single(cpu,
4166                                 kvm_arch_check_processor_compat,
4167                                 &r, 1);
4168                 if (r < 0)
4169                         goto out_free_1;
4170         }
4171 
4172         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4173                                       kvm_starting_cpu, kvm_dying_cpu);
4174         if (r)
4175                 goto out_free_2;
4176         register_reboot_notifier(&kvm_reboot_notifier);
4177 
4178         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4179         if (!vcpu_align)
4180                 vcpu_align = __alignof__(struct kvm_vcpu);
4181         kvm_vcpu_cache =
4182                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4183                                            SLAB_ACCOUNT,
4184                                            offsetof(struct kvm_vcpu, arch),
4185                                            sizeof_field(struct kvm_vcpu, arch),
4186                                            NULL);
4187         if (!kvm_vcpu_cache) {
4188                 r = -ENOMEM;
4189                 goto out_free_3;
4190         }
4191 
4192         r = kvm_async_pf_init();
4193         if (r)
4194                 goto out_free;
4195 
4196         kvm_chardev_ops.owner = module;
4197         kvm_vm_fops.owner = module;
4198         kvm_vcpu_fops.owner = module;
4199 
4200         r = misc_register(&kvm_dev);
4201         if (r) {
4202                 pr_err("kvm: misc device register failed\n");
4203                 goto out_unreg;
4204         }
4205 
4206         register_syscore_ops(&kvm_syscore_ops);
4207 
4208         kvm_preempt_ops.sched_in = kvm_sched_in;
4209         kvm_preempt_ops.sched_out = kvm_sched_out;
4210 
4211         kvm_init_debug();
4212 
4213         r = kvm_vfio_ops_init();
4214         WARN_ON(r);
4215 
4216         return 0;
4217 
4218 out_unreg:
4219         kvm_async_pf_deinit();
4220 out_free:
4221         kmem_cache_destroy(kvm_vcpu_cache);
4222 out_free_3:
4223         unregister_reboot_notifier(&kvm_reboot_notifier);
4224         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4225 out_free_2:
4226 out_free_1:
4227         kvm_arch_hardware_unsetup();
4228 out_free_0a:
4229         free_cpumask_var(cpus_hardware_enabled);
4230 out_free_0:
4231         kvm_irqfd_exit();
4232 out_irqfd:
4233         kvm_arch_exit();
4234 out_fail:
4235         return r;
4236 }
4237 EXPORT_SYMBOL_GPL(kvm_init);
4238 
4239 void kvm_exit(void)
4240 {
4241         debugfs_remove_recursive(kvm_debugfs_dir);
4242         misc_deregister(&kvm_dev);
4243         kmem_cache_destroy(kvm_vcpu_cache);
4244         kvm_async_pf_deinit();
4245         unregister_syscore_ops(&kvm_syscore_ops);
4246         unregister_reboot_notifier(&kvm_reboot_notifier);
4247         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4248         on_each_cpu(hardware_disable_nolock, NULL, 1);
4249         kvm_arch_hardware_unsetup();
4250         kvm_arch_exit();
4251         kvm_irqfd_exit();
4252         free_cpumask_var(cpus_hardware_enabled);
4253         kvm_vfio_ops_exit();
4254 }
4255 EXPORT_SYMBOL_GPL(kvm_exit);
4256 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp