1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "mmu_lock.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 #define KVM_EVENT_CREATE_VM 0 153 #define KVM_EVENT_DESTROY_VM 1 154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 155 static unsigned long long kvm_createvm_count; 156 static unsigned long long kvm_active_vms; 157 158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 159 unsigned long start, unsigned long end) 160 { 161 } 162 163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 164 { 165 /* 166 * The metadata used by is_zone_device_page() to determine whether or 167 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 168 * the device has been pinned, e.g. by get_user_pages(). WARN if the 169 * page_count() is zero to help detect bad usage of this helper. 170 */ 171 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 172 return false; 173 174 return is_zone_device_page(pfn_to_page(pfn)); 175 } 176 177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 178 { 179 /* 180 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 181 * perspective they are "normal" pages, albeit with slightly different 182 * usage rules. 183 */ 184 if (pfn_valid(pfn)) 185 return PageReserved(pfn_to_page(pfn)) && 186 !is_zero_pfn(pfn) && 187 !kvm_is_zone_device_pfn(pfn); 188 189 return true; 190 } 191 192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn) 193 { 194 struct page *page = pfn_to_page(pfn); 195 196 if (!PageTransCompoundMap(page)) 197 return false; 198 199 return is_transparent_hugepage(compound_head(page)); 200 } 201 202 /* 203 * Switches to specified vcpu, until a matching vcpu_put() 204 */ 205 void vcpu_load(struct kvm_vcpu *vcpu) 206 { 207 int cpu = get_cpu(); 208 209 __this_cpu_write(kvm_running_vcpu, vcpu); 210 preempt_notifier_register(&vcpu->preempt_notifier); 211 kvm_arch_vcpu_load(vcpu, cpu); 212 put_cpu(); 213 } 214 EXPORT_SYMBOL_GPL(vcpu_load); 215 216 void vcpu_put(struct kvm_vcpu *vcpu) 217 { 218 preempt_disable(); 219 kvm_arch_vcpu_put(vcpu); 220 preempt_notifier_unregister(&vcpu->preempt_notifier); 221 __this_cpu_write(kvm_running_vcpu, NULL); 222 preempt_enable(); 223 } 224 EXPORT_SYMBOL_GPL(vcpu_put); 225 226 /* TODO: merge with kvm_arch_vcpu_should_kick */ 227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 228 { 229 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 230 231 /* 232 * We need to wait for the VCPU to reenable interrupts and get out of 233 * READING_SHADOW_PAGE_TABLES mode. 234 */ 235 if (req & KVM_REQUEST_WAIT) 236 return mode != OUTSIDE_GUEST_MODE; 237 238 /* 239 * Need to kick a running VCPU, but otherwise there is nothing to do. 240 */ 241 return mode == IN_GUEST_MODE; 242 } 243 244 static void ack_flush(void *_completed) 245 { 246 } 247 248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 249 { 250 if (unlikely(!cpus)) 251 cpus = cpu_online_mask; 252 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_flush, NULL, wait); 257 return true; 258 } 259 260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 261 struct kvm_vcpu *except, 262 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 263 { 264 int i, cpu, me; 265 struct kvm_vcpu *vcpu; 266 bool called; 267 268 me = get_cpu(); 269 270 kvm_for_each_vcpu(i, vcpu, kvm) { 271 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) || 272 vcpu == except) 273 continue; 274 275 kvm_make_request(req, vcpu); 276 cpu = vcpu->cpu; 277 278 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 279 continue; 280 281 if (tmp != NULL && cpu != -1 && cpu != me && 282 kvm_request_needs_ipi(vcpu, req)) 283 __cpumask_set_cpu(cpu, tmp); 284 } 285 286 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 287 put_cpu(); 288 289 return called; 290 } 291 292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 293 struct kvm_vcpu *except) 294 { 295 cpumask_var_t cpus; 296 bool called; 297 298 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 299 300 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus); 301 302 free_cpumask_var(cpus); 303 return called; 304 } 305 306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 307 { 308 return kvm_make_all_cpus_request_except(kvm, req, NULL); 309 } 310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 311 312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 313 void kvm_flush_remote_tlbs(struct kvm *kvm) 314 { 315 /* 316 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 317 * kvm_make_all_cpus_request. 318 */ 319 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 320 321 /* 322 * We want to publish modifications to the page tables before reading 323 * mode. Pairs with a memory barrier in arch-specific code. 324 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 325 * and smp_mb in walk_shadow_page_lockless_begin/end. 326 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 327 * 328 * There is already an smp_mb__after_atomic() before 329 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 330 * barrier here. 331 */ 332 if (!kvm_arch_flush_remote_tlb(kvm) 333 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 334 ++kvm->stat.generic.remote_tlb_flush; 335 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 336 } 337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 338 #endif 339 340 void kvm_reload_remote_mmus(struct kvm *kvm) 341 { 342 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 343 } 344 345 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 346 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 347 gfp_t gfp_flags) 348 { 349 gfp_flags |= mc->gfp_zero; 350 351 if (mc->kmem_cache) 352 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 353 else 354 return (void *)__get_free_page(gfp_flags); 355 } 356 357 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 358 { 359 void *obj; 360 361 if (mc->nobjs >= min) 362 return 0; 363 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 364 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 365 if (!obj) 366 return mc->nobjs >= min ? 0 : -ENOMEM; 367 mc->objects[mc->nobjs++] = obj; 368 } 369 return 0; 370 } 371 372 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 373 { 374 return mc->nobjs; 375 } 376 377 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 378 { 379 while (mc->nobjs) { 380 if (mc->kmem_cache) 381 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 382 else 383 free_page((unsigned long)mc->objects[--mc->nobjs]); 384 } 385 } 386 387 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 388 { 389 void *p; 390 391 if (WARN_ON(!mc->nobjs)) 392 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 393 else 394 p = mc->objects[--mc->nobjs]; 395 BUG_ON(!p); 396 return p; 397 } 398 #endif 399 400 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 401 { 402 mutex_init(&vcpu->mutex); 403 vcpu->cpu = -1; 404 vcpu->kvm = kvm; 405 vcpu->vcpu_id = id; 406 vcpu->pid = NULL; 407 rcuwait_init(&vcpu->wait); 408 kvm_async_pf_vcpu_init(vcpu); 409 410 vcpu->pre_pcpu = -1; 411 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 412 413 kvm_vcpu_set_in_spin_loop(vcpu, false); 414 kvm_vcpu_set_dy_eligible(vcpu, false); 415 vcpu->preempted = false; 416 vcpu->ready = false; 417 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 418 } 419 420 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 421 { 422 kvm_dirty_ring_free(&vcpu->dirty_ring); 423 kvm_arch_vcpu_destroy(vcpu); 424 425 /* 426 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 427 * the vcpu->pid pointer, and at destruction time all file descriptors 428 * are already gone. 429 */ 430 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 431 432 free_page((unsigned long)vcpu->run); 433 kmem_cache_free(kvm_vcpu_cache, vcpu); 434 } 435 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy); 436 437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 438 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 439 { 440 return container_of(mn, struct kvm, mmu_notifier); 441 } 442 443 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 444 struct mm_struct *mm, 445 unsigned long start, unsigned long end) 446 { 447 struct kvm *kvm = mmu_notifier_to_kvm(mn); 448 int idx; 449 450 idx = srcu_read_lock(&kvm->srcu); 451 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 452 srcu_read_unlock(&kvm->srcu, idx); 453 } 454 455 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 456 457 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 458 unsigned long end); 459 460 struct kvm_hva_range { 461 unsigned long start; 462 unsigned long end; 463 pte_t pte; 464 hva_handler_t handler; 465 on_lock_fn_t on_lock; 466 bool flush_on_ret; 467 bool may_block; 468 }; 469 470 /* 471 * Use a dedicated stub instead of NULL to indicate that there is no callback 472 * function/handler. The compiler technically can't guarantee that a real 473 * function will have a non-zero address, and so it will generate code to 474 * check for !NULL, whereas comparing against a stub will be elided at compile 475 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 476 */ 477 static void kvm_null_fn(void) 478 { 479 480 } 481 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 482 483 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 484 const struct kvm_hva_range *range) 485 { 486 bool ret = false, locked = false; 487 struct kvm_gfn_range gfn_range; 488 struct kvm_memory_slot *slot; 489 struct kvm_memslots *slots; 490 int i, idx; 491 492 /* A null handler is allowed if and only if on_lock() is provided. */ 493 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 494 IS_KVM_NULL_FN(range->handler))) 495 return 0; 496 497 idx = srcu_read_lock(&kvm->srcu); 498 499 /* The on_lock() path does not yet support lock elision. */ 500 if (!IS_KVM_NULL_FN(range->on_lock)) { 501 locked = true; 502 KVM_MMU_LOCK(kvm); 503 504 range->on_lock(kvm, range->start, range->end); 505 506 if (IS_KVM_NULL_FN(range->handler)) 507 goto out_unlock; 508 } 509 510 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 511 slots = __kvm_memslots(kvm, i); 512 kvm_for_each_memslot(slot, slots) { 513 unsigned long hva_start, hva_end; 514 515 hva_start = max(range->start, slot->userspace_addr); 516 hva_end = min(range->end, slot->userspace_addr + 517 (slot->npages << PAGE_SHIFT)); 518 if (hva_start >= hva_end) 519 continue; 520 521 /* 522 * To optimize for the likely case where the address 523 * range is covered by zero or one memslots, don't 524 * bother making these conditional (to avoid writes on 525 * the second or later invocation of the handler). 526 */ 527 gfn_range.pte = range->pte; 528 gfn_range.may_block = range->may_block; 529 530 /* 531 * {gfn(page) | page intersects with [hva_start, hva_end)} = 532 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 533 */ 534 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 535 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 536 gfn_range.slot = slot; 537 538 if (!locked) { 539 locked = true; 540 KVM_MMU_LOCK(kvm); 541 } 542 ret |= range->handler(kvm, &gfn_range); 543 } 544 } 545 546 if (range->flush_on_ret && (ret || kvm->tlbs_dirty)) 547 kvm_flush_remote_tlbs(kvm); 548 549 out_unlock: 550 if (locked) 551 KVM_MMU_UNLOCK(kvm); 552 553 srcu_read_unlock(&kvm->srcu, idx); 554 555 /* The notifiers are averse to booleans. :-( */ 556 return (int)ret; 557 } 558 559 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 560 unsigned long start, 561 unsigned long end, 562 pte_t pte, 563 hva_handler_t handler) 564 { 565 struct kvm *kvm = mmu_notifier_to_kvm(mn); 566 const struct kvm_hva_range range = { 567 .start = start, 568 .end = end, 569 .pte = pte, 570 .handler = handler, 571 .on_lock = (void *)kvm_null_fn, 572 .flush_on_ret = true, 573 .may_block = false, 574 }; 575 576 return __kvm_handle_hva_range(kvm, &range); 577 } 578 579 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 580 unsigned long start, 581 unsigned long end, 582 hva_handler_t handler) 583 { 584 struct kvm *kvm = mmu_notifier_to_kvm(mn); 585 const struct kvm_hva_range range = { 586 .start = start, 587 .end = end, 588 .pte = __pte(0), 589 .handler = handler, 590 .on_lock = (void *)kvm_null_fn, 591 .flush_on_ret = false, 592 .may_block = false, 593 }; 594 595 return __kvm_handle_hva_range(kvm, &range); 596 } 597 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 598 struct mm_struct *mm, 599 unsigned long address, 600 pte_t pte) 601 { 602 struct kvm *kvm = mmu_notifier_to_kvm(mn); 603 604 trace_kvm_set_spte_hva(address); 605 606 /* 607 * .change_pte() must be surrounded by .invalidate_range_{start,end}(), 608 * and so always runs with an elevated notifier count. This obviates 609 * the need to bump the sequence count. 610 */ 611 WARN_ON_ONCE(!kvm->mmu_notifier_count); 612 613 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 614 } 615 616 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 617 unsigned long end) 618 { 619 /* 620 * The count increase must become visible at unlock time as no 621 * spte can be established without taking the mmu_lock and 622 * count is also read inside the mmu_lock critical section. 623 */ 624 kvm->mmu_notifier_count++; 625 if (likely(kvm->mmu_notifier_count == 1)) { 626 kvm->mmu_notifier_range_start = start; 627 kvm->mmu_notifier_range_end = end; 628 } else { 629 /* 630 * Fully tracking multiple concurrent ranges has dimishing 631 * returns. Keep things simple and just find the minimal range 632 * which includes the current and new ranges. As there won't be 633 * enough information to subtract a range after its invalidate 634 * completes, any ranges invalidated concurrently will 635 * accumulate and persist until all outstanding invalidates 636 * complete. 637 */ 638 kvm->mmu_notifier_range_start = 639 min(kvm->mmu_notifier_range_start, start); 640 kvm->mmu_notifier_range_end = 641 max(kvm->mmu_notifier_range_end, end); 642 } 643 } 644 645 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 646 const struct mmu_notifier_range *range) 647 { 648 struct kvm *kvm = mmu_notifier_to_kvm(mn); 649 const struct kvm_hva_range hva_range = { 650 .start = range->start, 651 .end = range->end, 652 .pte = __pte(0), 653 .handler = kvm_unmap_gfn_range, 654 .on_lock = kvm_inc_notifier_count, 655 .flush_on_ret = true, 656 .may_block = mmu_notifier_range_blockable(range), 657 }; 658 659 trace_kvm_unmap_hva_range(range->start, range->end); 660 661 __kvm_handle_hva_range(kvm, &hva_range); 662 663 return 0; 664 } 665 666 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 667 unsigned long end) 668 { 669 /* 670 * This sequence increase will notify the kvm page fault that 671 * the page that is going to be mapped in the spte could have 672 * been freed. 673 */ 674 kvm->mmu_notifier_seq++; 675 smp_wmb(); 676 /* 677 * The above sequence increase must be visible before the 678 * below count decrease, which is ensured by the smp_wmb above 679 * in conjunction with the smp_rmb in mmu_notifier_retry(). 680 */ 681 kvm->mmu_notifier_count--; 682 } 683 684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 685 const struct mmu_notifier_range *range) 686 { 687 struct kvm *kvm = mmu_notifier_to_kvm(mn); 688 const struct kvm_hva_range hva_range = { 689 .start = range->start, 690 .end = range->end, 691 .pte = __pte(0), 692 .handler = (void *)kvm_null_fn, 693 .on_lock = kvm_dec_notifier_count, 694 .flush_on_ret = false, 695 .may_block = mmu_notifier_range_blockable(range), 696 }; 697 698 __kvm_handle_hva_range(kvm, &hva_range); 699 700 BUG_ON(kvm->mmu_notifier_count < 0); 701 } 702 703 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 704 struct mm_struct *mm, 705 unsigned long start, 706 unsigned long end) 707 { 708 trace_kvm_age_hva(start, end); 709 710 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 711 } 712 713 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 714 struct mm_struct *mm, 715 unsigned long start, 716 unsigned long end) 717 { 718 trace_kvm_age_hva(start, end); 719 720 /* 721 * Even though we do not flush TLB, this will still adversely 722 * affect performance on pre-Haswell Intel EPT, where there is 723 * no EPT Access Bit to clear so that we have to tear down EPT 724 * tables instead. If we find this unacceptable, we can always 725 * add a parameter to kvm_age_hva so that it effectively doesn't 726 * do anything on clear_young. 727 * 728 * Also note that currently we never issue secondary TLB flushes 729 * from clear_young, leaving this job up to the regular system 730 * cadence. If we find this inaccurate, we might come up with a 731 * more sophisticated heuristic later. 732 */ 733 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 734 } 735 736 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 737 struct mm_struct *mm, 738 unsigned long address) 739 { 740 trace_kvm_test_age_hva(address); 741 742 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 743 kvm_test_age_gfn); 744 } 745 746 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 747 struct mm_struct *mm) 748 { 749 struct kvm *kvm = mmu_notifier_to_kvm(mn); 750 int idx; 751 752 idx = srcu_read_lock(&kvm->srcu); 753 kvm_arch_flush_shadow_all(kvm); 754 srcu_read_unlock(&kvm->srcu, idx); 755 } 756 757 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 758 .invalidate_range = kvm_mmu_notifier_invalidate_range, 759 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 760 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 761 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 762 .clear_young = kvm_mmu_notifier_clear_young, 763 .test_young = kvm_mmu_notifier_test_young, 764 .change_pte = kvm_mmu_notifier_change_pte, 765 .release = kvm_mmu_notifier_release, 766 }; 767 768 static int kvm_init_mmu_notifier(struct kvm *kvm) 769 { 770 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 771 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 772 } 773 774 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 775 776 static int kvm_init_mmu_notifier(struct kvm *kvm) 777 { 778 return 0; 779 } 780 781 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 782 783 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 784 static int kvm_pm_notifier_call(struct notifier_block *bl, 785 unsigned long state, 786 void *unused) 787 { 788 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 789 790 return kvm_arch_pm_notifier(kvm, state); 791 } 792 793 static void kvm_init_pm_notifier(struct kvm *kvm) 794 { 795 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 796 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 797 kvm->pm_notifier.priority = INT_MAX; 798 register_pm_notifier(&kvm->pm_notifier); 799 } 800 801 static void kvm_destroy_pm_notifier(struct kvm *kvm) 802 { 803 unregister_pm_notifier(&kvm->pm_notifier); 804 } 805 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 806 static void kvm_init_pm_notifier(struct kvm *kvm) 807 { 808 } 809 810 static void kvm_destroy_pm_notifier(struct kvm *kvm) 811 { 812 } 813 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 814 815 static struct kvm_memslots *kvm_alloc_memslots(void) 816 { 817 int i; 818 struct kvm_memslots *slots; 819 820 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 821 if (!slots) 822 return NULL; 823 824 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 825 slots->id_to_index[i] = -1; 826 827 return slots; 828 } 829 830 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 831 { 832 if (!memslot->dirty_bitmap) 833 return; 834 835 kvfree(memslot->dirty_bitmap); 836 memslot->dirty_bitmap = NULL; 837 } 838 839 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 840 { 841 kvm_destroy_dirty_bitmap(slot); 842 843 kvm_arch_free_memslot(kvm, slot); 844 845 slot->flags = 0; 846 slot->npages = 0; 847 } 848 849 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 850 { 851 struct kvm_memory_slot *memslot; 852 853 if (!slots) 854 return; 855 856 kvm_for_each_memslot(memslot, slots) 857 kvm_free_memslot(kvm, memslot); 858 859 kvfree(slots); 860 } 861 862 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 863 { 864 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 865 case KVM_STATS_TYPE_INSTANT: 866 return 0444; 867 case KVM_STATS_TYPE_CUMULATIVE: 868 case KVM_STATS_TYPE_PEAK: 869 default: 870 return 0644; 871 } 872 } 873 874 875 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 876 { 877 int i; 878 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 879 kvm_vcpu_stats_header.num_desc; 880 881 if (!kvm->debugfs_dentry) 882 return; 883 884 debugfs_remove_recursive(kvm->debugfs_dentry); 885 886 if (kvm->debugfs_stat_data) { 887 for (i = 0; i < kvm_debugfs_num_entries; i++) 888 kfree(kvm->debugfs_stat_data[i]); 889 kfree(kvm->debugfs_stat_data); 890 } 891 } 892 893 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 894 { 895 static DEFINE_MUTEX(kvm_debugfs_lock); 896 struct dentry *dent; 897 char dir_name[ITOA_MAX_LEN * 2]; 898 struct kvm_stat_data *stat_data; 899 const struct _kvm_stats_desc *pdesc; 900 int i; 901 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 902 kvm_vcpu_stats_header.num_desc; 903 904 if (!debugfs_initialized()) 905 return 0; 906 907 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 908 mutex_lock(&kvm_debugfs_lock); 909 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 910 if (dent) { 911 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 912 dput(dent); 913 mutex_unlock(&kvm_debugfs_lock); 914 return 0; 915 } 916 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 917 mutex_unlock(&kvm_debugfs_lock); 918 if (IS_ERR(dent)) 919 return 0; 920 921 kvm->debugfs_dentry = dent; 922 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 923 sizeof(*kvm->debugfs_stat_data), 924 GFP_KERNEL_ACCOUNT); 925 if (!kvm->debugfs_stat_data) 926 return -ENOMEM; 927 928 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 929 pdesc = &kvm_vm_stats_desc[i]; 930 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 931 if (!stat_data) 932 return -ENOMEM; 933 934 stat_data->kvm = kvm; 935 stat_data->desc = pdesc; 936 stat_data->kind = KVM_STAT_VM; 937 kvm->debugfs_stat_data[i] = stat_data; 938 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 939 kvm->debugfs_dentry, stat_data, 940 &stat_fops_per_vm); 941 } 942 943 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 944 pdesc = &kvm_vcpu_stats_desc[i]; 945 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 946 if (!stat_data) 947 return -ENOMEM; 948 949 stat_data->kvm = kvm; 950 stat_data->desc = pdesc; 951 stat_data->kind = KVM_STAT_VCPU; 952 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 953 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 954 kvm->debugfs_dentry, stat_data, 955 &stat_fops_per_vm); 956 } 957 return 0; 958 } 959 960 /* 961 * Called after the VM is otherwise initialized, but just before adding it to 962 * the vm_list. 963 */ 964 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 965 { 966 return 0; 967 } 968 969 /* 970 * Called just after removing the VM from the vm_list, but before doing any 971 * other destruction. 972 */ 973 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 974 { 975 } 976 977 static struct kvm *kvm_create_vm(unsigned long type) 978 { 979 struct kvm *kvm = kvm_arch_alloc_vm(); 980 int r = -ENOMEM; 981 int i; 982 983 if (!kvm) 984 return ERR_PTR(-ENOMEM); 985 986 KVM_MMU_LOCK_INIT(kvm); 987 mmgrab(current->mm); 988 kvm->mm = current->mm; 989 kvm_eventfd_init(kvm); 990 mutex_init(&kvm->lock); 991 mutex_init(&kvm->irq_lock); 992 mutex_init(&kvm->slots_lock); 993 mutex_init(&kvm->slots_arch_lock); 994 INIT_LIST_HEAD(&kvm->devices); 995 996 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 997 998 if (init_srcu_struct(&kvm->srcu)) 999 goto out_err_no_srcu; 1000 if (init_srcu_struct(&kvm->irq_srcu)) 1001 goto out_err_no_irq_srcu; 1002 1003 refcount_set(&kvm->users_count, 1); 1004 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1005 struct kvm_memslots *slots = kvm_alloc_memslots(); 1006 1007 if (!slots) 1008 goto out_err_no_arch_destroy_vm; 1009 /* Generations must be different for each address space. */ 1010 slots->generation = i; 1011 rcu_assign_pointer(kvm->memslots[i], slots); 1012 } 1013 1014 for (i = 0; i < KVM_NR_BUSES; i++) { 1015 rcu_assign_pointer(kvm->buses[i], 1016 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1017 if (!kvm->buses[i]) 1018 goto out_err_no_arch_destroy_vm; 1019 } 1020 1021 kvm->max_halt_poll_ns = halt_poll_ns; 1022 1023 r = kvm_arch_init_vm(kvm, type); 1024 if (r) 1025 goto out_err_no_arch_destroy_vm; 1026 1027 r = hardware_enable_all(); 1028 if (r) 1029 goto out_err_no_disable; 1030 1031 #ifdef CONFIG_HAVE_KVM_IRQFD 1032 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1033 #endif 1034 1035 r = kvm_init_mmu_notifier(kvm); 1036 if (r) 1037 goto out_err_no_mmu_notifier; 1038 1039 r = kvm_arch_post_init_vm(kvm); 1040 if (r) 1041 goto out_err; 1042 1043 mutex_lock(&kvm_lock); 1044 list_add(&kvm->vm_list, &vm_list); 1045 mutex_unlock(&kvm_lock); 1046 1047 preempt_notifier_inc(); 1048 kvm_init_pm_notifier(kvm); 1049 1050 return kvm; 1051 1052 out_err: 1053 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1054 if (kvm->mmu_notifier.ops) 1055 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1056 #endif 1057 out_err_no_mmu_notifier: 1058 hardware_disable_all(); 1059 out_err_no_disable: 1060 kvm_arch_destroy_vm(kvm); 1061 out_err_no_arch_destroy_vm: 1062 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1063 for (i = 0; i < KVM_NR_BUSES; i++) 1064 kfree(kvm_get_bus(kvm, i)); 1065 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1066 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1067 cleanup_srcu_struct(&kvm->irq_srcu); 1068 out_err_no_irq_srcu: 1069 cleanup_srcu_struct(&kvm->srcu); 1070 out_err_no_srcu: 1071 kvm_arch_free_vm(kvm); 1072 mmdrop(current->mm); 1073 return ERR_PTR(r); 1074 } 1075 1076 static void kvm_destroy_devices(struct kvm *kvm) 1077 { 1078 struct kvm_device *dev, *tmp; 1079 1080 /* 1081 * We do not need to take the kvm->lock here, because nobody else 1082 * has a reference to the struct kvm at this point and therefore 1083 * cannot access the devices list anyhow. 1084 */ 1085 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1086 list_del(&dev->vm_node); 1087 dev->ops->destroy(dev); 1088 } 1089 } 1090 1091 static void kvm_destroy_vm(struct kvm *kvm) 1092 { 1093 int i; 1094 struct mm_struct *mm = kvm->mm; 1095 1096 kvm_destroy_pm_notifier(kvm); 1097 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1098 kvm_destroy_vm_debugfs(kvm); 1099 kvm_arch_sync_events(kvm); 1100 mutex_lock(&kvm_lock); 1101 list_del(&kvm->vm_list); 1102 mutex_unlock(&kvm_lock); 1103 kvm_arch_pre_destroy_vm(kvm); 1104 1105 kvm_free_irq_routing(kvm); 1106 for (i = 0; i < KVM_NR_BUSES; i++) { 1107 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1108 1109 if (bus) 1110 kvm_io_bus_destroy(bus); 1111 kvm->buses[i] = NULL; 1112 } 1113 kvm_coalesced_mmio_free(kvm); 1114 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1115 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1116 #else 1117 kvm_arch_flush_shadow_all(kvm); 1118 #endif 1119 kvm_arch_destroy_vm(kvm); 1120 kvm_destroy_devices(kvm); 1121 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1122 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1123 cleanup_srcu_struct(&kvm->irq_srcu); 1124 cleanup_srcu_struct(&kvm->srcu); 1125 kvm_arch_free_vm(kvm); 1126 preempt_notifier_dec(); 1127 hardware_disable_all(); 1128 mmdrop(mm); 1129 } 1130 1131 void kvm_get_kvm(struct kvm *kvm) 1132 { 1133 refcount_inc(&kvm->users_count); 1134 } 1135 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1136 1137 void kvm_put_kvm(struct kvm *kvm) 1138 { 1139 if (refcount_dec_and_test(&kvm->users_count)) 1140 kvm_destroy_vm(kvm); 1141 } 1142 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1143 1144 /* 1145 * Used to put a reference that was taken on behalf of an object associated 1146 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1147 * of the new file descriptor fails and the reference cannot be transferred to 1148 * its final owner. In such cases, the caller is still actively using @kvm and 1149 * will fail miserably if the refcount unexpectedly hits zero. 1150 */ 1151 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1152 { 1153 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1154 } 1155 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1156 1157 static int kvm_vm_release(struct inode *inode, struct file *filp) 1158 { 1159 struct kvm *kvm = filp->private_data; 1160 1161 kvm_irqfd_release(kvm); 1162 1163 kvm_put_kvm(kvm); 1164 return 0; 1165 } 1166 1167 /* 1168 * Allocation size is twice as large as the actual dirty bitmap size. 1169 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1170 */ 1171 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1172 { 1173 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 1174 1175 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 1176 if (!memslot->dirty_bitmap) 1177 return -ENOMEM; 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * Delete a memslot by decrementing the number of used slots and shifting all 1184 * other entries in the array forward one spot. 1185 */ 1186 static inline void kvm_memslot_delete(struct kvm_memslots *slots, 1187 struct kvm_memory_slot *memslot) 1188 { 1189 struct kvm_memory_slot *mslots = slots->memslots; 1190 int i; 1191 1192 if (WARN_ON(slots->id_to_index[memslot->id] == -1)) 1193 return; 1194 1195 slots->used_slots--; 1196 1197 if (atomic_read(&slots->lru_slot) >= slots->used_slots) 1198 atomic_set(&slots->lru_slot, 0); 1199 1200 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) { 1201 mslots[i] = mslots[i + 1]; 1202 slots->id_to_index[mslots[i].id] = i; 1203 } 1204 mslots[i] = *memslot; 1205 slots->id_to_index[memslot->id] = -1; 1206 } 1207 1208 /* 1209 * "Insert" a new memslot by incrementing the number of used slots. Returns 1210 * the new slot's initial index into the memslots array. 1211 */ 1212 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots) 1213 { 1214 return slots->used_slots++; 1215 } 1216 1217 /* 1218 * Move a changed memslot backwards in the array by shifting existing slots 1219 * with a higher GFN toward the front of the array. Note, the changed memslot 1220 * itself is not preserved in the array, i.e. not swapped at this time, only 1221 * its new index into the array is tracked. Returns the changed memslot's 1222 * current index into the memslots array. 1223 */ 1224 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots, 1225 struct kvm_memory_slot *memslot) 1226 { 1227 struct kvm_memory_slot *mslots = slots->memslots; 1228 int i; 1229 1230 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) || 1231 WARN_ON_ONCE(!slots->used_slots)) 1232 return -1; 1233 1234 /* 1235 * Move the target memslot backward in the array by shifting existing 1236 * memslots with a higher GFN (than the target memslot) towards the 1237 * front of the array. 1238 */ 1239 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) { 1240 if (memslot->base_gfn > mslots[i + 1].base_gfn) 1241 break; 1242 1243 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn); 1244 1245 /* Shift the next memslot forward one and update its index. */ 1246 mslots[i] = mslots[i + 1]; 1247 slots->id_to_index[mslots[i].id] = i; 1248 } 1249 return i; 1250 } 1251 1252 /* 1253 * Move a changed memslot forwards in the array by shifting existing slots with 1254 * a lower GFN toward the back of the array. Note, the changed memslot itself 1255 * is not preserved in the array, i.e. not swapped at this time, only its new 1256 * index into the array is tracked. Returns the changed memslot's final index 1257 * into the memslots array. 1258 */ 1259 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots, 1260 struct kvm_memory_slot *memslot, 1261 int start) 1262 { 1263 struct kvm_memory_slot *mslots = slots->memslots; 1264 int i; 1265 1266 for (i = start; i > 0; i--) { 1267 if (memslot->base_gfn < mslots[i - 1].base_gfn) 1268 break; 1269 1270 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn); 1271 1272 /* Shift the next memslot back one and update its index. */ 1273 mslots[i] = mslots[i - 1]; 1274 slots->id_to_index[mslots[i].id] = i; 1275 } 1276 return i; 1277 } 1278 1279 /* 1280 * Re-sort memslots based on their GFN to account for an added, deleted, or 1281 * moved memslot. Sorting memslots by GFN allows using a binary search during 1282 * memslot lookup. 1283 * 1284 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry 1285 * at memslots[0] has the highest GFN. 1286 * 1287 * The sorting algorithm takes advantage of having initially sorted memslots 1288 * and knowing the position of the changed memslot. Sorting is also optimized 1289 * by not swapping the updated memslot and instead only shifting other memslots 1290 * and tracking the new index for the update memslot. Only once its final 1291 * index is known is the updated memslot copied into its position in the array. 1292 * 1293 * - When deleting a memslot, the deleted memslot simply needs to be moved to 1294 * the end of the array. 1295 * 1296 * - When creating a memslot, the algorithm "inserts" the new memslot at the 1297 * end of the array and then it forward to its correct location. 1298 * 1299 * - When moving a memslot, the algorithm first moves the updated memslot 1300 * backward to handle the scenario where the memslot's GFN was changed to a 1301 * lower value. update_memslots() then falls through and runs the same flow 1302 * as creating a memslot to move the memslot forward to handle the scenario 1303 * where its GFN was changed to a higher value. 1304 * 1305 * Note, slots are sorted from highest->lowest instead of lowest->highest for 1306 * historical reasons. Originally, invalid memslots where denoted by having 1307 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots 1308 * to the end of the array. The current algorithm uses dedicated logic to 1309 * delete a memslot and thus does not rely on invalid memslots having GFN=0. 1310 * 1311 * The other historical motiviation for highest->lowest was to improve the 1312 * performance of memslot lookup. KVM originally used a linear search starting 1313 * at memslots[0]. On x86, the largest memslot usually has one of the highest, 1314 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a 1315 * single memslot above the 4gb boundary. As the largest memslot is also the 1316 * most likely to be referenced, sorting it to the front of the array was 1317 * advantageous. The current binary search starts from the middle of the array 1318 * and uses an LRU pointer to improve performance for all memslots and GFNs. 1319 */ 1320 static void update_memslots(struct kvm_memslots *slots, 1321 struct kvm_memory_slot *memslot, 1322 enum kvm_mr_change change) 1323 { 1324 int i; 1325 1326 if (change == KVM_MR_DELETE) { 1327 kvm_memslot_delete(slots, memslot); 1328 } else { 1329 if (change == KVM_MR_CREATE) 1330 i = kvm_memslot_insert_back(slots); 1331 else 1332 i = kvm_memslot_move_backward(slots, memslot); 1333 i = kvm_memslot_move_forward(slots, memslot, i); 1334 1335 /* 1336 * Copy the memslot to its new position in memslots and update 1337 * its index accordingly. 1338 */ 1339 slots->memslots[i] = *memslot; 1340 slots->id_to_index[memslot->id] = i; 1341 } 1342 } 1343 1344 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1345 { 1346 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1347 1348 #ifdef __KVM_HAVE_READONLY_MEM 1349 valid_flags |= KVM_MEM_READONLY; 1350 #endif 1351 1352 if (mem->flags & ~valid_flags) 1353 return -EINVAL; 1354 1355 return 0; 1356 } 1357 1358 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 1359 int as_id, struct kvm_memslots *slots) 1360 { 1361 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 1362 u64 gen = old_memslots->generation; 1363 1364 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1365 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1366 1367 rcu_assign_pointer(kvm->memslots[as_id], slots); 1368 1369 /* 1370 * Acquired in kvm_set_memslot. Must be released before synchronize 1371 * SRCU below in order to avoid deadlock with another thread 1372 * acquiring the slots_arch_lock in an srcu critical section. 1373 */ 1374 mutex_unlock(&kvm->slots_arch_lock); 1375 1376 synchronize_srcu_expedited(&kvm->srcu); 1377 1378 /* 1379 * Increment the new memslot generation a second time, dropping the 1380 * update in-progress flag and incrementing the generation based on 1381 * the number of address spaces. This provides a unique and easily 1382 * identifiable generation number while the memslots are in flux. 1383 */ 1384 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1385 1386 /* 1387 * Generations must be unique even across address spaces. We do not need 1388 * a global counter for that, instead the generation space is evenly split 1389 * across address spaces. For example, with two address spaces, address 1390 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1391 * use generations 1, 3, 5, ... 1392 */ 1393 gen += KVM_ADDRESS_SPACE_NUM; 1394 1395 kvm_arch_memslots_updated(kvm, gen); 1396 1397 slots->generation = gen; 1398 1399 return old_memslots; 1400 } 1401 1402 static size_t kvm_memslots_size(int slots) 1403 { 1404 return sizeof(struct kvm_memslots) + 1405 (sizeof(struct kvm_memory_slot) * slots); 1406 } 1407 1408 static void kvm_copy_memslots(struct kvm_memslots *to, 1409 struct kvm_memslots *from) 1410 { 1411 memcpy(to, from, kvm_memslots_size(from->used_slots)); 1412 } 1413 1414 /* 1415 * Note, at a minimum, the current number of used slots must be allocated, even 1416 * when deleting a memslot, as we need a complete duplicate of the memslots for 1417 * use when invalidating a memslot prior to deleting/moving the memslot. 1418 */ 1419 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old, 1420 enum kvm_mr_change change) 1421 { 1422 struct kvm_memslots *slots; 1423 size_t new_size; 1424 1425 if (change == KVM_MR_CREATE) 1426 new_size = kvm_memslots_size(old->used_slots + 1); 1427 else 1428 new_size = kvm_memslots_size(old->used_slots); 1429 1430 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT); 1431 if (likely(slots)) 1432 kvm_copy_memslots(slots, old); 1433 1434 return slots; 1435 } 1436 1437 static int kvm_set_memslot(struct kvm *kvm, 1438 const struct kvm_userspace_memory_region *mem, 1439 struct kvm_memory_slot *old, 1440 struct kvm_memory_slot *new, int as_id, 1441 enum kvm_mr_change change) 1442 { 1443 struct kvm_memory_slot *slot; 1444 struct kvm_memslots *slots; 1445 int r; 1446 1447 /* 1448 * Released in install_new_memslots. 1449 * 1450 * Must be held from before the current memslots are copied until 1451 * after the new memslots are installed with rcu_assign_pointer, 1452 * then released before the synchronize srcu in install_new_memslots. 1453 * 1454 * When modifying memslots outside of the slots_lock, must be held 1455 * before reading the pointer to the current memslots until after all 1456 * changes to those memslots are complete. 1457 * 1458 * These rules ensure that installing new memslots does not lose 1459 * changes made to the previous memslots. 1460 */ 1461 mutex_lock(&kvm->slots_arch_lock); 1462 1463 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change); 1464 if (!slots) { 1465 mutex_unlock(&kvm->slots_arch_lock); 1466 return -ENOMEM; 1467 } 1468 1469 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1470 /* 1471 * Note, the INVALID flag needs to be in the appropriate entry 1472 * in the freshly allocated memslots, not in @old or @new. 1473 */ 1474 slot = id_to_memslot(slots, old->id); 1475 slot->flags |= KVM_MEMSLOT_INVALID; 1476 1477 /* 1478 * We can re-use the memory from the old memslots. 1479 * It will be overwritten with a copy of the new memslots 1480 * after reacquiring the slots_arch_lock below. 1481 */ 1482 slots = install_new_memslots(kvm, as_id, slots); 1483 1484 /* From this point no new shadow pages pointing to a deleted, 1485 * or moved, memslot will be created. 1486 * 1487 * validation of sp->gfn happens in: 1488 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1489 * - kvm_is_visible_gfn (mmu_check_root) 1490 */ 1491 kvm_arch_flush_shadow_memslot(kvm, slot); 1492 1493 /* Released in install_new_memslots. */ 1494 mutex_lock(&kvm->slots_arch_lock); 1495 1496 /* 1497 * The arch-specific fields of the memslots could have changed 1498 * between releasing the slots_arch_lock in 1499 * install_new_memslots and here, so get a fresh copy of the 1500 * slots. 1501 */ 1502 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id)); 1503 } 1504 1505 r = kvm_arch_prepare_memory_region(kvm, new, mem, change); 1506 if (r) 1507 goto out_slots; 1508 1509 update_memslots(slots, new, change); 1510 slots = install_new_memslots(kvm, as_id, slots); 1511 1512 kvm_arch_commit_memory_region(kvm, mem, old, new, change); 1513 1514 kvfree(slots); 1515 return 0; 1516 1517 out_slots: 1518 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1519 slot = id_to_memslot(slots, old->id); 1520 slot->flags &= ~KVM_MEMSLOT_INVALID; 1521 slots = install_new_memslots(kvm, as_id, slots); 1522 } else { 1523 mutex_unlock(&kvm->slots_arch_lock); 1524 } 1525 kvfree(slots); 1526 return r; 1527 } 1528 1529 static int kvm_delete_memslot(struct kvm *kvm, 1530 const struct kvm_userspace_memory_region *mem, 1531 struct kvm_memory_slot *old, int as_id) 1532 { 1533 struct kvm_memory_slot new; 1534 int r; 1535 1536 if (!old->npages) 1537 return -EINVAL; 1538 1539 memset(&new, 0, sizeof(new)); 1540 new.id = old->id; 1541 /* 1542 * This is only for debugging purpose; it should never be referenced 1543 * for a removed memslot. 1544 */ 1545 new.as_id = as_id; 1546 1547 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE); 1548 if (r) 1549 return r; 1550 1551 kvm_free_memslot(kvm, old); 1552 return 0; 1553 } 1554 1555 /* 1556 * Allocate some memory and give it an address in the guest physical address 1557 * space. 1558 * 1559 * Discontiguous memory is allowed, mostly for framebuffers. 1560 * 1561 * Must be called holding kvm->slots_lock for write. 1562 */ 1563 int __kvm_set_memory_region(struct kvm *kvm, 1564 const struct kvm_userspace_memory_region *mem) 1565 { 1566 struct kvm_memory_slot old, new; 1567 struct kvm_memory_slot *tmp; 1568 enum kvm_mr_change change; 1569 int as_id, id; 1570 int r; 1571 1572 r = check_memory_region_flags(mem); 1573 if (r) 1574 return r; 1575 1576 as_id = mem->slot >> 16; 1577 id = (u16)mem->slot; 1578 1579 /* General sanity checks */ 1580 if (mem->memory_size & (PAGE_SIZE - 1)) 1581 return -EINVAL; 1582 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1583 return -EINVAL; 1584 /* We can read the guest memory with __xxx_user() later on. */ 1585 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1586 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1587 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1588 mem->memory_size)) 1589 return -EINVAL; 1590 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1591 return -EINVAL; 1592 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1593 return -EINVAL; 1594 1595 /* 1596 * Make a full copy of the old memslot, the pointer will become stale 1597 * when the memslots are re-sorted by update_memslots(), and the old 1598 * memslot needs to be referenced after calling update_memslots(), e.g. 1599 * to free its resources and for arch specific behavior. 1600 */ 1601 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1602 if (tmp) { 1603 old = *tmp; 1604 tmp = NULL; 1605 } else { 1606 memset(&old, 0, sizeof(old)); 1607 old.id = id; 1608 } 1609 1610 if (!mem->memory_size) 1611 return kvm_delete_memslot(kvm, mem, &old, as_id); 1612 1613 new.as_id = as_id; 1614 new.id = id; 1615 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1616 new.npages = mem->memory_size >> PAGE_SHIFT; 1617 new.flags = mem->flags; 1618 new.userspace_addr = mem->userspace_addr; 1619 1620 if (new.npages > KVM_MEM_MAX_NR_PAGES) 1621 return -EINVAL; 1622 1623 if (!old.npages) { 1624 change = KVM_MR_CREATE; 1625 new.dirty_bitmap = NULL; 1626 memset(&new.arch, 0, sizeof(new.arch)); 1627 } else { /* Modify an existing slot. */ 1628 if ((new.userspace_addr != old.userspace_addr) || 1629 (new.npages != old.npages) || 1630 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1631 return -EINVAL; 1632 1633 if (new.base_gfn != old.base_gfn) 1634 change = KVM_MR_MOVE; 1635 else if (new.flags != old.flags) 1636 change = KVM_MR_FLAGS_ONLY; 1637 else /* Nothing to change. */ 1638 return 0; 1639 1640 /* Copy dirty_bitmap and arch from the current memslot. */ 1641 new.dirty_bitmap = old.dirty_bitmap; 1642 memcpy(&new.arch, &old.arch, sizeof(new.arch)); 1643 } 1644 1645 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1646 /* Check for overlaps */ 1647 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) { 1648 if (tmp->id == id) 1649 continue; 1650 if (!((new.base_gfn + new.npages <= tmp->base_gfn) || 1651 (new.base_gfn >= tmp->base_gfn + tmp->npages))) 1652 return -EEXIST; 1653 } 1654 } 1655 1656 /* Allocate/free page dirty bitmap as needed */ 1657 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1658 new.dirty_bitmap = NULL; 1659 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) { 1660 r = kvm_alloc_dirty_bitmap(&new); 1661 if (r) 1662 return r; 1663 1664 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1665 bitmap_set(new.dirty_bitmap, 0, new.npages); 1666 } 1667 1668 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change); 1669 if (r) 1670 goto out_bitmap; 1671 1672 if (old.dirty_bitmap && !new.dirty_bitmap) 1673 kvm_destroy_dirty_bitmap(&old); 1674 return 0; 1675 1676 out_bitmap: 1677 if (new.dirty_bitmap && !old.dirty_bitmap) 1678 kvm_destroy_dirty_bitmap(&new); 1679 return r; 1680 } 1681 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1682 1683 int kvm_set_memory_region(struct kvm *kvm, 1684 const struct kvm_userspace_memory_region *mem) 1685 { 1686 int r; 1687 1688 mutex_lock(&kvm->slots_lock); 1689 r = __kvm_set_memory_region(kvm, mem); 1690 mutex_unlock(&kvm->slots_lock); 1691 return r; 1692 } 1693 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1694 1695 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1696 struct kvm_userspace_memory_region *mem) 1697 { 1698 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1699 return -EINVAL; 1700 1701 return kvm_set_memory_region(kvm, mem); 1702 } 1703 1704 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1705 /** 1706 * kvm_get_dirty_log - get a snapshot of dirty pages 1707 * @kvm: pointer to kvm instance 1708 * @log: slot id and address to which we copy the log 1709 * @is_dirty: set to '1' if any dirty pages were found 1710 * @memslot: set to the associated memslot, always valid on success 1711 */ 1712 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1713 int *is_dirty, struct kvm_memory_slot **memslot) 1714 { 1715 struct kvm_memslots *slots; 1716 int i, as_id, id; 1717 unsigned long n; 1718 unsigned long any = 0; 1719 1720 /* Dirty ring tracking is exclusive to dirty log tracking */ 1721 if (kvm->dirty_ring_size) 1722 return -ENXIO; 1723 1724 *memslot = NULL; 1725 *is_dirty = 0; 1726 1727 as_id = log->slot >> 16; 1728 id = (u16)log->slot; 1729 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1730 return -EINVAL; 1731 1732 slots = __kvm_memslots(kvm, as_id); 1733 *memslot = id_to_memslot(slots, id); 1734 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1735 return -ENOENT; 1736 1737 kvm_arch_sync_dirty_log(kvm, *memslot); 1738 1739 n = kvm_dirty_bitmap_bytes(*memslot); 1740 1741 for (i = 0; !any && i < n/sizeof(long); ++i) 1742 any = (*memslot)->dirty_bitmap[i]; 1743 1744 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1745 return -EFAULT; 1746 1747 if (any) 1748 *is_dirty = 1; 1749 return 0; 1750 } 1751 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1752 1753 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1754 /** 1755 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1756 * and reenable dirty page tracking for the corresponding pages. 1757 * @kvm: pointer to kvm instance 1758 * @log: slot id and address to which we copy the log 1759 * 1760 * We need to keep it in mind that VCPU threads can write to the bitmap 1761 * concurrently. So, to avoid losing track of dirty pages we keep the 1762 * following order: 1763 * 1764 * 1. Take a snapshot of the bit and clear it if needed. 1765 * 2. Write protect the corresponding page. 1766 * 3. Copy the snapshot to the userspace. 1767 * 4. Upon return caller flushes TLB's if needed. 1768 * 1769 * Between 2 and 4, the guest may write to the page using the remaining TLB 1770 * entry. This is not a problem because the page is reported dirty using 1771 * the snapshot taken before and step 4 ensures that writes done after 1772 * exiting to userspace will be logged for the next call. 1773 * 1774 */ 1775 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 1776 { 1777 struct kvm_memslots *slots; 1778 struct kvm_memory_slot *memslot; 1779 int i, as_id, id; 1780 unsigned long n; 1781 unsigned long *dirty_bitmap; 1782 unsigned long *dirty_bitmap_buffer; 1783 bool flush; 1784 1785 /* Dirty ring tracking is exclusive to dirty log tracking */ 1786 if (kvm->dirty_ring_size) 1787 return -ENXIO; 1788 1789 as_id = log->slot >> 16; 1790 id = (u16)log->slot; 1791 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1792 return -EINVAL; 1793 1794 slots = __kvm_memslots(kvm, as_id); 1795 memslot = id_to_memslot(slots, id); 1796 if (!memslot || !memslot->dirty_bitmap) 1797 return -ENOENT; 1798 1799 dirty_bitmap = memslot->dirty_bitmap; 1800 1801 kvm_arch_sync_dirty_log(kvm, memslot); 1802 1803 n = kvm_dirty_bitmap_bytes(memslot); 1804 flush = false; 1805 if (kvm->manual_dirty_log_protect) { 1806 /* 1807 * Unlike kvm_get_dirty_log, we always return false in *flush, 1808 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1809 * is some code duplication between this function and 1810 * kvm_get_dirty_log, but hopefully all architecture 1811 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1812 * can be eliminated. 1813 */ 1814 dirty_bitmap_buffer = dirty_bitmap; 1815 } else { 1816 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1817 memset(dirty_bitmap_buffer, 0, n); 1818 1819 KVM_MMU_LOCK(kvm); 1820 for (i = 0; i < n / sizeof(long); i++) { 1821 unsigned long mask; 1822 gfn_t offset; 1823 1824 if (!dirty_bitmap[i]) 1825 continue; 1826 1827 flush = true; 1828 mask = xchg(&dirty_bitmap[i], 0); 1829 dirty_bitmap_buffer[i] = mask; 1830 1831 offset = i * BITS_PER_LONG; 1832 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1833 offset, mask); 1834 } 1835 KVM_MMU_UNLOCK(kvm); 1836 } 1837 1838 if (flush) 1839 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1840 1841 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1842 return -EFAULT; 1843 return 0; 1844 } 1845 1846 1847 /** 1848 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1849 * @kvm: kvm instance 1850 * @log: slot id and address to which we copy the log 1851 * 1852 * Steps 1-4 below provide general overview of dirty page logging. See 1853 * kvm_get_dirty_log_protect() function description for additional details. 1854 * 1855 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1856 * always flush the TLB (step 4) even if previous step failed and the dirty 1857 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1858 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1859 * writes will be marked dirty for next log read. 1860 * 1861 * 1. Take a snapshot of the bit and clear it if needed. 1862 * 2. Write protect the corresponding page. 1863 * 3. Copy the snapshot to the userspace. 1864 * 4. Flush TLB's if needed. 1865 */ 1866 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 1867 struct kvm_dirty_log *log) 1868 { 1869 int r; 1870 1871 mutex_lock(&kvm->slots_lock); 1872 1873 r = kvm_get_dirty_log_protect(kvm, log); 1874 1875 mutex_unlock(&kvm->slots_lock); 1876 return r; 1877 } 1878 1879 /** 1880 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1881 * and reenable dirty page tracking for the corresponding pages. 1882 * @kvm: pointer to kvm instance 1883 * @log: slot id and address from which to fetch the bitmap of dirty pages 1884 */ 1885 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 1886 struct kvm_clear_dirty_log *log) 1887 { 1888 struct kvm_memslots *slots; 1889 struct kvm_memory_slot *memslot; 1890 int as_id, id; 1891 gfn_t offset; 1892 unsigned long i, n; 1893 unsigned long *dirty_bitmap; 1894 unsigned long *dirty_bitmap_buffer; 1895 bool flush; 1896 1897 /* Dirty ring tracking is exclusive to dirty log tracking */ 1898 if (kvm->dirty_ring_size) 1899 return -ENXIO; 1900 1901 as_id = log->slot >> 16; 1902 id = (u16)log->slot; 1903 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1904 return -EINVAL; 1905 1906 if (log->first_page & 63) 1907 return -EINVAL; 1908 1909 slots = __kvm_memslots(kvm, as_id); 1910 memslot = id_to_memslot(slots, id); 1911 if (!memslot || !memslot->dirty_bitmap) 1912 return -ENOENT; 1913 1914 dirty_bitmap = memslot->dirty_bitmap; 1915 1916 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1917 1918 if (log->first_page > memslot->npages || 1919 log->num_pages > memslot->npages - log->first_page || 1920 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1921 return -EINVAL; 1922 1923 kvm_arch_sync_dirty_log(kvm, memslot); 1924 1925 flush = false; 1926 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1927 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1928 return -EFAULT; 1929 1930 KVM_MMU_LOCK(kvm); 1931 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1932 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1933 i++, offset += BITS_PER_LONG) { 1934 unsigned long mask = *dirty_bitmap_buffer++; 1935 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1936 if (!mask) 1937 continue; 1938 1939 mask &= atomic_long_fetch_andnot(mask, p); 1940 1941 /* 1942 * mask contains the bits that really have been cleared. This 1943 * never includes any bits beyond the length of the memslot (if 1944 * the length is not aligned to 64 pages), therefore it is not 1945 * a problem if userspace sets them in log->dirty_bitmap. 1946 */ 1947 if (mask) { 1948 flush = true; 1949 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1950 offset, mask); 1951 } 1952 } 1953 KVM_MMU_UNLOCK(kvm); 1954 1955 if (flush) 1956 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1957 1958 return 0; 1959 } 1960 1961 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 1962 struct kvm_clear_dirty_log *log) 1963 { 1964 int r; 1965 1966 mutex_lock(&kvm->slots_lock); 1967 1968 r = kvm_clear_dirty_log_protect(kvm, log); 1969 1970 mutex_unlock(&kvm->slots_lock); 1971 return r; 1972 } 1973 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1974 1975 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1976 { 1977 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1978 } 1979 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1980 1981 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1982 { 1983 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1984 } 1985 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 1986 1987 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1988 { 1989 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1990 1991 return kvm_is_visible_memslot(memslot); 1992 } 1993 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1994 1995 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1996 { 1997 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1998 1999 return kvm_is_visible_memslot(memslot); 2000 } 2001 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2002 2003 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2004 { 2005 struct vm_area_struct *vma; 2006 unsigned long addr, size; 2007 2008 size = PAGE_SIZE; 2009 2010 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2011 if (kvm_is_error_hva(addr)) 2012 return PAGE_SIZE; 2013 2014 mmap_read_lock(current->mm); 2015 vma = find_vma(current->mm, addr); 2016 if (!vma) 2017 goto out; 2018 2019 size = vma_kernel_pagesize(vma); 2020 2021 out: 2022 mmap_read_unlock(current->mm); 2023 2024 return size; 2025 } 2026 2027 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 2028 { 2029 return slot->flags & KVM_MEM_READONLY; 2030 } 2031 2032 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2033 gfn_t *nr_pages, bool write) 2034 { 2035 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2036 return KVM_HVA_ERR_BAD; 2037 2038 if (memslot_is_readonly(slot) && write) 2039 return KVM_HVA_ERR_RO_BAD; 2040 2041 if (nr_pages) 2042 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2043 2044 return __gfn_to_hva_memslot(slot, gfn); 2045 } 2046 2047 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2048 gfn_t *nr_pages) 2049 { 2050 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2051 } 2052 2053 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2054 gfn_t gfn) 2055 { 2056 return gfn_to_hva_many(slot, gfn, NULL); 2057 } 2058 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2059 2060 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2061 { 2062 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2063 } 2064 EXPORT_SYMBOL_GPL(gfn_to_hva); 2065 2066 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2067 { 2068 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2069 } 2070 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2071 2072 /* 2073 * Return the hva of a @gfn and the R/W attribute if possible. 2074 * 2075 * @slot: the kvm_memory_slot which contains @gfn 2076 * @gfn: the gfn to be translated 2077 * @writable: used to return the read/write attribute of the @slot if the hva 2078 * is valid and @writable is not NULL 2079 */ 2080 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2081 gfn_t gfn, bool *writable) 2082 { 2083 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2084 2085 if (!kvm_is_error_hva(hva) && writable) 2086 *writable = !memslot_is_readonly(slot); 2087 2088 return hva; 2089 } 2090 2091 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2092 { 2093 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2094 2095 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2096 } 2097 2098 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2099 { 2100 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2101 2102 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2103 } 2104 2105 static inline int check_user_page_hwpoison(unsigned long addr) 2106 { 2107 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2108 2109 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2110 return rc == -EHWPOISON; 2111 } 2112 2113 /* 2114 * The fast path to get the writable pfn which will be stored in @pfn, 2115 * true indicates success, otherwise false is returned. It's also the 2116 * only part that runs if we can in atomic context. 2117 */ 2118 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2119 bool *writable, kvm_pfn_t *pfn) 2120 { 2121 struct page *page[1]; 2122 2123 /* 2124 * Fast pin a writable pfn only if it is a write fault request 2125 * or the caller allows to map a writable pfn for a read fault 2126 * request. 2127 */ 2128 if (!(write_fault || writable)) 2129 return false; 2130 2131 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2132 *pfn = page_to_pfn(page[0]); 2133 2134 if (writable) 2135 *writable = true; 2136 return true; 2137 } 2138 2139 return false; 2140 } 2141 2142 /* 2143 * The slow path to get the pfn of the specified host virtual address, 2144 * 1 indicates success, -errno is returned if error is detected. 2145 */ 2146 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2147 bool *writable, kvm_pfn_t *pfn) 2148 { 2149 unsigned int flags = FOLL_HWPOISON; 2150 struct page *page; 2151 int npages = 0; 2152 2153 might_sleep(); 2154 2155 if (writable) 2156 *writable = write_fault; 2157 2158 if (write_fault) 2159 flags |= FOLL_WRITE; 2160 if (async) 2161 flags |= FOLL_NOWAIT; 2162 2163 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2164 if (npages != 1) 2165 return npages; 2166 2167 /* map read fault as writable if possible */ 2168 if (unlikely(!write_fault) && writable) { 2169 struct page *wpage; 2170 2171 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2172 *writable = true; 2173 put_page(page); 2174 page = wpage; 2175 } 2176 } 2177 *pfn = page_to_pfn(page); 2178 return npages; 2179 } 2180 2181 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2182 { 2183 if (unlikely(!(vma->vm_flags & VM_READ))) 2184 return false; 2185 2186 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2187 return false; 2188 2189 return true; 2190 } 2191 2192 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2193 { 2194 if (kvm_is_reserved_pfn(pfn)) 2195 return 1; 2196 return get_page_unless_zero(pfn_to_page(pfn)); 2197 } 2198 2199 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2200 unsigned long addr, bool *async, 2201 bool write_fault, bool *writable, 2202 kvm_pfn_t *p_pfn) 2203 { 2204 kvm_pfn_t pfn; 2205 pte_t *ptep; 2206 spinlock_t *ptl; 2207 int r; 2208 2209 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2210 if (r) { 2211 /* 2212 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2213 * not call the fault handler, so do it here. 2214 */ 2215 bool unlocked = false; 2216 r = fixup_user_fault(current->mm, addr, 2217 (write_fault ? FAULT_FLAG_WRITE : 0), 2218 &unlocked); 2219 if (unlocked) 2220 return -EAGAIN; 2221 if (r) 2222 return r; 2223 2224 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2225 if (r) 2226 return r; 2227 } 2228 2229 if (write_fault && !pte_write(*ptep)) { 2230 pfn = KVM_PFN_ERR_RO_FAULT; 2231 goto out; 2232 } 2233 2234 if (writable) 2235 *writable = pte_write(*ptep); 2236 pfn = pte_pfn(*ptep); 2237 2238 /* 2239 * Get a reference here because callers of *hva_to_pfn* and 2240 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2241 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2242 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 2243 * simply do nothing for reserved pfns. 2244 * 2245 * Whoever called remap_pfn_range is also going to call e.g. 2246 * unmap_mapping_range before the underlying pages are freed, 2247 * causing a call to our MMU notifier. 2248 * 2249 * Certain IO or PFNMAP mappings can be backed with valid 2250 * struct pages, but be allocated without refcounting e.g., 2251 * tail pages of non-compound higher order allocations, which 2252 * would then underflow the refcount when the caller does the 2253 * required put_page. Don't allow those pages here. 2254 */ 2255 if (!kvm_try_get_pfn(pfn)) 2256 r = -EFAULT; 2257 2258 out: 2259 pte_unmap_unlock(ptep, ptl); 2260 *p_pfn = pfn; 2261 2262 return r; 2263 } 2264 2265 /* 2266 * Pin guest page in memory and return its pfn. 2267 * @addr: host virtual address which maps memory to the guest 2268 * @atomic: whether this function can sleep 2269 * @async: whether this function need to wait IO complete if the 2270 * host page is not in the memory 2271 * @write_fault: whether we should get a writable host page 2272 * @writable: whether it allows to map a writable host page for !@write_fault 2273 * 2274 * The function will map a writable host page for these two cases: 2275 * 1): @write_fault = true 2276 * 2): @write_fault = false && @writable, @writable will tell the caller 2277 * whether the mapping is writable. 2278 */ 2279 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2280 bool write_fault, bool *writable) 2281 { 2282 struct vm_area_struct *vma; 2283 kvm_pfn_t pfn = 0; 2284 int npages, r; 2285 2286 /* we can do it either atomically or asynchronously, not both */ 2287 BUG_ON(atomic && async); 2288 2289 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2290 return pfn; 2291 2292 if (atomic) 2293 return KVM_PFN_ERR_FAULT; 2294 2295 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2296 if (npages == 1) 2297 return pfn; 2298 2299 mmap_read_lock(current->mm); 2300 if (npages == -EHWPOISON || 2301 (!async && check_user_page_hwpoison(addr))) { 2302 pfn = KVM_PFN_ERR_HWPOISON; 2303 goto exit; 2304 } 2305 2306 retry: 2307 vma = vma_lookup(current->mm, addr); 2308 2309 if (vma == NULL) 2310 pfn = KVM_PFN_ERR_FAULT; 2311 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2312 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 2313 if (r == -EAGAIN) 2314 goto retry; 2315 if (r < 0) 2316 pfn = KVM_PFN_ERR_FAULT; 2317 } else { 2318 if (async && vma_is_valid(vma, write_fault)) 2319 *async = true; 2320 pfn = KVM_PFN_ERR_FAULT; 2321 } 2322 exit: 2323 mmap_read_unlock(current->mm); 2324 return pfn; 2325 } 2326 2327 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 2328 bool atomic, bool *async, bool write_fault, 2329 bool *writable, hva_t *hva) 2330 { 2331 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2332 2333 if (hva) 2334 *hva = addr; 2335 2336 if (addr == KVM_HVA_ERR_RO_BAD) { 2337 if (writable) 2338 *writable = false; 2339 return KVM_PFN_ERR_RO_FAULT; 2340 } 2341 2342 if (kvm_is_error_hva(addr)) { 2343 if (writable) 2344 *writable = false; 2345 return KVM_PFN_NOSLOT; 2346 } 2347 2348 /* Do not map writable pfn in the readonly memslot. */ 2349 if (writable && memslot_is_readonly(slot)) { 2350 *writable = false; 2351 writable = NULL; 2352 } 2353 2354 return hva_to_pfn(addr, atomic, async, write_fault, 2355 writable); 2356 } 2357 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2358 2359 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2360 bool *writable) 2361 { 2362 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2363 write_fault, writable, NULL); 2364 } 2365 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2366 2367 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 2368 { 2369 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2370 } 2371 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2372 2373 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 2374 { 2375 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2376 } 2377 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2378 2379 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2380 { 2381 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2382 } 2383 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2384 2385 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2386 { 2387 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2388 } 2389 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2390 2391 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2392 { 2393 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2394 } 2395 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2396 2397 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2398 struct page **pages, int nr_pages) 2399 { 2400 unsigned long addr; 2401 gfn_t entry = 0; 2402 2403 addr = gfn_to_hva_many(slot, gfn, &entry); 2404 if (kvm_is_error_hva(addr)) 2405 return -1; 2406 2407 if (entry < nr_pages) 2408 return 0; 2409 2410 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2411 } 2412 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2413 2414 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2415 { 2416 if (is_error_noslot_pfn(pfn)) 2417 return KVM_ERR_PTR_BAD_PAGE; 2418 2419 if (kvm_is_reserved_pfn(pfn)) { 2420 WARN_ON(1); 2421 return KVM_ERR_PTR_BAD_PAGE; 2422 } 2423 2424 return pfn_to_page(pfn); 2425 } 2426 2427 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2428 { 2429 kvm_pfn_t pfn; 2430 2431 pfn = gfn_to_pfn(kvm, gfn); 2432 2433 return kvm_pfn_to_page(pfn); 2434 } 2435 EXPORT_SYMBOL_GPL(gfn_to_page); 2436 2437 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache) 2438 { 2439 if (pfn == 0) 2440 return; 2441 2442 if (cache) 2443 cache->pfn = cache->gfn = 0; 2444 2445 if (dirty) 2446 kvm_release_pfn_dirty(pfn); 2447 else 2448 kvm_release_pfn_clean(pfn); 2449 } 2450 2451 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn, 2452 struct gfn_to_pfn_cache *cache, u64 gen) 2453 { 2454 kvm_release_pfn(cache->pfn, cache->dirty, cache); 2455 2456 cache->pfn = gfn_to_pfn_memslot(slot, gfn); 2457 cache->gfn = gfn; 2458 cache->dirty = false; 2459 cache->generation = gen; 2460 } 2461 2462 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn, 2463 struct kvm_host_map *map, 2464 struct gfn_to_pfn_cache *cache, 2465 bool atomic) 2466 { 2467 kvm_pfn_t pfn; 2468 void *hva = NULL; 2469 struct page *page = KVM_UNMAPPED_PAGE; 2470 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn); 2471 u64 gen = slots->generation; 2472 2473 if (!map) 2474 return -EINVAL; 2475 2476 if (cache) { 2477 if (!cache->pfn || cache->gfn != gfn || 2478 cache->generation != gen) { 2479 if (atomic) 2480 return -EAGAIN; 2481 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen); 2482 } 2483 pfn = cache->pfn; 2484 } else { 2485 if (atomic) 2486 return -EAGAIN; 2487 pfn = gfn_to_pfn_memslot(slot, gfn); 2488 } 2489 if (is_error_noslot_pfn(pfn)) 2490 return -EINVAL; 2491 2492 if (pfn_valid(pfn)) { 2493 page = pfn_to_page(pfn); 2494 if (atomic) 2495 hva = kmap_atomic(page); 2496 else 2497 hva = kmap(page); 2498 #ifdef CONFIG_HAS_IOMEM 2499 } else if (!atomic) { 2500 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2501 } else { 2502 return -EINVAL; 2503 #endif 2504 } 2505 2506 if (!hva) 2507 return -EFAULT; 2508 2509 map->page = page; 2510 map->hva = hva; 2511 map->pfn = pfn; 2512 map->gfn = gfn; 2513 2514 return 0; 2515 } 2516 2517 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 2518 struct gfn_to_pfn_cache *cache, bool atomic) 2519 { 2520 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map, 2521 cache, atomic); 2522 } 2523 EXPORT_SYMBOL_GPL(kvm_map_gfn); 2524 2525 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2526 { 2527 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map, 2528 NULL, false); 2529 } 2530 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2531 2532 static void __kvm_unmap_gfn(struct kvm *kvm, 2533 struct kvm_memory_slot *memslot, 2534 struct kvm_host_map *map, 2535 struct gfn_to_pfn_cache *cache, 2536 bool dirty, bool atomic) 2537 { 2538 if (!map) 2539 return; 2540 2541 if (!map->hva) 2542 return; 2543 2544 if (map->page != KVM_UNMAPPED_PAGE) { 2545 if (atomic) 2546 kunmap_atomic(map->hva); 2547 else 2548 kunmap(map->page); 2549 } 2550 #ifdef CONFIG_HAS_IOMEM 2551 else if (!atomic) 2552 memunmap(map->hva); 2553 else 2554 WARN_ONCE(1, "Unexpected unmapping in atomic context"); 2555 #endif 2556 2557 if (dirty) 2558 mark_page_dirty_in_slot(kvm, memslot, map->gfn); 2559 2560 if (cache) 2561 cache->dirty |= dirty; 2562 else 2563 kvm_release_pfn(map->pfn, dirty, NULL); 2564 2565 map->hva = NULL; 2566 map->page = NULL; 2567 } 2568 2569 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 2570 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic) 2571 { 2572 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map, 2573 cache, dirty, atomic); 2574 return 0; 2575 } 2576 EXPORT_SYMBOL_GPL(kvm_unmap_gfn); 2577 2578 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2579 { 2580 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), 2581 map, NULL, dirty, false); 2582 } 2583 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2584 2585 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2586 { 2587 kvm_pfn_t pfn; 2588 2589 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2590 2591 return kvm_pfn_to_page(pfn); 2592 } 2593 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2594 2595 void kvm_release_page_clean(struct page *page) 2596 { 2597 WARN_ON(is_error_page(page)); 2598 2599 kvm_release_pfn_clean(page_to_pfn(page)); 2600 } 2601 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2602 2603 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2604 { 2605 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2606 put_page(pfn_to_page(pfn)); 2607 } 2608 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2609 2610 void kvm_release_page_dirty(struct page *page) 2611 { 2612 WARN_ON(is_error_page(page)); 2613 2614 kvm_release_pfn_dirty(page_to_pfn(page)); 2615 } 2616 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2617 2618 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2619 { 2620 kvm_set_pfn_dirty(pfn); 2621 kvm_release_pfn_clean(pfn); 2622 } 2623 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2624 2625 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2626 { 2627 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2628 SetPageDirty(pfn_to_page(pfn)); 2629 } 2630 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2631 2632 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2633 { 2634 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2635 mark_page_accessed(pfn_to_page(pfn)); 2636 } 2637 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2638 2639 void kvm_get_pfn(kvm_pfn_t pfn) 2640 { 2641 if (!kvm_is_reserved_pfn(pfn)) 2642 get_page(pfn_to_page(pfn)); 2643 } 2644 EXPORT_SYMBOL_GPL(kvm_get_pfn); 2645 2646 static int next_segment(unsigned long len, int offset) 2647 { 2648 if (len > PAGE_SIZE - offset) 2649 return PAGE_SIZE - offset; 2650 else 2651 return len; 2652 } 2653 2654 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2655 void *data, int offset, int len) 2656 { 2657 int r; 2658 unsigned long addr; 2659 2660 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2661 if (kvm_is_error_hva(addr)) 2662 return -EFAULT; 2663 r = __copy_from_user(data, (void __user *)addr + offset, len); 2664 if (r) 2665 return -EFAULT; 2666 return 0; 2667 } 2668 2669 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2670 int len) 2671 { 2672 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2673 2674 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2675 } 2676 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2677 2678 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2679 int offset, int len) 2680 { 2681 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2682 2683 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2684 } 2685 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2686 2687 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2688 { 2689 gfn_t gfn = gpa >> PAGE_SHIFT; 2690 int seg; 2691 int offset = offset_in_page(gpa); 2692 int ret; 2693 2694 while ((seg = next_segment(len, offset)) != 0) { 2695 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2696 if (ret < 0) 2697 return ret; 2698 offset = 0; 2699 len -= seg; 2700 data += seg; 2701 ++gfn; 2702 } 2703 return 0; 2704 } 2705 EXPORT_SYMBOL_GPL(kvm_read_guest); 2706 2707 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2708 { 2709 gfn_t gfn = gpa >> PAGE_SHIFT; 2710 int seg; 2711 int offset = offset_in_page(gpa); 2712 int ret; 2713 2714 while ((seg = next_segment(len, offset)) != 0) { 2715 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2716 if (ret < 0) 2717 return ret; 2718 offset = 0; 2719 len -= seg; 2720 data += seg; 2721 ++gfn; 2722 } 2723 return 0; 2724 } 2725 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2726 2727 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2728 void *data, int offset, unsigned long len) 2729 { 2730 int r; 2731 unsigned long addr; 2732 2733 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2734 if (kvm_is_error_hva(addr)) 2735 return -EFAULT; 2736 pagefault_disable(); 2737 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2738 pagefault_enable(); 2739 if (r) 2740 return -EFAULT; 2741 return 0; 2742 } 2743 2744 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2745 void *data, unsigned long len) 2746 { 2747 gfn_t gfn = gpa >> PAGE_SHIFT; 2748 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2749 int offset = offset_in_page(gpa); 2750 2751 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2752 } 2753 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2754 2755 static int __kvm_write_guest_page(struct kvm *kvm, 2756 struct kvm_memory_slot *memslot, gfn_t gfn, 2757 const void *data, int offset, int len) 2758 { 2759 int r; 2760 unsigned long addr; 2761 2762 addr = gfn_to_hva_memslot(memslot, gfn); 2763 if (kvm_is_error_hva(addr)) 2764 return -EFAULT; 2765 r = __copy_to_user((void __user *)addr + offset, data, len); 2766 if (r) 2767 return -EFAULT; 2768 mark_page_dirty_in_slot(kvm, memslot, gfn); 2769 return 0; 2770 } 2771 2772 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2773 const void *data, int offset, int len) 2774 { 2775 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2776 2777 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2778 } 2779 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2780 2781 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2782 const void *data, int offset, int len) 2783 { 2784 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2785 2786 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 2787 } 2788 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2789 2790 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2791 unsigned long len) 2792 { 2793 gfn_t gfn = gpa >> PAGE_SHIFT; 2794 int seg; 2795 int offset = offset_in_page(gpa); 2796 int ret; 2797 2798 while ((seg = next_segment(len, offset)) != 0) { 2799 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2800 if (ret < 0) 2801 return ret; 2802 offset = 0; 2803 len -= seg; 2804 data += seg; 2805 ++gfn; 2806 } 2807 return 0; 2808 } 2809 EXPORT_SYMBOL_GPL(kvm_write_guest); 2810 2811 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2812 unsigned long len) 2813 { 2814 gfn_t gfn = gpa >> PAGE_SHIFT; 2815 int seg; 2816 int offset = offset_in_page(gpa); 2817 int ret; 2818 2819 while ((seg = next_segment(len, offset)) != 0) { 2820 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2821 if (ret < 0) 2822 return ret; 2823 offset = 0; 2824 len -= seg; 2825 data += seg; 2826 ++gfn; 2827 } 2828 return 0; 2829 } 2830 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2831 2832 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2833 struct gfn_to_hva_cache *ghc, 2834 gpa_t gpa, unsigned long len) 2835 { 2836 int offset = offset_in_page(gpa); 2837 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2838 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2839 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2840 gfn_t nr_pages_avail; 2841 2842 /* Update ghc->generation before performing any error checks. */ 2843 ghc->generation = slots->generation; 2844 2845 if (start_gfn > end_gfn) { 2846 ghc->hva = KVM_HVA_ERR_BAD; 2847 return -EINVAL; 2848 } 2849 2850 /* 2851 * If the requested region crosses two memslots, we still 2852 * verify that the entire region is valid here. 2853 */ 2854 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2855 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2856 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2857 &nr_pages_avail); 2858 if (kvm_is_error_hva(ghc->hva)) 2859 return -EFAULT; 2860 } 2861 2862 /* Use the slow path for cross page reads and writes. */ 2863 if (nr_pages_needed == 1) 2864 ghc->hva += offset; 2865 else 2866 ghc->memslot = NULL; 2867 2868 ghc->gpa = gpa; 2869 ghc->len = len; 2870 return 0; 2871 } 2872 2873 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2874 gpa_t gpa, unsigned long len) 2875 { 2876 struct kvm_memslots *slots = kvm_memslots(kvm); 2877 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2878 } 2879 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2880 2881 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2882 void *data, unsigned int offset, 2883 unsigned long len) 2884 { 2885 struct kvm_memslots *slots = kvm_memslots(kvm); 2886 int r; 2887 gpa_t gpa = ghc->gpa + offset; 2888 2889 BUG_ON(len + offset > ghc->len); 2890 2891 if (slots->generation != ghc->generation) { 2892 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2893 return -EFAULT; 2894 } 2895 2896 if (kvm_is_error_hva(ghc->hva)) 2897 return -EFAULT; 2898 2899 if (unlikely(!ghc->memslot)) 2900 return kvm_write_guest(kvm, gpa, data, len); 2901 2902 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2903 if (r) 2904 return -EFAULT; 2905 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 2906 2907 return 0; 2908 } 2909 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2910 2911 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2912 void *data, unsigned long len) 2913 { 2914 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2915 } 2916 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2917 2918 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2919 void *data, unsigned int offset, 2920 unsigned long len) 2921 { 2922 struct kvm_memslots *slots = kvm_memslots(kvm); 2923 int r; 2924 gpa_t gpa = ghc->gpa + offset; 2925 2926 BUG_ON(len + offset > ghc->len); 2927 2928 if (slots->generation != ghc->generation) { 2929 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2930 return -EFAULT; 2931 } 2932 2933 if (kvm_is_error_hva(ghc->hva)) 2934 return -EFAULT; 2935 2936 if (unlikely(!ghc->memslot)) 2937 return kvm_read_guest(kvm, gpa, data, len); 2938 2939 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 2940 if (r) 2941 return -EFAULT; 2942 2943 return 0; 2944 } 2945 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 2946 2947 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2948 void *data, unsigned long len) 2949 { 2950 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 2951 } 2952 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2953 2954 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2955 { 2956 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2957 gfn_t gfn = gpa >> PAGE_SHIFT; 2958 int seg; 2959 int offset = offset_in_page(gpa); 2960 int ret; 2961 2962 while ((seg = next_segment(len, offset)) != 0) { 2963 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2964 if (ret < 0) 2965 return ret; 2966 offset = 0; 2967 len -= seg; 2968 ++gfn; 2969 } 2970 return 0; 2971 } 2972 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2973 2974 void mark_page_dirty_in_slot(struct kvm *kvm, 2975 struct kvm_memory_slot *memslot, 2976 gfn_t gfn) 2977 { 2978 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 2979 unsigned long rel_gfn = gfn - memslot->base_gfn; 2980 u32 slot = (memslot->as_id << 16) | memslot->id; 2981 2982 if (kvm->dirty_ring_size) 2983 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm), 2984 slot, rel_gfn); 2985 else 2986 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2987 } 2988 } 2989 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 2990 2991 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2992 { 2993 struct kvm_memory_slot *memslot; 2994 2995 memslot = gfn_to_memslot(kvm, gfn); 2996 mark_page_dirty_in_slot(kvm, memslot, gfn); 2997 } 2998 EXPORT_SYMBOL_GPL(mark_page_dirty); 2999 3000 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3001 { 3002 struct kvm_memory_slot *memslot; 3003 3004 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3005 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3006 } 3007 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3008 3009 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3010 { 3011 if (!vcpu->sigset_active) 3012 return; 3013 3014 /* 3015 * This does a lockless modification of ->real_blocked, which is fine 3016 * because, only current can change ->real_blocked and all readers of 3017 * ->real_blocked don't care as long ->real_blocked is always a subset 3018 * of ->blocked. 3019 */ 3020 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3021 } 3022 3023 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3024 { 3025 if (!vcpu->sigset_active) 3026 return; 3027 3028 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3029 sigemptyset(¤t->real_blocked); 3030 } 3031 3032 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3033 { 3034 unsigned int old, val, grow, grow_start; 3035 3036 old = val = vcpu->halt_poll_ns; 3037 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3038 grow = READ_ONCE(halt_poll_ns_grow); 3039 if (!grow) 3040 goto out; 3041 3042 val *= grow; 3043 if (val < grow_start) 3044 val = grow_start; 3045 3046 if (val > vcpu->kvm->max_halt_poll_ns) 3047 val = vcpu->kvm->max_halt_poll_ns; 3048 3049 vcpu->halt_poll_ns = val; 3050 out: 3051 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3052 } 3053 3054 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3055 { 3056 unsigned int old, val, shrink, grow_start; 3057 3058 old = val = vcpu->halt_poll_ns; 3059 shrink = READ_ONCE(halt_poll_ns_shrink); 3060 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3061 if (shrink == 0) 3062 val = 0; 3063 else 3064 val /= shrink; 3065 3066 if (val < grow_start) 3067 val = 0; 3068 3069 vcpu->halt_poll_ns = val; 3070 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3071 } 3072 3073 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3074 { 3075 int ret = -EINTR; 3076 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3077 3078 if (kvm_arch_vcpu_runnable(vcpu)) { 3079 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3080 goto out; 3081 } 3082 if (kvm_cpu_has_pending_timer(vcpu)) 3083 goto out; 3084 if (signal_pending(current)) 3085 goto out; 3086 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3087 goto out; 3088 3089 ret = 0; 3090 out: 3091 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3092 return ret; 3093 } 3094 3095 static inline void 3096 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited) 3097 { 3098 if (waited) 3099 vcpu->stat.generic.halt_poll_fail_ns += poll_ns; 3100 else 3101 vcpu->stat.generic.halt_poll_success_ns += poll_ns; 3102 } 3103 3104 /* 3105 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 3106 */ 3107 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 3108 { 3109 ktime_t start, cur, poll_end; 3110 bool waited = false; 3111 u64 block_ns; 3112 3113 kvm_arch_vcpu_blocking(vcpu); 3114 3115 start = cur = poll_end = ktime_get(); 3116 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 3117 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 3118 3119 ++vcpu->stat.generic.halt_attempted_poll; 3120 do { 3121 /* 3122 * This sets KVM_REQ_UNHALT if an interrupt 3123 * arrives. 3124 */ 3125 if (kvm_vcpu_check_block(vcpu) < 0) { 3126 ++vcpu->stat.generic.halt_successful_poll; 3127 if (!vcpu_valid_wakeup(vcpu)) 3128 ++vcpu->stat.generic.halt_poll_invalid; 3129 goto out; 3130 } 3131 cpu_relax(); 3132 poll_end = cur = ktime_get(); 3133 } while (kvm_vcpu_can_poll(cur, stop)); 3134 } 3135 3136 prepare_to_rcuwait(&vcpu->wait); 3137 for (;;) { 3138 set_current_state(TASK_INTERRUPTIBLE); 3139 3140 if (kvm_vcpu_check_block(vcpu) < 0) 3141 break; 3142 3143 waited = true; 3144 schedule(); 3145 } 3146 finish_rcuwait(&vcpu->wait); 3147 cur = ktime_get(); 3148 out: 3149 kvm_arch_vcpu_unblocking(vcpu); 3150 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3151 3152 update_halt_poll_stats( 3153 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited); 3154 3155 if (!kvm_arch_no_poll(vcpu)) { 3156 if (!vcpu_valid_wakeup(vcpu)) { 3157 shrink_halt_poll_ns(vcpu); 3158 } else if (vcpu->kvm->max_halt_poll_ns) { 3159 if (block_ns <= vcpu->halt_poll_ns) 3160 ; 3161 /* we had a long block, shrink polling */ 3162 else if (vcpu->halt_poll_ns && 3163 block_ns > vcpu->kvm->max_halt_poll_ns) 3164 shrink_halt_poll_ns(vcpu); 3165 /* we had a short halt and our poll time is too small */ 3166 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3167 block_ns < vcpu->kvm->max_halt_poll_ns) 3168 grow_halt_poll_ns(vcpu); 3169 } else { 3170 vcpu->halt_poll_ns = 0; 3171 } 3172 } 3173 3174 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 3175 kvm_arch_vcpu_block_finish(vcpu); 3176 } 3177 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 3178 3179 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3180 { 3181 struct rcuwait *waitp; 3182 3183 waitp = kvm_arch_vcpu_get_wait(vcpu); 3184 if (rcuwait_wake_up(waitp)) { 3185 WRITE_ONCE(vcpu->ready, true); 3186 ++vcpu->stat.generic.halt_wakeup; 3187 return true; 3188 } 3189 3190 return false; 3191 } 3192 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3193 3194 #ifndef CONFIG_S390 3195 /* 3196 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3197 */ 3198 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3199 { 3200 int me; 3201 int cpu = vcpu->cpu; 3202 3203 if (kvm_vcpu_wake_up(vcpu)) 3204 return; 3205 3206 me = get_cpu(); 3207 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3208 if (kvm_arch_vcpu_should_kick(vcpu)) 3209 smp_send_reschedule(cpu); 3210 put_cpu(); 3211 } 3212 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3213 #endif /* !CONFIG_S390 */ 3214 3215 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3216 { 3217 struct pid *pid; 3218 struct task_struct *task = NULL; 3219 int ret = 0; 3220 3221 rcu_read_lock(); 3222 pid = rcu_dereference(target->pid); 3223 if (pid) 3224 task = get_pid_task(pid, PIDTYPE_PID); 3225 rcu_read_unlock(); 3226 if (!task) 3227 return ret; 3228 ret = yield_to(task, 1); 3229 put_task_struct(task); 3230 3231 return ret; 3232 } 3233 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3234 3235 /* 3236 * Helper that checks whether a VCPU is eligible for directed yield. 3237 * Most eligible candidate to yield is decided by following heuristics: 3238 * 3239 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3240 * (preempted lock holder), indicated by @in_spin_loop. 3241 * Set at the beginning and cleared at the end of interception/PLE handler. 3242 * 3243 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3244 * chance last time (mostly it has become eligible now since we have probably 3245 * yielded to lockholder in last iteration. This is done by toggling 3246 * @dy_eligible each time a VCPU checked for eligibility.) 3247 * 3248 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3249 * to preempted lock-holder could result in wrong VCPU selection and CPU 3250 * burning. Giving priority for a potential lock-holder increases lock 3251 * progress. 3252 * 3253 * Since algorithm is based on heuristics, accessing another VCPU data without 3254 * locking does not harm. It may result in trying to yield to same VCPU, fail 3255 * and continue with next VCPU and so on. 3256 */ 3257 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3258 { 3259 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3260 bool eligible; 3261 3262 eligible = !vcpu->spin_loop.in_spin_loop || 3263 vcpu->spin_loop.dy_eligible; 3264 3265 if (vcpu->spin_loop.in_spin_loop) 3266 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3267 3268 return eligible; 3269 #else 3270 return true; 3271 #endif 3272 } 3273 3274 /* 3275 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3276 * a vcpu_load/vcpu_put pair. However, for most architectures 3277 * kvm_arch_vcpu_runnable does not require vcpu_load. 3278 */ 3279 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3280 { 3281 return kvm_arch_vcpu_runnable(vcpu); 3282 } 3283 3284 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3285 { 3286 if (kvm_arch_dy_runnable(vcpu)) 3287 return true; 3288 3289 #ifdef CONFIG_KVM_ASYNC_PF 3290 if (!list_empty_careful(&vcpu->async_pf.done)) 3291 return true; 3292 #endif 3293 3294 return false; 3295 } 3296 3297 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3298 { 3299 return false; 3300 } 3301 3302 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3303 { 3304 struct kvm *kvm = me->kvm; 3305 struct kvm_vcpu *vcpu; 3306 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3307 int yielded = 0; 3308 int try = 3; 3309 int pass; 3310 int i; 3311 3312 kvm_vcpu_set_in_spin_loop(me, true); 3313 /* 3314 * We boost the priority of a VCPU that is runnable but not 3315 * currently running, because it got preempted by something 3316 * else and called schedule in __vcpu_run. Hopefully that 3317 * VCPU is holding the lock that we need and will release it. 3318 * We approximate round-robin by starting at the last boosted VCPU. 3319 */ 3320 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3321 kvm_for_each_vcpu(i, vcpu, kvm) { 3322 if (!pass && i <= last_boosted_vcpu) { 3323 i = last_boosted_vcpu; 3324 continue; 3325 } else if (pass && i > last_boosted_vcpu) 3326 break; 3327 if (!READ_ONCE(vcpu->ready)) 3328 continue; 3329 if (vcpu == me) 3330 continue; 3331 if (rcuwait_active(&vcpu->wait) && 3332 !vcpu_dy_runnable(vcpu)) 3333 continue; 3334 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3335 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3336 !kvm_arch_vcpu_in_kernel(vcpu)) 3337 continue; 3338 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3339 continue; 3340 3341 yielded = kvm_vcpu_yield_to(vcpu); 3342 if (yielded > 0) { 3343 kvm->last_boosted_vcpu = i; 3344 break; 3345 } else if (yielded < 0) { 3346 try--; 3347 if (!try) 3348 break; 3349 } 3350 } 3351 } 3352 kvm_vcpu_set_in_spin_loop(me, false); 3353 3354 /* Ensure vcpu is not eligible during next spinloop */ 3355 kvm_vcpu_set_dy_eligible(me, false); 3356 } 3357 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3358 3359 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3360 { 3361 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 3362 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3363 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3364 kvm->dirty_ring_size / PAGE_SIZE); 3365 #else 3366 return false; 3367 #endif 3368 } 3369 3370 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3371 { 3372 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3373 struct page *page; 3374 3375 if (vmf->pgoff == 0) 3376 page = virt_to_page(vcpu->run); 3377 #ifdef CONFIG_X86 3378 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3379 page = virt_to_page(vcpu->arch.pio_data); 3380 #endif 3381 #ifdef CONFIG_KVM_MMIO 3382 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3383 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3384 #endif 3385 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3386 page = kvm_dirty_ring_get_page( 3387 &vcpu->dirty_ring, 3388 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3389 else 3390 return kvm_arch_vcpu_fault(vcpu, vmf); 3391 get_page(page); 3392 vmf->page = page; 3393 return 0; 3394 } 3395 3396 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3397 .fault = kvm_vcpu_fault, 3398 }; 3399 3400 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3401 { 3402 struct kvm_vcpu *vcpu = file->private_data; 3403 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3404 3405 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3406 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3407 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3408 return -EINVAL; 3409 3410 vma->vm_ops = &kvm_vcpu_vm_ops; 3411 return 0; 3412 } 3413 3414 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3415 { 3416 struct kvm_vcpu *vcpu = filp->private_data; 3417 3418 kvm_put_kvm(vcpu->kvm); 3419 return 0; 3420 } 3421 3422 static struct file_operations kvm_vcpu_fops = { 3423 .release = kvm_vcpu_release, 3424 .unlocked_ioctl = kvm_vcpu_ioctl, 3425 .mmap = kvm_vcpu_mmap, 3426 .llseek = noop_llseek, 3427 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3428 }; 3429 3430 /* 3431 * Allocates an inode for the vcpu. 3432 */ 3433 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3434 { 3435 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3436 3437 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3438 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3439 } 3440 3441 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3442 { 3443 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3444 struct dentry *debugfs_dentry; 3445 char dir_name[ITOA_MAX_LEN * 2]; 3446 3447 if (!debugfs_initialized()) 3448 return; 3449 3450 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3451 debugfs_dentry = debugfs_create_dir(dir_name, 3452 vcpu->kvm->debugfs_dentry); 3453 3454 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3455 #endif 3456 } 3457 3458 /* 3459 * Creates some virtual cpus. Good luck creating more than one. 3460 */ 3461 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3462 { 3463 int r; 3464 struct kvm_vcpu *vcpu; 3465 struct page *page; 3466 3467 if (id >= KVM_MAX_VCPU_ID) 3468 return -EINVAL; 3469 3470 mutex_lock(&kvm->lock); 3471 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3472 mutex_unlock(&kvm->lock); 3473 return -EINVAL; 3474 } 3475 3476 kvm->created_vcpus++; 3477 mutex_unlock(&kvm->lock); 3478 3479 r = kvm_arch_vcpu_precreate(kvm, id); 3480 if (r) 3481 goto vcpu_decrement; 3482 3483 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3484 if (!vcpu) { 3485 r = -ENOMEM; 3486 goto vcpu_decrement; 3487 } 3488 3489 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3490 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3491 if (!page) { 3492 r = -ENOMEM; 3493 goto vcpu_free; 3494 } 3495 vcpu->run = page_address(page); 3496 3497 kvm_vcpu_init(vcpu, kvm, id); 3498 3499 r = kvm_arch_vcpu_create(vcpu); 3500 if (r) 3501 goto vcpu_free_run_page; 3502 3503 if (kvm->dirty_ring_size) { 3504 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3505 id, kvm->dirty_ring_size); 3506 if (r) 3507 goto arch_vcpu_destroy; 3508 } 3509 3510 mutex_lock(&kvm->lock); 3511 if (kvm_get_vcpu_by_id(kvm, id)) { 3512 r = -EEXIST; 3513 goto unlock_vcpu_destroy; 3514 } 3515 3516 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3517 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 3518 3519 /* Fill the stats id string for the vcpu */ 3520 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3521 task_pid_nr(current), id); 3522 3523 /* Now it's all set up, let userspace reach it */ 3524 kvm_get_kvm(kvm); 3525 r = create_vcpu_fd(vcpu); 3526 if (r < 0) { 3527 kvm_put_kvm_no_destroy(kvm); 3528 goto unlock_vcpu_destroy; 3529 } 3530 3531 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 3532 3533 /* 3534 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 3535 * before kvm->online_vcpu's incremented value. 3536 */ 3537 smp_wmb(); 3538 atomic_inc(&kvm->online_vcpus); 3539 3540 mutex_unlock(&kvm->lock); 3541 kvm_arch_vcpu_postcreate(vcpu); 3542 kvm_create_vcpu_debugfs(vcpu); 3543 return r; 3544 3545 unlock_vcpu_destroy: 3546 mutex_unlock(&kvm->lock); 3547 kvm_dirty_ring_free(&vcpu->dirty_ring); 3548 arch_vcpu_destroy: 3549 kvm_arch_vcpu_destroy(vcpu); 3550 vcpu_free_run_page: 3551 free_page((unsigned long)vcpu->run); 3552 vcpu_free: 3553 kmem_cache_free(kvm_vcpu_cache, vcpu); 3554 vcpu_decrement: 3555 mutex_lock(&kvm->lock); 3556 kvm->created_vcpus--; 3557 mutex_unlock(&kvm->lock); 3558 return r; 3559 } 3560 3561 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3562 { 3563 if (sigset) { 3564 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3565 vcpu->sigset_active = 1; 3566 vcpu->sigset = *sigset; 3567 } else 3568 vcpu->sigset_active = 0; 3569 return 0; 3570 } 3571 3572 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3573 size_t size, loff_t *offset) 3574 { 3575 struct kvm_vcpu *vcpu = file->private_data; 3576 3577 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3578 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3579 sizeof(vcpu->stat), user_buffer, size, offset); 3580 } 3581 3582 static const struct file_operations kvm_vcpu_stats_fops = { 3583 .read = kvm_vcpu_stats_read, 3584 .llseek = noop_llseek, 3585 }; 3586 3587 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3588 { 3589 int fd; 3590 struct file *file; 3591 char name[15 + ITOA_MAX_LEN + 1]; 3592 3593 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3594 3595 fd = get_unused_fd_flags(O_CLOEXEC); 3596 if (fd < 0) 3597 return fd; 3598 3599 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3600 if (IS_ERR(file)) { 3601 put_unused_fd(fd); 3602 return PTR_ERR(file); 3603 } 3604 file->f_mode |= FMODE_PREAD; 3605 fd_install(fd, file); 3606 3607 return fd; 3608 } 3609 3610 static long kvm_vcpu_ioctl(struct file *filp, 3611 unsigned int ioctl, unsigned long arg) 3612 { 3613 struct kvm_vcpu *vcpu = filp->private_data; 3614 void __user *argp = (void __user *)arg; 3615 int r; 3616 struct kvm_fpu *fpu = NULL; 3617 struct kvm_sregs *kvm_sregs = NULL; 3618 3619 if (vcpu->kvm->mm != current->mm) 3620 return -EIO; 3621 3622 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3623 return -EINVAL; 3624 3625 /* 3626 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3627 * execution; mutex_lock() would break them. 3628 */ 3629 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3630 if (r != -ENOIOCTLCMD) 3631 return r; 3632 3633 if (mutex_lock_killable(&vcpu->mutex)) 3634 return -EINTR; 3635 switch (ioctl) { 3636 case KVM_RUN: { 3637 struct pid *oldpid; 3638 r = -EINVAL; 3639 if (arg) 3640 goto out; 3641 oldpid = rcu_access_pointer(vcpu->pid); 3642 if (unlikely(oldpid != task_pid(current))) { 3643 /* The thread running this VCPU changed. */ 3644 struct pid *newpid; 3645 3646 r = kvm_arch_vcpu_run_pid_change(vcpu); 3647 if (r) 3648 break; 3649 3650 newpid = get_task_pid(current, PIDTYPE_PID); 3651 rcu_assign_pointer(vcpu->pid, newpid); 3652 if (oldpid) 3653 synchronize_rcu(); 3654 put_pid(oldpid); 3655 } 3656 r = kvm_arch_vcpu_ioctl_run(vcpu); 3657 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3658 break; 3659 } 3660 case KVM_GET_REGS: { 3661 struct kvm_regs *kvm_regs; 3662 3663 r = -ENOMEM; 3664 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3665 if (!kvm_regs) 3666 goto out; 3667 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3668 if (r) 3669 goto out_free1; 3670 r = -EFAULT; 3671 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3672 goto out_free1; 3673 r = 0; 3674 out_free1: 3675 kfree(kvm_regs); 3676 break; 3677 } 3678 case KVM_SET_REGS: { 3679 struct kvm_regs *kvm_regs; 3680 3681 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3682 if (IS_ERR(kvm_regs)) { 3683 r = PTR_ERR(kvm_regs); 3684 goto out; 3685 } 3686 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3687 kfree(kvm_regs); 3688 break; 3689 } 3690 case KVM_GET_SREGS: { 3691 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3692 GFP_KERNEL_ACCOUNT); 3693 r = -ENOMEM; 3694 if (!kvm_sregs) 3695 goto out; 3696 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3697 if (r) 3698 goto out; 3699 r = -EFAULT; 3700 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3701 goto out; 3702 r = 0; 3703 break; 3704 } 3705 case KVM_SET_SREGS: { 3706 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3707 if (IS_ERR(kvm_sregs)) { 3708 r = PTR_ERR(kvm_sregs); 3709 kvm_sregs = NULL; 3710 goto out; 3711 } 3712 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3713 break; 3714 } 3715 case KVM_GET_MP_STATE: { 3716 struct kvm_mp_state mp_state; 3717 3718 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3719 if (r) 3720 goto out; 3721 r = -EFAULT; 3722 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3723 goto out; 3724 r = 0; 3725 break; 3726 } 3727 case KVM_SET_MP_STATE: { 3728 struct kvm_mp_state mp_state; 3729 3730 r = -EFAULT; 3731 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3732 goto out; 3733 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3734 break; 3735 } 3736 case KVM_TRANSLATE: { 3737 struct kvm_translation tr; 3738 3739 r = -EFAULT; 3740 if (copy_from_user(&tr, argp, sizeof(tr))) 3741 goto out; 3742 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3743 if (r) 3744 goto out; 3745 r = -EFAULT; 3746 if (copy_to_user(argp, &tr, sizeof(tr))) 3747 goto out; 3748 r = 0; 3749 break; 3750 } 3751 case KVM_SET_GUEST_DEBUG: { 3752 struct kvm_guest_debug dbg; 3753 3754 r = -EFAULT; 3755 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3756 goto out; 3757 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3758 break; 3759 } 3760 case KVM_SET_SIGNAL_MASK: { 3761 struct kvm_signal_mask __user *sigmask_arg = argp; 3762 struct kvm_signal_mask kvm_sigmask; 3763 sigset_t sigset, *p; 3764 3765 p = NULL; 3766 if (argp) { 3767 r = -EFAULT; 3768 if (copy_from_user(&kvm_sigmask, argp, 3769 sizeof(kvm_sigmask))) 3770 goto out; 3771 r = -EINVAL; 3772 if (kvm_sigmask.len != sizeof(sigset)) 3773 goto out; 3774 r = -EFAULT; 3775 if (copy_from_user(&sigset, sigmask_arg->sigset, 3776 sizeof(sigset))) 3777 goto out; 3778 p = &sigset; 3779 } 3780 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3781 break; 3782 } 3783 case KVM_GET_FPU: { 3784 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3785 r = -ENOMEM; 3786 if (!fpu) 3787 goto out; 3788 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3789 if (r) 3790 goto out; 3791 r = -EFAULT; 3792 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3793 goto out; 3794 r = 0; 3795 break; 3796 } 3797 case KVM_SET_FPU: { 3798 fpu = memdup_user(argp, sizeof(*fpu)); 3799 if (IS_ERR(fpu)) { 3800 r = PTR_ERR(fpu); 3801 fpu = NULL; 3802 goto out; 3803 } 3804 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3805 break; 3806 } 3807 case KVM_GET_STATS_FD: { 3808 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 3809 break; 3810 } 3811 default: 3812 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3813 } 3814 out: 3815 mutex_unlock(&vcpu->mutex); 3816 kfree(fpu); 3817 kfree(kvm_sregs); 3818 return r; 3819 } 3820 3821 #ifdef CONFIG_KVM_COMPAT 3822 static long kvm_vcpu_compat_ioctl(struct file *filp, 3823 unsigned int ioctl, unsigned long arg) 3824 { 3825 struct kvm_vcpu *vcpu = filp->private_data; 3826 void __user *argp = compat_ptr(arg); 3827 int r; 3828 3829 if (vcpu->kvm->mm != current->mm) 3830 return -EIO; 3831 3832 switch (ioctl) { 3833 case KVM_SET_SIGNAL_MASK: { 3834 struct kvm_signal_mask __user *sigmask_arg = argp; 3835 struct kvm_signal_mask kvm_sigmask; 3836 sigset_t sigset; 3837 3838 if (argp) { 3839 r = -EFAULT; 3840 if (copy_from_user(&kvm_sigmask, argp, 3841 sizeof(kvm_sigmask))) 3842 goto out; 3843 r = -EINVAL; 3844 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3845 goto out; 3846 r = -EFAULT; 3847 if (get_compat_sigset(&sigset, 3848 (compat_sigset_t __user *)sigmask_arg->sigset)) 3849 goto out; 3850 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3851 } else 3852 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3853 break; 3854 } 3855 default: 3856 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3857 } 3858 3859 out: 3860 return r; 3861 } 3862 #endif 3863 3864 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3865 { 3866 struct kvm_device *dev = filp->private_data; 3867 3868 if (dev->ops->mmap) 3869 return dev->ops->mmap(dev, vma); 3870 3871 return -ENODEV; 3872 } 3873 3874 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3875 int (*accessor)(struct kvm_device *dev, 3876 struct kvm_device_attr *attr), 3877 unsigned long arg) 3878 { 3879 struct kvm_device_attr attr; 3880 3881 if (!accessor) 3882 return -EPERM; 3883 3884 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3885 return -EFAULT; 3886 3887 return accessor(dev, &attr); 3888 } 3889 3890 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3891 unsigned long arg) 3892 { 3893 struct kvm_device *dev = filp->private_data; 3894 3895 if (dev->kvm->mm != current->mm) 3896 return -EIO; 3897 3898 switch (ioctl) { 3899 case KVM_SET_DEVICE_ATTR: 3900 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3901 case KVM_GET_DEVICE_ATTR: 3902 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3903 case KVM_HAS_DEVICE_ATTR: 3904 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3905 default: 3906 if (dev->ops->ioctl) 3907 return dev->ops->ioctl(dev, ioctl, arg); 3908 3909 return -ENOTTY; 3910 } 3911 } 3912 3913 static int kvm_device_release(struct inode *inode, struct file *filp) 3914 { 3915 struct kvm_device *dev = filp->private_data; 3916 struct kvm *kvm = dev->kvm; 3917 3918 if (dev->ops->release) { 3919 mutex_lock(&kvm->lock); 3920 list_del(&dev->vm_node); 3921 dev->ops->release(dev); 3922 mutex_unlock(&kvm->lock); 3923 } 3924 3925 kvm_put_kvm(kvm); 3926 return 0; 3927 } 3928 3929 static const struct file_operations kvm_device_fops = { 3930 .unlocked_ioctl = kvm_device_ioctl, 3931 .release = kvm_device_release, 3932 KVM_COMPAT(kvm_device_ioctl), 3933 .mmap = kvm_device_mmap, 3934 }; 3935 3936 struct kvm_device *kvm_device_from_filp(struct file *filp) 3937 { 3938 if (filp->f_op != &kvm_device_fops) 3939 return NULL; 3940 3941 return filp->private_data; 3942 } 3943 3944 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3945 #ifdef CONFIG_KVM_MPIC 3946 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3947 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3948 #endif 3949 }; 3950 3951 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 3952 { 3953 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3954 return -ENOSPC; 3955 3956 if (kvm_device_ops_table[type] != NULL) 3957 return -EEXIST; 3958 3959 kvm_device_ops_table[type] = ops; 3960 return 0; 3961 } 3962 3963 void kvm_unregister_device_ops(u32 type) 3964 { 3965 if (kvm_device_ops_table[type] != NULL) 3966 kvm_device_ops_table[type] = NULL; 3967 } 3968 3969 static int kvm_ioctl_create_device(struct kvm *kvm, 3970 struct kvm_create_device *cd) 3971 { 3972 const struct kvm_device_ops *ops = NULL; 3973 struct kvm_device *dev; 3974 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3975 int type; 3976 int ret; 3977 3978 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3979 return -ENODEV; 3980 3981 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3982 ops = kvm_device_ops_table[type]; 3983 if (ops == NULL) 3984 return -ENODEV; 3985 3986 if (test) 3987 return 0; 3988 3989 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3990 if (!dev) 3991 return -ENOMEM; 3992 3993 dev->ops = ops; 3994 dev->kvm = kvm; 3995 3996 mutex_lock(&kvm->lock); 3997 ret = ops->create(dev, type); 3998 if (ret < 0) { 3999 mutex_unlock(&kvm->lock); 4000 kfree(dev); 4001 return ret; 4002 } 4003 list_add(&dev->vm_node, &kvm->devices); 4004 mutex_unlock(&kvm->lock); 4005 4006 if (ops->init) 4007 ops->init(dev); 4008 4009 kvm_get_kvm(kvm); 4010 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4011 if (ret < 0) { 4012 kvm_put_kvm_no_destroy(kvm); 4013 mutex_lock(&kvm->lock); 4014 list_del(&dev->vm_node); 4015 mutex_unlock(&kvm->lock); 4016 ops->destroy(dev); 4017 return ret; 4018 } 4019 4020 cd->fd = ret; 4021 return 0; 4022 } 4023 4024 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4025 { 4026 switch (arg) { 4027 case KVM_CAP_USER_MEMORY: 4028 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4029 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4030 case KVM_CAP_INTERNAL_ERROR_DATA: 4031 #ifdef CONFIG_HAVE_KVM_MSI 4032 case KVM_CAP_SIGNAL_MSI: 4033 #endif 4034 #ifdef CONFIG_HAVE_KVM_IRQFD 4035 case KVM_CAP_IRQFD: 4036 case KVM_CAP_IRQFD_RESAMPLE: 4037 #endif 4038 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4039 case KVM_CAP_CHECK_EXTENSION_VM: 4040 case KVM_CAP_ENABLE_CAP_VM: 4041 case KVM_CAP_HALT_POLL: 4042 return 1; 4043 #ifdef CONFIG_KVM_MMIO 4044 case KVM_CAP_COALESCED_MMIO: 4045 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4046 case KVM_CAP_COALESCED_PIO: 4047 return 1; 4048 #endif 4049 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4050 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4051 return KVM_DIRTY_LOG_MANUAL_CAPS; 4052 #endif 4053 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4054 case KVM_CAP_IRQ_ROUTING: 4055 return KVM_MAX_IRQ_ROUTES; 4056 #endif 4057 #if KVM_ADDRESS_SPACE_NUM > 1 4058 case KVM_CAP_MULTI_ADDRESS_SPACE: 4059 return KVM_ADDRESS_SPACE_NUM; 4060 #endif 4061 case KVM_CAP_NR_MEMSLOTS: 4062 return KVM_USER_MEM_SLOTS; 4063 case KVM_CAP_DIRTY_LOG_RING: 4064 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 4065 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4066 #else 4067 return 0; 4068 #endif 4069 case KVM_CAP_BINARY_STATS_FD: 4070 return 1; 4071 default: 4072 break; 4073 } 4074 return kvm_vm_ioctl_check_extension(kvm, arg); 4075 } 4076 4077 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4078 { 4079 int r; 4080 4081 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4082 return -EINVAL; 4083 4084 /* the size should be power of 2 */ 4085 if (!size || (size & (size - 1))) 4086 return -EINVAL; 4087 4088 /* Should be bigger to keep the reserved entries, or a page */ 4089 if (size < kvm_dirty_ring_get_rsvd_entries() * 4090 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4091 return -EINVAL; 4092 4093 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4094 sizeof(struct kvm_dirty_gfn)) 4095 return -E2BIG; 4096 4097 /* We only allow it to set once */ 4098 if (kvm->dirty_ring_size) 4099 return -EINVAL; 4100 4101 mutex_lock(&kvm->lock); 4102 4103 if (kvm->created_vcpus) { 4104 /* We don't allow to change this value after vcpu created */ 4105 r = -EINVAL; 4106 } else { 4107 kvm->dirty_ring_size = size; 4108 r = 0; 4109 } 4110 4111 mutex_unlock(&kvm->lock); 4112 return r; 4113 } 4114 4115 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4116 { 4117 int i; 4118 struct kvm_vcpu *vcpu; 4119 int cleared = 0; 4120 4121 if (!kvm->dirty_ring_size) 4122 return -EINVAL; 4123 4124 mutex_lock(&kvm->slots_lock); 4125 4126 kvm_for_each_vcpu(i, vcpu, kvm) 4127 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4128 4129 mutex_unlock(&kvm->slots_lock); 4130 4131 if (cleared) 4132 kvm_flush_remote_tlbs(kvm); 4133 4134 return cleared; 4135 } 4136 4137 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4138 struct kvm_enable_cap *cap) 4139 { 4140 return -EINVAL; 4141 } 4142 4143 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4144 struct kvm_enable_cap *cap) 4145 { 4146 switch (cap->cap) { 4147 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4148 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4149 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4150 4151 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4152 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4153 4154 if (cap->flags || (cap->args[0] & ~allowed_options)) 4155 return -EINVAL; 4156 kvm->manual_dirty_log_protect = cap->args[0]; 4157 return 0; 4158 } 4159 #endif 4160 case KVM_CAP_HALT_POLL: { 4161 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4162 return -EINVAL; 4163 4164 kvm->max_halt_poll_ns = cap->args[0]; 4165 return 0; 4166 } 4167 case KVM_CAP_DIRTY_LOG_RING: 4168 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4169 default: 4170 return kvm_vm_ioctl_enable_cap(kvm, cap); 4171 } 4172 } 4173 4174 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4175 size_t size, loff_t *offset) 4176 { 4177 struct kvm *kvm = file->private_data; 4178 4179 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4180 &kvm_vm_stats_desc[0], &kvm->stat, 4181 sizeof(kvm->stat), user_buffer, size, offset); 4182 } 4183 4184 static const struct file_operations kvm_vm_stats_fops = { 4185 .read = kvm_vm_stats_read, 4186 .llseek = noop_llseek, 4187 }; 4188 4189 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4190 { 4191 int fd; 4192 struct file *file; 4193 4194 fd = get_unused_fd_flags(O_CLOEXEC); 4195 if (fd < 0) 4196 return fd; 4197 4198 file = anon_inode_getfile("kvm-vm-stats", 4199 &kvm_vm_stats_fops, kvm, O_RDONLY); 4200 if (IS_ERR(file)) { 4201 put_unused_fd(fd); 4202 return PTR_ERR(file); 4203 } 4204 file->f_mode |= FMODE_PREAD; 4205 fd_install(fd, file); 4206 4207 return fd; 4208 } 4209 4210 static long kvm_vm_ioctl(struct file *filp, 4211 unsigned int ioctl, unsigned long arg) 4212 { 4213 struct kvm *kvm = filp->private_data; 4214 void __user *argp = (void __user *)arg; 4215 int r; 4216 4217 if (kvm->mm != current->mm) 4218 return -EIO; 4219 switch (ioctl) { 4220 case KVM_CREATE_VCPU: 4221 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4222 break; 4223 case KVM_ENABLE_CAP: { 4224 struct kvm_enable_cap cap; 4225 4226 r = -EFAULT; 4227 if (copy_from_user(&cap, argp, sizeof(cap))) 4228 goto out; 4229 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4230 break; 4231 } 4232 case KVM_SET_USER_MEMORY_REGION: { 4233 struct kvm_userspace_memory_region kvm_userspace_mem; 4234 4235 r = -EFAULT; 4236 if (copy_from_user(&kvm_userspace_mem, argp, 4237 sizeof(kvm_userspace_mem))) 4238 goto out; 4239 4240 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4241 break; 4242 } 4243 case KVM_GET_DIRTY_LOG: { 4244 struct kvm_dirty_log log; 4245 4246 r = -EFAULT; 4247 if (copy_from_user(&log, argp, sizeof(log))) 4248 goto out; 4249 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4250 break; 4251 } 4252 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4253 case KVM_CLEAR_DIRTY_LOG: { 4254 struct kvm_clear_dirty_log log; 4255 4256 r = -EFAULT; 4257 if (copy_from_user(&log, argp, sizeof(log))) 4258 goto out; 4259 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4260 break; 4261 } 4262 #endif 4263 #ifdef CONFIG_KVM_MMIO 4264 case KVM_REGISTER_COALESCED_MMIO: { 4265 struct kvm_coalesced_mmio_zone zone; 4266 4267 r = -EFAULT; 4268 if (copy_from_user(&zone, argp, sizeof(zone))) 4269 goto out; 4270 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4271 break; 4272 } 4273 case KVM_UNREGISTER_COALESCED_MMIO: { 4274 struct kvm_coalesced_mmio_zone zone; 4275 4276 r = -EFAULT; 4277 if (copy_from_user(&zone, argp, sizeof(zone))) 4278 goto out; 4279 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4280 break; 4281 } 4282 #endif 4283 case KVM_IRQFD: { 4284 struct kvm_irqfd data; 4285 4286 r = -EFAULT; 4287 if (copy_from_user(&data, argp, sizeof(data))) 4288 goto out; 4289 r = kvm_irqfd(kvm, &data); 4290 break; 4291 } 4292 case KVM_IOEVENTFD: { 4293 struct kvm_ioeventfd data; 4294 4295 r = -EFAULT; 4296 if (copy_from_user(&data, argp, sizeof(data))) 4297 goto out; 4298 r = kvm_ioeventfd(kvm, &data); 4299 break; 4300 } 4301 #ifdef CONFIG_HAVE_KVM_MSI 4302 case KVM_SIGNAL_MSI: { 4303 struct kvm_msi msi; 4304 4305 r = -EFAULT; 4306 if (copy_from_user(&msi, argp, sizeof(msi))) 4307 goto out; 4308 r = kvm_send_userspace_msi(kvm, &msi); 4309 break; 4310 } 4311 #endif 4312 #ifdef __KVM_HAVE_IRQ_LINE 4313 case KVM_IRQ_LINE_STATUS: 4314 case KVM_IRQ_LINE: { 4315 struct kvm_irq_level irq_event; 4316 4317 r = -EFAULT; 4318 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4319 goto out; 4320 4321 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4322 ioctl == KVM_IRQ_LINE_STATUS); 4323 if (r) 4324 goto out; 4325 4326 r = -EFAULT; 4327 if (ioctl == KVM_IRQ_LINE_STATUS) { 4328 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4329 goto out; 4330 } 4331 4332 r = 0; 4333 break; 4334 } 4335 #endif 4336 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4337 case KVM_SET_GSI_ROUTING: { 4338 struct kvm_irq_routing routing; 4339 struct kvm_irq_routing __user *urouting; 4340 struct kvm_irq_routing_entry *entries = NULL; 4341 4342 r = -EFAULT; 4343 if (copy_from_user(&routing, argp, sizeof(routing))) 4344 goto out; 4345 r = -EINVAL; 4346 if (!kvm_arch_can_set_irq_routing(kvm)) 4347 goto out; 4348 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4349 goto out; 4350 if (routing.flags) 4351 goto out; 4352 if (routing.nr) { 4353 urouting = argp; 4354 entries = vmemdup_user(urouting->entries, 4355 array_size(sizeof(*entries), 4356 routing.nr)); 4357 if (IS_ERR(entries)) { 4358 r = PTR_ERR(entries); 4359 goto out; 4360 } 4361 } 4362 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4363 routing.flags); 4364 kvfree(entries); 4365 break; 4366 } 4367 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4368 case KVM_CREATE_DEVICE: { 4369 struct kvm_create_device cd; 4370 4371 r = -EFAULT; 4372 if (copy_from_user(&cd, argp, sizeof(cd))) 4373 goto out; 4374 4375 r = kvm_ioctl_create_device(kvm, &cd); 4376 if (r) 4377 goto out; 4378 4379 r = -EFAULT; 4380 if (copy_to_user(argp, &cd, sizeof(cd))) 4381 goto out; 4382 4383 r = 0; 4384 break; 4385 } 4386 case KVM_CHECK_EXTENSION: 4387 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4388 break; 4389 case KVM_RESET_DIRTY_RINGS: 4390 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4391 break; 4392 case KVM_GET_STATS_FD: 4393 r = kvm_vm_ioctl_get_stats_fd(kvm); 4394 break; 4395 default: 4396 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4397 } 4398 out: 4399 return r; 4400 } 4401 4402 #ifdef CONFIG_KVM_COMPAT 4403 struct compat_kvm_dirty_log { 4404 __u32 slot; 4405 __u32 padding1; 4406 union { 4407 compat_uptr_t dirty_bitmap; /* one bit per page */ 4408 __u64 padding2; 4409 }; 4410 }; 4411 4412 struct compat_kvm_clear_dirty_log { 4413 __u32 slot; 4414 __u32 num_pages; 4415 __u64 first_page; 4416 union { 4417 compat_uptr_t dirty_bitmap; /* one bit per page */ 4418 __u64 padding2; 4419 }; 4420 }; 4421 4422 static long kvm_vm_compat_ioctl(struct file *filp, 4423 unsigned int ioctl, unsigned long arg) 4424 { 4425 struct kvm *kvm = filp->private_data; 4426 int r; 4427 4428 if (kvm->mm != current->mm) 4429 return -EIO; 4430 switch (ioctl) { 4431 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4432 case KVM_CLEAR_DIRTY_LOG: { 4433 struct compat_kvm_clear_dirty_log compat_log; 4434 struct kvm_clear_dirty_log log; 4435 4436 if (copy_from_user(&compat_log, (void __user *)arg, 4437 sizeof(compat_log))) 4438 return -EFAULT; 4439 log.slot = compat_log.slot; 4440 log.num_pages = compat_log.num_pages; 4441 log.first_page = compat_log.first_page; 4442 log.padding2 = compat_log.padding2; 4443 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4444 4445 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4446 break; 4447 } 4448 #endif 4449 case KVM_GET_DIRTY_LOG: { 4450 struct compat_kvm_dirty_log compat_log; 4451 struct kvm_dirty_log log; 4452 4453 if (copy_from_user(&compat_log, (void __user *)arg, 4454 sizeof(compat_log))) 4455 return -EFAULT; 4456 log.slot = compat_log.slot; 4457 log.padding1 = compat_log.padding1; 4458 log.padding2 = compat_log.padding2; 4459 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4460 4461 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4462 break; 4463 } 4464 default: 4465 r = kvm_vm_ioctl(filp, ioctl, arg); 4466 } 4467 return r; 4468 } 4469 #endif 4470 4471 static struct file_operations kvm_vm_fops = { 4472 .release = kvm_vm_release, 4473 .unlocked_ioctl = kvm_vm_ioctl, 4474 .llseek = noop_llseek, 4475 KVM_COMPAT(kvm_vm_compat_ioctl), 4476 }; 4477 4478 bool file_is_kvm(struct file *file) 4479 { 4480 return file && file->f_op == &kvm_vm_fops; 4481 } 4482 EXPORT_SYMBOL_GPL(file_is_kvm); 4483 4484 static int kvm_dev_ioctl_create_vm(unsigned long type) 4485 { 4486 int r; 4487 struct kvm *kvm; 4488 struct file *file; 4489 4490 kvm = kvm_create_vm(type); 4491 if (IS_ERR(kvm)) 4492 return PTR_ERR(kvm); 4493 #ifdef CONFIG_KVM_MMIO 4494 r = kvm_coalesced_mmio_init(kvm); 4495 if (r < 0) 4496 goto put_kvm; 4497 #endif 4498 r = get_unused_fd_flags(O_CLOEXEC); 4499 if (r < 0) 4500 goto put_kvm; 4501 4502 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4503 "kvm-%d", task_pid_nr(current)); 4504 4505 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4506 if (IS_ERR(file)) { 4507 put_unused_fd(r); 4508 r = PTR_ERR(file); 4509 goto put_kvm; 4510 } 4511 4512 /* 4513 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4514 * already set, with ->release() being kvm_vm_release(). In error 4515 * cases it will be called by the final fput(file) and will take 4516 * care of doing kvm_put_kvm(kvm). 4517 */ 4518 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4519 put_unused_fd(r); 4520 fput(file); 4521 return -ENOMEM; 4522 } 4523 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4524 4525 fd_install(r, file); 4526 return r; 4527 4528 put_kvm: 4529 kvm_put_kvm(kvm); 4530 return r; 4531 } 4532 4533 static long kvm_dev_ioctl(struct file *filp, 4534 unsigned int ioctl, unsigned long arg) 4535 { 4536 long r = -EINVAL; 4537 4538 switch (ioctl) { 4539 case KVM_GET_API_VERSION: 4540 if (arg) 4541 goto out; 4542 r = KVM_API_VERSION; 4543 break; 4544 case KVM_CREATE_VM: 4545 r = kvm_dev_ioctl_create_vm(arg); 4546 break; 4547 case KVM_CHECK_EXTENSION: 4548 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4549 break; 4550 case KVM_GET_VCPU_MMAP_SIZE: 4551 if (arg) 4552 goto out; 4553 r = PAGE_SIZE; /* struct kvm_run */ 4554 #ifdef CONFIG_X86 4555 r += PAGE_SIZE; /* pio data page */ 4556 #endif 4557 #ifdef CONFIG_KVM_MMIO 4558 r += PAGE_SIZE; /* coalesced mmio ring page */ 4559 #endif 4560 break; 4561 case KVM_TRACE_ENABLE: 4562 case KVM_TRACE_PAUSE: 4563 case KVM_TRACE_DISABLE: 4564 r = -EOPNOTSUPP; 4565 break; 4566 default: 4567 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4568 } 4569 out: 4570 return r; 4571 } 4572 4573 static struct file_operations kvm_chardev_ops = { 4574 .unlocked_ioctl = kvm_dev_ioctl, 4575 .llseek = noop_llseek, 4576 KVM_COMPAT(kvm_dev_ioctl), 4577 }; 4578 4579 static struct miscdevice kvm_dev = { 4580 KVM_MINOR, 4581 "kvm", 4582 &kvm_chardev_ops, 4583 }; 4584 4585 static void hardware_enable_nolock(void *junk) 4586 { 4587 int cpu = raw_smp_processor_id(); 4588 int r; 4589 4590 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4591 return; 4592 4593 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4594 4595 r = kvm_arch_hardware_enable(); 4596 4597 if (r) { 4598 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4599 atomic_inc(&hardware_enable_failed); 4600 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4601 } 4602 } 4603 4604 static int kvm_starting_cpu(unsigned int cpu) 4605 { 4606 raw_spin_lock(&kvm_count_lock); 4607 if (kvm_usage_count) 4608 hardware_enable_nolock(NULL); 4609 raw_spin_unlock(&kvm_count_lock); 4610 return 0; 4611 } 4612 4613 static void hardware_disable_nolock(void *junk) 4614 { 4615 int cpu = raw_smp_processor_id(); 4616 4617 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4618 return; 4619 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4620 kvm_arch_hardware_disable(); 4621 } 4622 4623 static int kvm_dying_cpu(unsigned int cpu) 4624 { 4625 raw_spin_lock(&kvm_count_lock); 4626 if (kvm_usage_count) 4627 hardware_disable_nolock(NULL); 4628 raw_spin_unlock(&kvm_count_lock); 4629 return 0; 4630 } 4631 4632 static void hardware_disable_all_nolock(void) 4633 { 4634 BUG_ON(!kvm_usage_count); 4635 4636 kvm_usage_count--; 4637 if (!kvm_usage_count) 4638 on_each_cpu(hardware_disable_nolock, NULL, 1); 4639 } 4640 4641 static void hardware_disable_all(void) 4642 { 4643 raw_spin_lock(&kvm_count_lock); 4644 hardware_disable_all_nolock(); 4645 raw_spin_unlock(&kvm_count_lock); 4646 } 4647 4648 static int hardware_enable_all(void) 4649 { 4650 int r = 0; 4651 4652 raw_spin_lock(&kvm_count_lock); 4653 4654 kvm_usage_count++; 4655 if (kvm_usage_count == 1) { 4656 atomic_set(&hardware_enable_failed, 0); 4657 on_each_cpu(hardware_enable_nolock, NULL, 1); 4658 4659 if (atomic_read(&hardware_enable_failed)) { 4660 hardware_disable_all_nolock(); 4661 r = -EBUSY; 4662 } 4663 } 4664 4665 raw_spin_unlock(&kvm_count_lock); 4666 4667 return r; 4668 } 4669 4670 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4671 void *v) 4672 { 4673 /* 4674 * Some (well, at least mine) BIOSes hang on reboot if 4675 * in vmx root mode. 4676 * 4677 * And Intel TXT required VMX off for all cpu when system shutdown. 4678 */ 4679 pr_info("kvm: exiting hardware virtualization\n"); 4680 kvm_rebooting = true; 4681 on_each_cpu(hardware_disable_nolock, NULL, 1); 4682 return NOTIFY_OK; 4683 } 4684 4685 static struct notifier_block kvm_reboot_notifier = { 4686 .notifier_call = kvm_reboot, 4687 .priority = 0, 4688 }; 4689 4690 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4691 { 4692 int i; 4693 4694 for (i = 0; i < bus->dev_count; i++) { 4695 struct kvm_io_device *pos = bus->range[i].dev; 4696 4697 kvm_iodevice_destructor(pos); 4698 } 4699 kfree(bus); 4700 } 4701 4702 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4703 const struct kvm_io_range *r2) 4704 { 4705 gpa_t addr1 = r1->addr; 4706 gpa_t addr2 = r2->addr; 4707 4708 if (addr1 < addr2) 4709 return -1; 4710 4711 /* If r2->len == 0, match the exact address. If r2->len != 0, 4712 * accept any overlapping write. Any order is acceptable for 4713 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4714 * we process all of them. 4715 */ 4716 if (r2->len) { 4717 addr1 += r1->len; 4718 addr2 += r2->len; 4719 } 4720 4721 if (addr1 > addr2) 4722 return 1; 4723 4724 return 0; 4725 } 4726 4727 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4728 { 4729 return kvm_io_bus_cmp(p1, p2); 4730 } 4731 4732 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4733 gpa_t addr, int len) 4734 { 4735 struct kvm_io_range *range, key; 4736 int off; 4737 4738 key = (struct kvm_io_range) { 4739 .addr = addr, 4740 .len = len, 4741 }; 4742 4743 range = bsearch(&key, bus->range, bus->dev_count, 4744 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4745 if (range == NULL) 4746 return -ENOENT; 4747 4748 off = range - bus->range; 4749 4750 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4751 off--; 4752 4753 return off; 4754 } 4755 4756 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4757 struct kvm_io_range *range, const void *val) 4758 { 4759 int idx; 4760 4761 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4762 if (idx < 0) 4763 return -EOPNOTSUPP; 4764 4765 while (idx < bus->dev_count && 4766 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4767 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 4768 range->len, val)) 4769 return idx; 4770 idx++; 4771 } 4772 4773 return -EOPNOTSUPP; 4774 } 4775 4776 /* kvm_io_bus_write - called under kvm->slots_lock */ 4777 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4778 int len, const void *val) 4779 { 4780 struct kvm_io_bus *bus; 4781 struct kvm_io_range range; 4782 int r; 4783 4784 range = (struct kvm_io_range) { 4785 .addr = addr, 4786 .len = len, 4787 }; 4788 4789 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4790 if (!bus) 4791 return -ENOMEM; 4792 r = __kvm_io_bus_write(vcpu, bus, &range, val); 4793 return r < 0 ? r : 0; 4794 } 4795 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 4796 4797 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 4798 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 4799 gpa_t addr, int len, const void *val, long cookie) 4800 { 4801 struct kvm_io_bus *bus; 4802 struct kvm_io_range range; 4803 4804 range = (struct kvm_io_range) { 4805 .addr = addr, 4806 .len = len, 4807 }; 4808 4809 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4810 if (!bus) 4811 return -ENOMEM; 4812 4813 /* First try the device referenced by cookie. */ 4814 if ((cookie >= 0) && (cookie < bus->dev_count) && 4815 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 4816 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 4817 val)) 4818 return cookie; 4819 4820 /* 4821 * cookie contained garbage; fall back to search and return the 4822 * correct cookie value. 4823 */ 4824 return __kvm_io_bus_write(vcpu, bus, &range, val); 4825 } 4826 4827 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4828 struct kvm_io_range *range, void *val) 4829 { 4830 int idx; 4831 4832 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4833 if (idx < 0) 4834 return -EOPNOTSUPP; 4835 4836 while (idx < bus->dev_count && 4837 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4838 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 4839 range->len, val)) 4840 return idx; 4841 idx++; 4842 } 4843 4844 return -EOPNOTSUPP; 4845 } 4846 4847 /* kvm_io_bus_read - called under kvm->slots_lock */ 4848 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4849 int len, void *val) 4850 { 4851 struct kvm_io_bus *bus; 4852 struct kvm_io_range range; 4853 int r; 4854 4855 range = (struct kvm_io_range) { 4856 .addr = addr, 4857 .len = len, 4858 }; 4859 4860 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4861 if (!bus) 4862 return -ENOMEM; 4863 r = __kvm_io_bus_read(vcpu, bus, &range, val); 4864 return r < 0 ? r : 0; 4865 } 4866 4867 /* Caller must hold slots_lock. */ 4868 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 4869 int len, struct kvm_io_device *dev) 4870 { 4871 int i; 4872 struct kvm_io_bus *new_bus, *bus; 4873 struct kvm_io_range range; 4874 4875 bus = kvm_get_bus(kvm, bus_idx); 4876 if (!bus) 4877 return -ENOMEM; 4878 4879 /* exclude ioeventfd which is limited by maximum fd */ 4880 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 4881 return -ENOSPC; 4882 4883 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 4884 GFP_KERNEL_ACCOUNT); 4885 if (!new_bus) 4886 return -ENOMEM; 4887 4888 range = (struct kvm_io_range) { 4889 .addr = addr, 4890 .len = len, 4891 .dev = dev, 4892 }; 4893 4894 for (i = 0; i < bus->dev_count; i++) 4895 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 4896 break; 4897 4898 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4899 new_bus->dev_count++; 4900 new_bus->range[i] = range; 4901 memcpy(new_bus->range + i + 1, bus->range + i, 4902 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 4903 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4904 synchronize_srcu_expedited(&kvm->srcu); 4905 kfree(bus); 4906 4907 return 0; 4908 } 4909 4910 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4911 struct kvm_io_device *dev) 4912 { 4913 int i, j; 4914 struct kvm_io_bus *new_bus, *bus; 4915 4916 lockdep_assert_held(&kvm->slots_lock); 4917 4918 bus = kvm_get_bus(kvm, bus_idx); 4919 if (!bus) 4920 return 0; 4921 4922 for (i = 0; i < bus->dev_count; i++) { 4923 if (bus->range[i].dev == dev) { 4924 break; 4925 } 4926 } 4927 4928 if (i == bus->dev_count) 4929 return 0; 4930 4931 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 4932 GFP_KERNEL_ACCOUNT); 4933 if (new_bus) { 4934 memcpy(new_bus, bus, struct_size(bus, range, i)); 4935 new_bus->dev_count--; 4936 memcpy(new_bus->range + i, bus->range + i + 1, 4937 flex_array_size(new_bus, range, new_bus->dev_count - i)); 4938 } 4939 4940 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4941 synchronize_srcu_expedited(&kvm->srcu); 4942 4943 /* Destroy the old bus _after_ installing the (null) bus. */ 4944 if (!new_bus) { 4945 pr_err("kvm: failed to shrink bus, removing it completely\n"); 4946 for (j = 0; j < bus->dev_count; j++) { 4947 if (j == i) 4948 continue; 4949 kvm_iodevice_destructor(bus->range[j].dev); 4950 } 4951 } 4952 4953 kfree(bus); 4954 return new_bus ? 0 : -ENOMEM; 4955 } 4956 4957 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4958 gpa_t addr) 4959 { 4960 struct kvm_io_bus *bus; 4961 int dev_idx, srcu_idx; 4962 struct kvm_io_device *iodev = NULL; 4963 4964 srcu_idx = srcu_read_lock(&kvm->srcu); 4965 4966 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 4967 if (!bus) 4968 goto out_unlock; 4969 4970 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 4971 if (dev_idx < 0) 4972 goto out_unlock; 4973 4974 iodev = bus->range[dev_idx].dev; 4975 4976 out_unlock: 4977 srcu_read_unlock(&kvm->srcu, srcu_idx); 4978 4979 return iodev; 4980 } 4981 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 4982 4983 static int kvm_debugfs_open(struct inode *inode, struct file *file, 4984 int (*get)(void *, u64 *), int (*set)(void *, u64), 4985 const char *fmt) 4986 { 4987 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4988 inode->i_private; 4989 4990 /* The debugfs files are a reference to the kvm struct which 4991 * is still valid when kvm_destroy_vm is called. 4992 * To avoid the race between open and the removal of the debugfs 4993 * directory we test against the users count. 4994 */ 4995 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 4996 return -ENOENT; 4997 4998 if (simple_attr_open(inode, file, get, 4999 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5000 ? set : NULL, 5001 fmt)) { 5002 kvm_put_kvm(stat_data->kvm); 5003 return -ENOMEM; 5004 } 5005 5006 return 0; 5007 } 5008 5009 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5010 { 5011 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5012 inode->i_private; 5013 5014 simple_attr_release(inode, file); 5015 kvm_put_kvm(stat_data->kvm); 5016 5017 return 0; 5018 } 5019 5020 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5021 { 5022 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5023 5024 return 0; 5025 } 5026 5027 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5028 { 5029 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5030 5031 return 0; 5032 } 5033 5034 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5035 { 5036 int i; 5037 struct kvm_vcpu *vcpu; 5038 5039 *val = 0; 5040 5041 kvm_for_each_vcpu(i, vcpu, kvm) 5042 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5043 5044 return 0; 5045 } 5046 5047 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5048 { 5049 int i; 5050 struct kvm_vcpu *vcpu; 5051 5052 kvm_for_each_vcpu(i, vcpu, kvm) 5053 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5054 5055 return 0; 5056 } 5057 5058 static int kvm_stat_data_get(void *data, u64 *val) 5059 { 5060 int r = -EFAULT; 5061 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5062 5063 switch (stat_data->kind) { 5064 case KVM_STAT_VM: 5065 r = kvm_get_stat_per_vm(stat_data->kvm, 5066 stat_data->desc->desc.offset, val); 5067 break; 5068 case KVM_STAT_VCPU: 5069 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5070 stat_data->desc->desc.offset, val); 5071 break; 5072 } 5073 5074 return r; 5075 } 5076 5077 static int kvm_stat_data_clear(void *data, u64 val) 5078 { 5079 int r = -EFAULT; 5080 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5081 5082 if (val) 5083 return -EINVAL; 5084 5085 switch (stat_data->kind) { 5086 case KVM_STAT_VM: 5087 r = kvm_clear_stat_per_vm(stat_data->kvm, 5088 stat_data->desc->desc.offset); 5089 break; 5090 case KVM_STAT_VCPU: 5091 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5092 stat_data->desc->desc.offset); 5093 break; 5094 } 5095 5096 return r; 5097 } 5098 5099 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5100 { 5101 __simple_attr_check_format("%llu\n", 0ull); 5102 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5103 kvm_stat_data_clear, "%llu\n"); 5104 } 5105 5106 static const struct file_operations stat_fops_per_vm = { 5107 .owner = THIS_MODULE, 5108 .open = kvm_stat_data_open, 5109 .release = kvm_debugfs_release, 5110 .read = simple_attr_read, 5111 .write = simple_attr_write, 5112 .llseek = no_llseek, 5113 }; 5114 5115 static int vm_stat_get(void *_offset, u64 *val) 5116 { 5117 unsigned offset = (long)_offset; 5118 struct kvm *kvm; 5119 u64 tmp_val; 5120 5121 *val = 0; 5122 mutex_lock(&kvm_lock); 5123 list_for_each_entry(kvm, &vm_list, vm_list) { 5124 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5125 *val += tmp_val; 5126 } 5127 mutex_unlock(&kvm_lock); 5128 return 0; 5129 } 5130 5131 static int vm_stat_clear(void *_offset, u64 val) 5132 { 5133 unsigned offset = (long)_offset; 5134 struct kvm *kvm; 5135 5136 if (val) 5137 return -EINVAL; 5138 5139 mutex_lock(&kvm_lock); 5140 list_for_each_entry(kvm, &vm_list, vm_list) { 5141 kvm_clear_stat_per_vm(kvm, offset); 5142 } 5143 mutex_unlock(&kvm_lock); 5144 5145 return 0; 5146 } 5147 5148 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5149 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5150 5151 static int vcpu_stat_get(void *_offset, u64 *val) 5152 { 5153 unsigned offset = (long)_offset; 5154 struct kvm *kvm; 5155 u64 tmp_val; 5156 5157 *val = 0; 5158 mutex_lock(&kvm_lock); 5159 list_for_each_entry(kvm, &vm_list, vm_list) { 5160 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5161 *val += tmp_val; 5162 } 5163 mutex_unlock(&kvm_lock); 5164 return 0; 5165 } 5166 5167 static int vcpu_stat_clear(void *_offset, u64 val) 5168 { 5169 unsigned offset = (long)_offset; 5170 struct kvm *kvm; 5171 5172 if (val) 5173 return -EINVAL; 5174 5175 mutex_lock(&kvm_lock); 5176 list_for_each_entry(kvm, &vm_list, vm_list) { 5177 kvm_clear_stat_per_vcpu(kvm, offset); 5178 } 5179 mutex_unlock(&kvm_lock); 5180 5181 return 0; 5182 } 5183 5184 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5185 "%llu\n"); 5186 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5187 5188 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5189 { 5190 struct kobj_uevent_env *env; 5191 unsigned long long created, active; 5192 5193 if (!kvm_dev.this_device || !kvm) 5194 return; 5195 5196 mutex_lock(&kvm_lock); 5197 if (type == KVM_EVENT_CREATE_VM) { 5198 kvm_createvm_count++; 5199 kvm_active_vms++; 5200 } else if (type == KVM_EVENT_DESTROY_VM) { 5201 kvm_active_vms--; 5202 } 5203 created = kvm_createvm_count; 5204 active = kvm_active_vms; 5205 mutex_unlock(&kvm_lock); 5206 5207 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5208 if (!env) 5209 return; 5210 5211 add_uevent_var(env, "CREATED=%llu", created); 5212 add_uevent_var(env, "COUNT=%llu", active); 5213 5214 if (type == KVM_EVENT_CREATE_VM) { 5215 add_uevent_var(env, "EVENT=create"); 5216 kvm->userspace_pid = task_pid_nr(current); 5217 } else if (type == KVM_EVENT_DESTROY_VM) { 5218 add_uevent_var(env, "EVENT=destroy"); 5219 } 5220 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5221 5222 if (kvm->debugfs_dentry) { 5223 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5224 5225 if (p) { 5226 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5227 if (!IS_ERR(tmp)) 5228 add_uevent_var(env, "STATS_PATH=%s", tmp); 5229 kfree(p); 5230 } 5231 } 5232 /* no need for checks, since we are adding at most only 5 keys */ 5233 env->envp[env->envp_idx++] = NULL; 5234 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5235 kfree(env); 5236 } 5237 5238 static void kvm_init_debug(void) 5239 { 5240 const struct file_operations *fops; 5241 const struct _kvm_stats_desc *pdesc; 5242 int i; 5243 5244 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5245 5246 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5247 pdesc = &kvm_vm_stats_desc[i]; 5248 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5249 fops = &vm_stat_fops; 5250 else 5251 fops = &vm_stat_readonly_fops; 5252 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5253 kvm_debugfs_dir, 5254 (void *)(long)pdesc->desc.offset, fops); 5255 } 5256 5257 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5258 pdesc = &kvm_vcpu_stats_desc[i]; 5259 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5260 fops = &vcpu_stat_fops; 5261 else 5262 fops = &vcpu_stat_readonly_fops; 5263 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5264 kvm_debugfs_dir, 5265 (void *)(long)pdesc->desc.offset, fops); 5266 } 5267 } 5268 5269 static int kvm_suspend(void) 5270 { 5271 if (kvm_usage_count) 5272 hardware_disable_nolock(NULL); 5273 return 0; 5274 } 5275 5276 static void kvm_resume(void) 5277 { 5278 if (kvm_usage_count) { 5279 #ifdef CONFIG_LOCKDEP 5280 WARN_ON(lockdep_is_held(&kvm_count_lock)); 5281 #endif 5282 hardware_enable_nolock(NULL); 5283 } 5284 } 5285 5286 static struct syscore_ops kvm_syscore_ops = { 5287 .suspend = kvm_suspend, 5288 .resume = kvm_resume, 5289 }; 5290 5291 static inline 5292 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5293 { 5294 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5295 } 5296 5297 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5298 { 5299 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5300 5301 WRITE_ONCE(vcpu->preempted, false); 5302 WRITE_ONCE(vcpu->ready, false); 5303 5304 __this_cpu_write(kvm_running_vcpu, vcpu); 5305 kvm_arch_sched_in(vcpu, cpu); 5306 kvm_arch_vcpu_load(vcpu, cpu); 5307 } 5308 5309 static void kvm_sched_out(struct preempt_notifier *pn, 5310 struct task_struct *next) 5311 { 5312 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5313 5314 if (current->on_rq) { 5315 WRITE_ONCE(vcpu->preempted, true); 5316 WRITE_ONCE(vcpu->ready, true); 5317 } 5318 kvm_arch_vcpu_put(vcpu); 5319 __this_cpu_write(kvm_running_vcpu, NULL); 5320 } 5321 5322 /** 5323 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5324 * 5325 * We can disable preemption locally around accessing the per-CPU variable, 5326 * and use the resolved vcpu pointer after enabling preemption again, 5327 * because even if the current thread is migrated to another CPU, reading 5328 * the per-CPU value later will give us the same value as we update the 5329 * per-CPU variable in the preempt notifier handlers. 5330 */ 5331 struct kvm_vcpu *kvm_get_running_vcpu(void) 5332 { 5333 struct kvm_vcpu *vcpu; 5334 5335 preempt_disable(); 5336 vcpu = __this_cpu_read(kvm_running_vcpu); 5337 preempt_enable(); 5338 5339 return vcpu; 5340 } 5341 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5342 5343 /** 5344 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5345 */ 5346 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5347 { 5348 return &kvm_running_vcpu; 5349 } 5350 5351 struct kvm_cpu_compat_check { 5352 void *opaque; 5353 int *ret; 5354 }; 5355 5356 static void check_processor_compat(void *data) 5357 { 5358 struct kvm_cpu_compat_check *c = data; 5359 5360 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5361 } 5362 5363 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5364 struct module *module) 5365 { 5366 struct kvm_cpu_compat_check c; 5367 int r; 5368 int cpu; 5369 5370 r = kvm_arch_init(opaque); 5371 if (r) 5372 goto out_fail; 5373 5374 /* 5375 * kvm_arch_init makes sure there's at most one caller 5376 * for architectures that support multiple implementations, 5377 * like intel and amd on x86. 5378 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5379 * conflicts in case kvm is already setup for another implementation. 5380 */ 5381 r = kvm_irqfd_init(); 5382 if (r) 5383 goto out_irqfd; 5384 5385 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5386 r = -ENOMEM; 5387 goto out_free_0; 5388 } 5389 5390 r = kvm_arch_hardware_setup(opaque); 5391 if (r < 0) 5392 goto out_free_1; 5393 5394 c.ret = &r; 5395 c.opaque = opaque; 5396 for_each_online_cpu(cpu) { 5397 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5398 if (r < 0) 5399 goto out_free_2; 5400 } 5401 5402 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5403 kvm_starting_cpu, kvm_dying_cpu); 5404 if (r) 5405 goto out_free_2; 5406 register_reboot_notifier(&kvm_reboot_notifier); 5407 5408 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5409 if (!vcpu_align) 5410 vcpu_align = __alignof__(struct kvm_vcpu); 5411 kvm_vcpu_cache = 5412 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5413 SLAB_ACCOUNT, 5414 offsetof(struct kvm_vcpu, arch), 5415 offsetofend(struct kvm_vcpu, stats_id) 5416 - offsetof(struct kvm_vcpu, arch), 5417 NULL); 5418 if (!kvm_vcpu_cache) { 5419 r = -ENOMEM; 5420 goto out_free_3; 5421 } 5422 5423 r = kvm_async_pf_init(); 5424 if (r) 5425 goto out_free; 5426 5427 kvm_chardev_ops.owner = module; 5428 kvm_vm_fops.owner = module; 5429 kvm_vcpu_fops.owner = module; 5430 5431 r = misc_register(&kvm_dev); 5432 if (r) { 5433 pr_err("kvm: misc device register failed\n"); 5434 goto out_unreg; 5435 } 5436 5437 register_syscore_ops(&kvm_syscore_ops); 5438 5439 kvm_preempt_ops.sched_in = kvm_sched_in; 5440 kvm_preempt_ops.sched_out = kvm_sched_out; 5441 5442 kvm_init_debug(); 5443 5444 r = kvm_vfio_ops_init(); 5445 WARN_ON(r); 5446 5447 return 0; 5448 5449 out_unreg: 5450 kvm_async_pf_deinit(); 5451 out_free: 5452 kmem_cache_destroy(kvm_vcpu_cache); 5453 out_free_3: 5454 unregister_reboot_notifier(&kvm_reboot_notifier); 5455 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5456 out_free_2: 5457 kvm_arch_hardware_unsetup(); 5458 out_free_1: 5459 free_cpumask_var(cpus_hardware_enabled); 5460 out_free_0: 5461 kvm_irqfd_exit(); 5462 out_irqfd: 5463 kvm_arch_exit(); 5464 out_fail: 5465 return r; 5466 } 5467 EXPORT_SYMBOL_GPL(kvm_init); 5468 5469 void kvm_exit(void) 5470 { 5471 debugfs_remove_recursive(kvm_debugfs_dir); 5472 misc_deregister(&kvm_dev); 5473 kmem_cache_destroy(kvm_vcpu_cache); 5474 kvm_async_pf_deinit(); 5475 unregister_syscore_ops(&kvm_syscore_ops); 5476 unregister_reboot_notifier(&kvm_reboot_notifier); 5477 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5478 on_each_cpu(hardware_disable_nolock, NULL, 1); 5479 kvm_arch_hardware_unsetup(); 5480 kvm_arch_exit(); 5481 kvm_irqfd_exit(); 5482 free_cpumask_var(cpus_hardware_enabled); 5483 kvm_vfio_ops_exit(); 5484 } 5485 EXPORT_SYMBOL_GPL(kvm_exit); 5486 5487 struct kvm_vm_worker_thread_context { 5488 struct kvm *kvm; 5489 struct task_struct *parent; 5490 struct completion init_done; 5491 kvm_vm_thread_fn_t thread_fn; 5492 uintptr_t data; 5493 int err; 5494 }; 5495 5496 static int kvm_vm_worker_thread(void *context) 5497 { 5498 /* 5499 * The init_context is allocated on the stack of the parent thread, so 5500 * we have to locally copy anything that is needed beyond initialization 5501 */ 5502 struct kvm_vm_worker_thread_context *init_context = context; 5503 struct kvm *kvm = init_context->kvm; 5504 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5505 uintptr_t data = init_context->data; 5506 int err; 5507 5508 err = kthread_park(current); 5509 /* kthread_park(current) is never supposed to return an error */ 5510 WARN_ON(err != 0); 5511 if (err) 5512 goto init_complete; 5513 5514 err = cgroup_attach_task_all(init_context->parent, current); 5515 if (err) { 5516 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5517 __func__, err); 5518 goto init_complete; 5519 } 5520 5521 set_user_nice(current, task_nice(init_context->parent)); 5522 5523 init_complete: 5524 init_context->err = err; 5525 complete(&init_context->init_done); 5526 init_context = NULL; 5527 5528 if (err) 5529 return err; 5530 5531 /* Wait to be woken up by the spawner before proceeding. */ 5532 kthread_parkme(); 5533 5534 if (!kthread_should_stop()) 5535 err = thread_fn(kvm, data); 5536 5537 return err; 5538 } 5539 5540 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5541 uintptr_t data, const char *name, 5542 struct task_struct **thread_ptr) 5543 { 5544 struct kvm_vm_worker_thread_context init_context = {}; 5545 struct task_struct *thread; 5546 5547 *thread_ptr = NULL; 5548 init_context.kvm = kvm; 5549 init_context.parent = current; 5550 init_context.thread_fn = thread_fn; 5551 init_context.data = data; 5552 init_completion(&init_context.init_done); 5553 5554 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5555 "%s-%d", name, task_pid_nr(current)); 5556 if (IS_ERR(thread)) 5557 return PTR_ERR(thread); 5558 5559 /* kthread_run is never supposed to return NULL */ 5560 WARN_ON(thread == NULL); 5561 5562 wait_for_completion(&init_context.init_done); 5563 5564 if (!init_context.err) 5565 *thread_ptr = thread; 5566 5567 return init_context.err; 5568 } 5569
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.