1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static struct file_operations kvm_chardev_ops; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int hardware_enable_all(void); 147 static void hardware_disable_all(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 __visible bool kvm_rebooting; 152 EXPORT_SYMBOL_GPL(kvm_rebooting); 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 161 162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 163 unsigned long start, unsigned long end) 164 { 165 } 166 167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 168 { 169 } 170 171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 172 { 173 /* 174 * The metadata used by is_zone_device_page() to determine whether or 175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 176 * the device has been pinned, e.g. by get_user_pages(). WARN if the 177 * page_count() is zero to help detect bad usage of this helper. 178 */ 179 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 180 return false; 181 182 return is_zone_device_page(pfn_to_page(pfn)); 183 } 184 185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 186 { 187 /* 188 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 189 * perspective they are "normal" pages, albeit with slightly different 190 * usage rules. 191 */ 192 if (pfn_valid(pfn)) 193 return PageReserved(pfn_to_page(pfn)) && 194 !is_zero_pfn(pfn) && 195 !kvm_is_zone_device_pfn(pfn); 196 197 return true; 198 } 199 200 /* 201 * Switches to specified vcpu, until a matching vcpu_put() 202 */ 203 void vcpu_load(struct kvm_vcpu *vcpu) 204 { 205 int cpu = get_cpu(); 206 207 __this_cpu_write(kvm_running_vcpu, vcpu); 208 preempt_notifier_register(&vcpu->preempt_notifier); 209 kvm_arch_vcpu_load(vcpu, cpu); 210 put_cpu(); 211 } 212 EXPORT_SYMBOL_GPL(vcpu_load); 213 214 void vcpu_put(struct kvm_vcpu *vcpu) 215 { 216 preempt_disable(); 217 kvm_arch_vcpu_put(vcpu); 218 preempt_notifier_unregister(&vcpu->preempt_notifier); 219 __this_cpu_write(kvm_running_vcpu, NULL); 220 preempt_enable(); 221 } 222 EXPORT_SYMBOL_GPL(vcpu_put); 223 224 /* TODO: merge with kvm_arch_vcpu_should_kick */ 225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 226 { 227 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 228 229 /* 230 * We need to wait for the VCPU to reenable interrupts and get out of 231 * READING_SHADOW_PAGE_TABLES mode. 232 */ 233 if (req & KVM_REQUEST_WAIT) 234 return mode != OUTSIDE_GUEST_MODE; 235 236 /* 237 * Need to kick a running VCPU, but otherwise there is nothing to do. 238 */ 239 return mode == IN_GUEST_MODE; 240 } 241 242 static void ack_flush(void *_completed) 243 { 244 } 245 246 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 247 { 248 if (cpumask_empty(cpus)) 249 return false; 250 251 smp_call_function_many(cpus, ack_flush, NULL, wait); 252 return true; 253 } 254 255 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 256 struct cpumask *tmp, int current_cpu) 257 { 258 int cpu; 259 260 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 261 __kvm_make_request(req, vcpu); 262 263 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 264 return; 265 266 /* 267 * Note, the vCPU could get migrated to a different pCPU at any point 268 * after kvm_request_needs_ipi(), which could result in sending an IPI 269 * to the previous pCPU. But, that's OK because the purpose of the IPI 270 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 271 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 272 * after this point is also OK, as the requirement is only that KVM wait 273 * for vCPUs that were reading SPTEs _before_ any changes were 274 * finalized. See kvm_vcpu_kick() for more details on handling requests. 275 */ 276 if (kvm_request_needs_ipi(vcpu, req)) { 277 cpu = READ_ONCE(vcpu->cpu); 278 if (cpu != -1 && cpu != current_cpu) 279 __cpumask_set_cpu(cpu, tmp); 280 } 281 } 282 283 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 284 unsigned long *vcpu_bitmap) 285 { 286 struct kvm_vcpu *vcpu; 287 struct cpumask *cpus; 288 int i, me; 289 bool called; 290 291 me = get_cpu(); 292 293 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 294 cpumask_clear(cpus); 295 296 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 297 vcpu = kvm_get_vcpu(kvm, i); 298 if (!vcpu) 299 continue; 300 kvm_make_vcpu_request(vcpu, req, cpus, me); 301 } 302 303 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 304 put_cpu(); 305 306 return called; 307 } 308 309 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 310 struct kvm_vcpu *except) 311 { 312 struct kvm_vcpu *vcpu; 313 struct cpumask *cpus; 314 unsigned long i; 315 bool called; 316 int me; 317 318 me = get_cpu(); 319 320 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 321 cpumask_clear(cpus); 322 323 kvm_for_each_vcpu(i, vcpu, kvm) { 324 if (vcpu == except) 325 continue; 326 kvm_make_vcpu_request(vcpu, req, cpus, me); 327 } 328 329 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 330 put_cpu(); 331 332 return called; 333 } 334 335 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 336 { 337 return kvm_make_all_cpus_request_except(kvm, req, NULL); 338 } 339 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 340 341 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 342 void kvm_flush_remote_tlbs(struct kvm *kvm) 343 { 344 ++kvm->stat.generic.remote_tlb_flush_requests; 345 346 /* 347 * We want to publish modifications to the page tables before reading 348 * mode. Pairs with a memory barrier in arch-specific code. 349 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 350 * and smp_mb in walk_shadow_page_lockless_begin/end. 351 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 352 * 353 * There is already an smp_mb__after_atomic() before 354 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 355 * barrier here. 356 */ 357 if (!kvm_arch_flush_remote_tlb(kvm) 358 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 359 ++kvm->stat.generic.remote_tlb_flush; 360 } 361 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 362 #endif 363 364 static void kvm_flush_shadow_all(struct kvm *kvm) 365 { 366 kvm_arch_flush_shadow_all(kvm); 367 kvm_arch_guest_memory_reclaimed(kvm); 368 } 369 370 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 371 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 372 gfp_t gfp_flags) 373 { 374 gfp_flags |= mc->gfp_zero; 375 376 if (mc->kmem_cache) 377 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 378 else 379 return (void *)__get_free_page(gfp_flags); 380 } 381 382 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 383 { 384 void *obj; 385 386 if (mc->nobjs >= min) 387 return 0; 388 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 389 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 390 if (!obj) 391 return mc->nobjs >= min ? 0 : -ENOMEM; 392 mc->objects[mc->nobjs++] = obj; 393 } 394 return 0; 395 } 396 397 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 398 { 399 return mc->nobjs; 400 } 401 402 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 403 { 404 while (mc->nobjs) { 405 if (mc->kmem_cache) 406 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 407 else 408 free_page((unsigned long)mc->objects[--mc->nobjs]); 409 } 410 } 411 412 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 413 { 414 void *p; 415 416 if (WARN_ON(!mc->nobjs)) 417 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 418 else 419 p = mc->objects[--mc->nobjs]; 420 BUG_ON(!p); 421 return p; 422 } 423 #endif 424 425 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 426 { 427 mutex_init(&vcpu->mutex); 428 vcpu->cpu = -1; 429 vcpu->kvm = kvm; 430 vcpu->vcpu_id = id; 431 vcpu->pid = NULL; 432 #ifndef __KVM_HAVE_ARCH_WQP 433 rcuwait_init(&vcpu->wait); 434 #endif 435 kvm_async_pf_vcpu_init(vcpu); 436 437 kvm_vcpu_set_in_spin_loop(vcpu, false); 438 kvm_vcpu_set_dy_eligible(vcpu, false); 439 vcpu->preempted = false; 440 vcpu->ready = false; 441 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 442 vcpu->last_used_slot = NULL; 443 } 444 445 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 446 { 447 kvm_arch_vcpu_destroy(vcpu); 448 kvm_dirty_ring_free(&vcpu->dirty_ring); 449 450 /* 451 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 452 * the vcpu->pid pointer, and at destruction time all file descriptors 453 * are already gone. 454 */ 455 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 456 457 free_page((unsigned long)vcpu->run); 458 kmem_cache_free(kvm_vcpu_cache, vcpu); 459 } 460 461 void kvm_destroy_vcpus(struct kvm *kvm) 462 { 463 unsigned long i; 464 struct kvm_vcpu *vcpu; 465 466 kvm_for_each_vcpu(i, vcpu, kvm) { 467 kvm_vcpu_destroy(vcpu); 468 xa_erase(&kvm->vcpu_array, i); 469 } 470 471 atomic_set(&kvm->online_vcpus, 0); 472 } 473 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 474 475 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 476 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 477 { 478 return container_of(mn, struct kvm, mmu_notifier); 479 } 480 481 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 482 struct mm_struct *mm, 483 unsigned long start, unsigned long end) 484 { 485 struct kvm *kvm = mmu_notifier_to_kvm(mn); 486 int idx; 487 488 idx = srcu_read_lock(&kvm->srcu); 489 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 490 srcu_read_unlock(&kvm->srcu, idx); 491 } 492 493 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 494 495 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 496 unsigned long end); 497 498 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 499 500 struct kvm_hva_range { 501 unsigned long start; 502 unsigned long end; 503 pte_t pte; 504 hva_handler_t handler; 505 on_lock_fn_t on_lock; 506 on_unlock_fn_t on_unlock; 507 bool flush_on_ret; 508 bool may_block; 509 }; 510 511 /* 512 * Use a dedicated stub instead of NULL to indicate that there is no callback 513 * function/handler. The compiler technically can't guarantee that a real 514 * function will have a non-zero address, and so it will generate code to 515 * check for !NULL, whereas comparing against a stub will be elided at compile 516 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 517 */ 518 static void kvm_null_fn(void) 519 { 520 521 } 522 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 523 524 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 525 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 526 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 527 node; \ 528 node = interval_tree_iter_next(node, start, last)) \ 529 530 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 531 const struct kvm_hva_range *range) 532 { 533 bool ret = false, locked = false; 534 struct kvm_gfn_range gfn_range; 535 struct kvm_memory_slot *slot; 536 struct kvm_memslots *slots; 537 int i, idx; 538 539 if (WARN_ON_ONCE(range->end <= range->start)) 540 return 0; 541 542 /* A null handler is allowed if and only if on_lock() is provided. */ 543 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 544 IS_KVM_NULL_FN(range->handler))) 545 return 0; 546 547 idx = srcu_read_lock(&kvm->srcu); 548 549 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 550 struct interval_tree_node *node; 551 552 slots = __kvm_memslots(kvm, i); 553 kvm_for_each_memslot_in_hva_range(node, slots, 554 range->start, range->end - 1) { 555 unsigned long hva_start, hva_end; 556 557 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 558 hva_start = max(range->start, slot->userspace_addr); 559 hva_end = min(range->end, slot->userspace_addr + 560 (slot->npages << PAGE_SHIFT)); 561 562 /* 563 * To optimize for the likely case where the address 564 * range is covered by zero or one memslots, don't 565 * bother making these conditional (to avoid writes on 566 * the second or later invocation of the handler). 567 */ 568 gfn_range.pte = range->pte; 569 gfn_range.may_block = range->may_block; 570 571 /* 572 * {gfn(page) | page intersects with [hva_start, hva_end)} = 573 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 574 */ 575 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 576 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 577 gfn_range.slot = slot; 578 579 if (!locked) { 580 locked = true; 581 KVM_MMU_LOCK(kvm); 582 if (!IS_KVM_NULL_FN(range->on_lock)) 583 range->on_lock(kvm, range->start, range->end); 584 if (IS_KVM_NULL_FN(range->handler)) 585 break; 586 } 587 ret |= range->handler(kvm, &gfn_range); 588 } 589 } 590 591 if (range->flush_on_ret && ret) 592 kvm_flush_remote_tlbs(kvm); 593 594 if (locked) { 595 KVM_MMU_UNLOCK(kvm); 596 if (!IS_KVM_NULL_FN(range->on_unlock)) 597 range->on_unlock(kvm); 598 } 599 600 srcu_read_unlock(&kvm->srcu, idx); 601 602 /* The notifiers are averse to booleans. :-( */ 603 return (int)ret; 604 } 605 606 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 607 unsigned long start, 608 unsigned long end, 609 pte_t pte, 610 hva_handler_t handler) 611 { 612 struct kvm *kvm = mmu_notifier_to_kvm(mn); 613 const struct kvm_hva_range range = { 614 .start = start, 615 .end = end, 616 .pte = pte, 617 .handler = handler, 618 .on_lock = (void *)kvm_null_fn, 619 .on_unlock = (void *)kvm_null_fn, 620 .flush_on_ret = true, 621 .may_block = false, 622 }; 623 624 return __kvm_handle_hva_range(kvm, &range); 625 } 626 627 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 628 unsigned long start, 629 unsigned long end, 630 hva_handler_t handler) 631 { 632 struct kvm *kvm = mmu_notifier_to_kvm(mn); 633 const struct kvm_hva_range range = { 634 .start = start, 635 .end = end, 636 .pte = __pte(0), 637 .handler = handler, 638 .on_lock = (void *)kvm_null_fn, 639 .on_unlock = (void *)kvm_null_fn, 640 .flush_on_ret = false, 641 .may_block = false, 642 }; 643 644 return __kvm_handle_hva_range(kvm, &range); 645 } 646 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 647 struct mm_struct *mm, 648 unsigned long address, 649 pte_t pte) 650 { 651 struct kvm *kvm = mmu_notifier_to_kvm(mn); 652 653 trace_kvm_set_spte_hva(address); 654 655 /* 656 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 657 * If mmu_notifier_count is zero, then no in-progress invalidations, 658 * including this one, found a relevant memslot at start(); rechecking 659 * memslots here is unnecessary. Note, a false positive (count elevated 660 * by a different invalidation) is sub-optimal but functionally ok. 661 */ 662 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 663 if (!READ_ONCE(kvm->mmu_notifier_count)) 664 return; 665 666 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 667 } 668 669 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 670 unsigned long end) 671 { 672 /* 673 * The count increase must become visible at unlock time as no 674 * spte can be established without taking the mmu_lock and 675 * count is also read inside the mmu_lock critical section. 676 */ 677 kvm->mmu_notifier_count++; 678 if (likely(kvm->mmu_notifier_count == 1)) { 679 kvm->mmu_notifier_range_start = start; 680 kvm->mmu_notifier_range_end = end; 681 } else { 682 /* 683 * Fully tracking multiple concurrent ranges has diminishing 684 * returns. Keep things simple and just find the minimal range 685 * which includes the current and new ranges. As there won't be 686 * enough information to subtract a range after its invalidate 687 * completes, any ranges invalidated concurrently will 688 * accumulate and persist until all outstanding invalidates 689 * complete. 690 */ 691 kvm->mmu_notifier_range_start = 692 min(kvm->mmu_notifier_range_start, start); 693 kvm->mmu_notifier_range_end = 694 max(kvm->mmu_notifier_range_end, end); 695 } 696 } 697 698 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 699 const struct mmu_notifier_range *range) 700 { 701 struct kvm *kvm = mmu_notifier_to_kvm(mn); 702 const struct kvm_hva_range hva_range = { 703 .start = range->start, 704 .end = range->end, 705 .pte = __pte(0), 706 .handler = kvm_unmap_gfn_range, 707 .on_lock = kvm_inc_notifier_count, 708 .on_unlock = kvm_arch_guest_memory_reclaimed, 709 .flush_on_ret = true, 710 .may_block = mmu_notifier_range_blockable(range), 711 }; 712 713 trace_kvm_unmap_hva_range(range->start, range->end); 714 715 /* 716 * Prevent memslot modification between range_start() and range_end() 717 * so that conditionally locking provides the same result in both 718 * functions. Without that guarantee, the mmu_notifier_count 719 * adjustments will be imbalanced. 720 * 721 * Pairs with the decrement in range_end(). 722 */ 723 spin_lock(&kvm->mn_invalidate_lock); 724 kvm->mn_active_invalidate_count++; 725 spin_unlock(&kvm->mn_invalidate_lock); 726 727 /* 728 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 729 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 730 * each cache's lock. There are relatively few caches in existence at 731 * any given time, and the caches themselves can check for hva overlap, 732 * i.e. don't need to rely on memslot overlap checks for performance. 733 * Because this runs without holding mmu_lock, the pfn caches must use 734 * mn_active_invalidate_count (see above) instead of mmu_notifier_count. 735 */ 736 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 737 hva_range.may_block); 738 739 __kvm_handle_hva_range(kvm, &hva_range); 740 741 return 0; 742 } 743 744 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 745 unsigned long end) 746 { 747 /* 748 * This sequence increase will notify the kvm page fault that 749 * the page that is going to be mapped in the spte could have 750 * been freed. 751 */ 752 kvm->mmu_notifier_seq++; 753 smp_wmb(); 754 /* 755 * The above sequence increase must be visible before the 756 * below count decrease, which is ensured by the smp_wmb above 757 * in conjunction with the smp_rmb in mmu_notifier_retry(). 758 */ 759 kvm->mmu_notifier_count--; 760 } 761 762 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 763 const struct mmu_notifier_range *range) 764 { 765 struct kvm *kvm = mmu_notifier_to_kvm(mn); 766 const struct kvm_hva_range hva_range = { 767 .start = range->start, 768 .end = range->end, 769 .pte = __pte(0), 770 .handler = (void *)kvm_null_fn, 771 .on_lock = kvm_dec_notifier_count, 772 .on_unlock = (void *)kvm_null_fn, 773 .flush_on_ret = false, 774 .may_block = mmu_notifier_range_blockable(range), 775 }; 776 bool wake; 777 778 __kvm_handle_hva_range(kvm, &hva_range); 779 780 /* Pairs with the increment in range_start(). */ 781 spin_lock(&kvm->mn_invalidate_lock); 782 wake = (--kvm->mn_active_invalidate_count == 0); 783 spin_unlock(&kvm->mn_invalidate_lock); 784 785 /* 786 * There can only be one waiter, since the wait happens under 787 * slots_lock. 788 */ 789 if (wake) 790 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 791 792 BUG_ON(kvm->mmu_notifier_count < 0); 793 } 794 795 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 796 struct mm_struct *mm, 797 unsigned long start, 798 unsigned long end) 799 { 800 trace_kvm_age_hva(start, end); 801 802 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 803 } 804 805 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 806 struct mm_struct *mm, 807 unsigned long start, 808 unsigned long end) 809 { 810 trace_kvm_age_hva(start, end); 811 812 /* 813 * Even though we do not flush TLB, this will still adversely 814 * affect performance on pre-Haswell Intel EPT, where there is 815 * no EPT Access Bit to clear so that we have to tear down EPT 816 * tables instead. If we find this unacceptable, we can always 817 * add a parameter to kvm_age_hva so that it effectively doesn't 818 * do anything on clear_young. 819 * 820 * Also note that currently we never issue secondary TLB flushes 821 * from clear_young, leaving this job up to the regular system 822 * cadence. If we find this inaccurate, we might come up with a 823 * more sophisticated heuristic later. 824 */ 825 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 826 } 827 828 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 829 struct mm_struct *mm, 830 unsigned long address) 831 { 832 trace_kvm_test_age_hva(address); 833 834 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 835 kvm_test_age_gfn); 836 } 837 838 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 839 struct mm_struct *mm) 840 { 841 struct kvm *kvm = mmu_notifier_to_kvm(mn); 842 int idx; 843 844 idx = srcu_read_lock(&kvm->srcu); 845 kvm_flush_shadow_all(kvm); 846 srcu_read_unlock(&kvm->srcu, idx); 847 } 848 849 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 850 .invalidate_range = kvm_mmu_notifier_invalidate_range, 851 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 852 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 853 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 854 .clear_young = kvm_mmu_notifier_clear_young, 855 .test_young = kvm_mmu_notifier_test_young, 856 .change_pte = kvm_mmu_notifier_change_pte, 857 .release = kvm_mmu_notifier_release, 858 }; 859 860 static int kvm_init_mmu_notifier(struct kvm *kvm) 861 { 862 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 863 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 864 } 865 866 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 867 868 static int kvm_init_mmu_notifier(struct kvm *kvm) 869 { 870 return 0; 871 } 872 873 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 874 875 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 876 static int kvm_pm_notifier_call(struct notifier_block *bl, 877 unsigned long state, 878 void *unused) 879 { 880 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 881 882 return kvm_arch_pm_notifier(kvm, state); 883 } 884 885 static void kvm_init_pm_notifier(struct kvm *kvm) 886 { 887 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 888 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 889 kvm->pm_notifier.priority = INT_MAX; 890 register_pm_notifier(&kvm->pm_notifier); 891 } 892 893 static void kvm_destroy_pm_notifier(struct kvm *kvm) 894 { 895 unregister_pm_notifier(&kvm->pm_notifier); 896 } 897 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 898 static void kvm_init_pm_notifier(struct kvm *kvm) 899 { 900 } 901 902 static void kvm_destroy_pm_notifier(struct kvm *kvm) 903 { 904 } 905 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 906 907 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 908 { 909 if (!memslot->dirty_bitmap) 910 return; 911 912 kvfree(memslot->dirty_bitmap); 913 memslot->dirty_bitmap = NULL; 914 } 915 916 /* This does not remove the slot from struct kvm_memslots data structures */ 917 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 918 { 919 kvm_destroy_dirty_bitmap(slot); 920 921 kvm_arch_free_memslot(kvm, slot); 922 923 kfree(slot); 924 } 925 926 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 927 { 928 struct hlist_node *idnode; 929 struct kvm_memory_slot *memslot; 930 int bkt; 931 932 /* 933 * The same memslot objects live in both active and inactive sets, 934 * arbitrarily free using index '1' so the second invocation of this 935 * function isn't operating over a structure with dangling pointers 936 * (even though this function isn't actually touching them). 937 */ 938 if (!slots->node_idx) 939 return; 940 941 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 942 kvm_free_memslot(kvm, memslot); 943 } 944 945 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 946 { 947 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 948 case KVM_STATS_TYPE_INSTANT: 949 return 0444; 950 case KVM_STATS_TYPE_CUMULATIVE: 951 case KVM_STATS_TYPE_PEAK: 952 default: 953 return 0644; 954 } 955 } 956 957 958 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 959 { 960 int i; 961 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 962 kvm_vcpu_stats_header.num_desc; 963 964 if (IS_ERR(kvm->debugfs_dentry)) 965 return; 966 967 debugfs_remove_recursive(kvm->debugfs_dentry); 968 969 if (kvm->debugfs_stat_data) { 970 for (i = 0; i < kvm_debugfs_num_entries; i++) 971 kfree(kvm->debugfs_stat_data[i]); 972 kfree(kvm->debugfs_stat_data); 973 } 974 } 975 976 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 977 { 978 static DEFINE_MUTEX(kvm_debugfs_lock); 979 struct dentry *dent; 980 char dir_name[ITOA_MAX_LEN * 2]; 981 struct kvm_stat_data *stat_data; 982 const struct _kvm_stats_desc *pdesc; 983 int i, ret; 984 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 985 kvm_vcpu_stats_header.num_desc; 986 987 if (!debugfs_initialized()) 988 return 0; 989 990 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 991 mutex_lock(&kvm_debugfs_lock); 992 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 993 if (dent) { 994 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 995 dput(dent); 996 mutex_unlock(&kvm_debugfs_lock); 997 return 0; 998 } 999 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1000 mutex_unlock(&kvm_debugfs_lock); 1001 if (IS_ERR(dent)) 1002 return 0; 1003 1004 kvm->debugfs_dentry = dent; 1005 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1006 sizeof(*kvm->debugfs_stat_data), 1007 GFP_KERNEL_ACCOUNT); 1008 if (!kvm->debugfs_stat_data) 1009 return -ENOMEM; 1010 1011 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1012 pdesc = &kvm_vm_stats_desc[i]; 1013 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1014 if (!stat_data) 1015 return -ENOMEM; 1016 1017 stat_data->kvm = kvm; 1018 stat_data->desc = pdesc; 1019 stat_data->kind = KVM_STAT_VM; 1020 kvm->debugfs_stat_data[i] = stat_data; 1021 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1022 kvm->debugfs_dentry, stat_data, 1023 &stat_fops_per_vm); 1024 } 1025 1026 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1027 pdesc = &kvm_vcpu_stats_desc[i]; 1028 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1029 if (!stat_data) 1030 return -ENOMEM; 1031 1032 stat_data->kvm = kvm; 1033 stat_data->desc = pdesc; 1034 stat_data->kind = KVM_STAT_VCPU; 1035 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1036 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1037 kvm->debugfs_dentry, stat_data, 1038 &stat_fops_per_vm); 1039 } 1040 1041 ret = kvm_arch_create_vm_debugfs(kvm); 1042 if (ret) { 1043 kvm_destroy_vm_debugfs(kvm); 1044 return i; 1045 } 1046 1047 return 0; 1048 } 1049 1050 /* 1051 * Called after the VM is otherwise initialized, but just before adding it to 1052 * the vm_list. 1053 */ 1054 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1055 { 1056 return 0; 1057 } 1058 1059 /* 1060 * Called just after removing the VM from the vm_list, but before doing any 1061 * other destruction. 1062 */ 1063 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1064 { 1065 } 1066 1067 /* 1068 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1069 * be setup already, so we can create arch-specific debugfs entries under it. 1070 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1071 * a per-arch destroy interface is not needed. 1072 */ 1073 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1074 { 1075 return 0; 1076 } 1077 1078 static struct kvm *kvm_create_vm(unsigned long type) 1079 { 1080 struct kvm *kvm = kvm_arch_alloc_vm(); 1081 struct kvm_memslots *slots; 1082 int r = -ENOMEM; 1083 int i, j; 1084 1085 if (!kvm) 1086 return ERR_PTR(-ENOMEM); 1087 1088 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */ 1089 __module_get(kvm_chardev_ops.owner); 1090 1091 KVM_MMU_LOCK_INIT(kvm); 1092 mmgrab(current->mm); 1093 kvm->mm = current->mm; 1094 kvm_eventfd_init(kvm); 1095 mutex_init(&kvm->lock); 1096 mutex_init(&kvm->irq_lock); 1097 mutex_init(&kvm->slots_lock); 1098 mutex_init(&kvm->slots_arch_lock); 1099 spin_lock_init(&kvm->mn_invalidate_lock); 1100 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1101 xa_init(&kvm->vcpu_array); 1102 1103 INIT_LIST_HEAD(&kvm->gpc_list); 1104 spin_lock_init(&kvm->gpc_lock); 1105 1106 INIT_LIST_HEAD(&kvm->devices); 1107 kvm->max_vcpus = KVM_MAX_VCPUS; 1108 1109 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1110 1111 /* 1112 * Force subsequent debugfs file creations to fail if the VM directory 1113 * is not created (by kvm_create_vm_debugfs()). 1114 */ 1115 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1116 1117 if (init_srcu_struct(&kvm->srcu)) 1118 goto out_err_no_srcu; 1119 if (init_srcu_struct(&kvm->irq_srcu)) 1120 goto out_err_no_irq_srcu; 1121 1122 refcount_set(&kvm->users_count, 1); 1123 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1124 for (j = 0; j < 2; j++) { 1125 slots = &kvm->__memslots[i][j]; 1126 1127 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1128 slots->hva_tree = RB_ROOT_CACHED; 1129 slots->gfn_tree = RB_ROOT; 1130 hash_init(slots->id_hash); 1131 slots->node_idx = j; 1132 1133 /* Generations must be different for each address space. */ 1134 slots->generation = i; 1135 } 1136 1137 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1138 } 1139 1140 for (i = 0; i < KVM_NR_BUSES; i++) { 1141 rcu_assign_pointer(kvm->buses[i], 1142 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1143 if (!kvm->buses[i]) 1144 goto out_err_no_arch_destroy_vm; 1145 } 1146 1147 kvm->max_halt_poll_ns = halt_poll_ns; 1148 1149 r = kvm_arch_init_vm(kvm, type); 1150 if (r) 1151 goto out_err_no_arch_destroy_vm; 1152 1153 r = hardware_enable_all(); 1154 if (r) 1155 goto out_err_no_disable; 1156 1157 #ifdef CONFIG_HAVE_KVM_IRQFD 1158 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1159 #endif 1160 1161 r = kvm_init_mmu_notifier(kvm); 1162 if (r) 1163 goto out_err_no_mmu_notifier; 1164 1165 r = kvm_arch_post_init_vm(kvm); 1166 if (r) 1167 goto out_err; 1168 1169 mutex_lock(&kvm_lock); 1170 list_add(&kvm->vm_list, &vm_list); 1171 mutex_unlock(&kvm_lock); 1172 1173 preempt_notifier_inc(); 1174 kvm_init_pm_notifier(kvm); 1175 1176 return kvm; 1177 1178 out_err: 1179 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1180 if (kvm->mmu_notifier.ops) 1181 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1182 #endif 1183 out_err_no_mmu_notifier: 1184 hardware_disable_all(); 1185 out_err_no_disable: 1186 kvm_arch_destroy_vm(kvm); 1187 out_err_no_arch_destroy_vm: 1188 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1189 for (i = 0; i < KVM_NR_BUSES; i++) 1190 kfree(kvm_get_bus(kvm, i)); 1191 cleanup_srcu_struct(&kvm->irq_srcu); 1192 out_err_no_irq_srcu: 1193 cleanup_srcu_struct(&kvm->srcu); 1194 out_err_no_srcu: 1195 kvm_arch_free_vm(kvm); 1196 mmdrop(current->mm); 1197 module_put(kvm_chardev_ops.owner); 1198 return ERR_PTR(r); 1199 } 1200 1201 static void kvm_destroy_devices(struct kvm *kvm) 1202 { 1203 struct kvm_device *dev, *tmp; 1204 1205 /* 1206 * We do not need to take the kvm->lock here, because nobody else 1207 * has a reference to the struct kvm at this point and therefore 1208 * cannot access the devices list anyhow. 1209 */ 1210 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1211 list_del(&dev->vm_node); 1212 dev->ops->destroy(dev); 1213 } 1214 } 1215 1216 static void kvm_destroy_vm(struct kvm *kvm) 1217 { 1218 int i; 1219 struct mm_struct *mm = kvm->mm; 1220 1221 kvm_destroy_pm_notifier(kvm); 1222 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1223 kvm_destroy_vm_debugfs(kvm); 1224 kvm_arch_sync_events(kvm); 1225 mutex_lock(&kvm_lock); 1226 list_del(&kvm->vm_list); 1227 mutex_unlock(&kvm_lock); 1228 kvm_arch_pre_destroy_vm(kvm); 1229 1230 kvm_free_irq_routing(kvm); 1231 for (i = 0; i < KVM_NR_BUSES; i++) { 1232 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1233 1234 if (bus) 1235 kvm_io_bus_destroy(bus); 1236 kvm->buses[i] = NULL; 1237 } 1238 kvm_coalesced_mmio_free(kvm); 1239 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1240 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1241 /* 1242 * At this point, pending calls to invalidate_range_start() 1243 * have completed but no more MMU notifiers will run, so 1244 * mn_active_invalidate_count may remain unbalanced. 1245 * No threads can be waiting in install_new_memslots as the 1246 * last reference on KVM has been dropped, but freeing 1247 * memslots would deadlock without this manual intervention. 1248 */ 1249 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1250 kvm->mn_active_invalidate_count = 0; 1251 #else 1252 kvm_flush_shadow_all(kvm); 1253 #endif 1254 kvm_arch_destroy_vm(kvm); 1255 kvm_destroy_devices(kvm); 1256 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1257 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1258 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1259 } 1260 cleanup_srcu_struct(&kvm->irq_srcu); 1261 cleanup_srcu_struct(&kvm->srcu); 1262 kvm_arch_free_vm(kvm); 1263 preempt_notifier_dec(); 1264 hardware_disable_all(); 1265 mmdrop(mm); 1266 module_put(kvm_chardev_ops.owner); 1267 } 1268 1269 void kvm_get_kvm(struct kvm *kvm) 1270 { 1271 refcount_inc(&kvm->users_count); 1272 } 1273 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1274 1275 /* 1276 * Make sure the vm is not during destruction, which is a safe version of 1277 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1278 */ 1279 bool kvm_get_kvm_safe(struct kvm *kvm) 1280 { 1281 return refcount_inc_not_zero(&kvm->users_count); 1282 } 1283 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1284 1285 void kvm_put_kvm(struct kvm *kvm) 1286 { 1287 if (refcount_dec_and_test(&kvm->users_count)) 1288 kvm_destroy_vm(kvm); 1289 } 1290 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1291 1292 /* 1293 * Used to put a reference that was taken on behalf of an object associated 1294 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1295 * of the new file descriptor fails and the reference cannot be transferred to 1296 * its final owner. In such cases, the caller is still actively using @kvm and 1297 * will fail miserably if the refcount unexpectedly hits zero. 1298 */ 1299 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1300 { 1301 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1302 } 1303 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1304 1305 static int kvm_vm_release(struct inode *inode, struct file *filp) 1306 { 1307 struct kvm *kvm = filp->private_data; 1308 1309 kvm_irqfd_release(kvm); 1310 1311 kvm_put_kvm(kvm); 1312 return 0; 1313 } 1314 1315 /* 1316 * Allocation size is twice as large as the actual dirty bitmap size. 1317 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1318 */ 1319 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1320 { 1321 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1322 1323 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1324 if (!memslot->dirty_bitmap) 1325 return -ENOMEM; 1326 1327 return 0; 1328 } 1329 1330 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1331 { 1332 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1333 int node_idx_inactive = active->node_idx ^ 1; 1334 1335 return &kvm->__memslots[as_id][node_idx_inactive]; 1336 } 1337 1338 /* 1339 * Helper to get the address space ID when one of memslot pointers may be NULL. 1340 * This also serves as a sanity that at least one of the pointers is non-NULL, 1341 * and that their address space IDs don't diverge. 1342 */ 1343 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1344 struct kvm_memory_slot *b) 1345 { 1346 if (WARN_ON_ONCE(!a && !b)) 1347 return 0; 1348 1349 if (!a) 1350 return b->as_id; 1351 if (!b) 1352 return a->as_id; 1353 1354 WARN_ON_ONCE(a->as_id != b->as_id); 1355 return a->as_id; 1356 } 1357 1358 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1359 struct kvm_memory_slot *slot) 1360 { 1361 struct rb_root *gfn_tree = &slots->gfn_tree; 1362 struct rb_node **node, *parent; 1363 int idx = slots->node_idx; 1364 1365 parent = NULL; 1366 for (node = &gfn_tree->rb_node; *node; ) { 1367 struct kvm_memory_slot *tmp; 1368 1369 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1370 parent = *node; 1371 if (slot->base_gfn < tmp->base_gfn) 1372 node = &(*node)->rb_left; 1373 else if (slot->base_gfn > tmp->base_gfn) 1374 node = &(*node)->rb_right; 1375 else 1376 BUG(); 1377 } 1378 1379 rb_link_node(&slot->gfn_node[idx], parent, node); 1380 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1381 } 1382 1383 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1384 struct kvm_memory_slot *slot) 1385 { 1386 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1387 } 1388 1389 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1390 struct kvm_memory_slot *old, 1391 struct kvm_memory_slot *new) 1392 { 1393 int idx = slots->node_idx; 1394 1395 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1396 1397 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1398 &slots->gfn_tree); 1399 } 1400 1401 /* 1402 * Replace @old with @new in the inactive memslots. 1403 * 1404 * With NULL @old this simply adds @new. 1405 * With NULL @new this simply removes @old. 1406 * 1407 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1408 * appropriately. 1409 */ 1410 static void kvm_replace_memslot(struct kvm *kvm, 1411 struct kvm_memory_slot *old, 1412 struct kvm_memory_slot *new) 1413 { 1414 int as_id = kvm_memslots_get_as_id(old, new); 1415 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1416 int idx = slots->node_idx; 1417 1418 if (old) { 1419 hash_del(&old->id_node[idx]); 1420 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1421 1422 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1423 atomic_long_set(&slots->last_used_slot, (long)new); 1424 1425 if (!new) { 1426 kvm_erase_gfn_node(slots, old); 1427 return; 1428 } 1429 } 1430 1431 /* 1432 * Initialize @new's hva range. Do this even when replacing an @old 1433 * slot, kvm_copy_memslot() deliberately does not touch node data. 1434 */ 1435 new->hva_node[idx].start = new->userspace_addr; 1436 new->hva_node[idx].last = new->userspace_addr + 1437 (new->npages << PAGE_SHIFT) - 1; 1438 1439 /* 1440 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1441 * hva_node needs to be swapped with remove+insert even though hva can't 1442 * change when replacing an existing slot. 1443 */ 1444 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1445 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1446 1447 /* 1448 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1449 * switch the node in the gfn tree instead of removing the old and 1450 * inserting the new as two separate operations. Replacement is a 1451 * single O(1) operation versus two O(log(n)) operations for 1452 * remove+insert. 1453 */ 1454 if (old && old->base_gfn == new->base_gfn) { 1455 kvm_replace_gfn_node(slots, old, new); 1456 } else { 1457 if (old) 1458 kvm_erase_gfn_node(slots, old); 1459 kvm_insert_gfn_node(slots, new); 1460 } 1461 } 1462 1463 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1464 { 1465 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1466 1467 #ifdef __KVM_HAVE_READONLY_MEM 1468 valid_flags |= KVM_MEM_READONLY; 1469 #endif 1470 1471 if (mem->flags & ~valid_flags) 1472 return -EINVAL; 1473 1474 return 0; 1475 } 1476 1477 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1478 { 1479 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1480 1481 /* Grab the generation from the activate memslots. */ 1482 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1483 1484 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1485 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1486 1487 /* 1488 * Do not store the new memslots while there are invalidations in 1489 * progress, otherwise the locking in invalidate_range_start and 1490 * invalidate_range_end will be unbalanced. 1491 */ 1492 spin_lock(&kvm->mn_invalidate_lock); 1493 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1494 while (kvm->mn_active_invalidate_count) { 1495 set_current_state(TASK_UNINTERRUPTIBLE); 1496 spin_unlock(&kvm->mn_invalidate_lock); 1497 schedule(); 1498 spin_lock(&kvm->mn_invalidate_lock); 1499 } 1500 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1501 rcu_assign_pointer(kvm->memslots[as_id], slots); 1502 spin_unlock(&kvm->mn_invalidate_lock); 1503 1504 /* 1505 * Acquired in kvm_set_memslot. Must be released before synchronize 1506 * SRCU below in order to avoid deadlock with another thread 1507 * acquiring the slots_arch_lock in an srcu critical section. 1508 */ 1509 mutex_unlock(&kvm->slots_arch_lock); 1510 1511 synchronize_srcu_expedited(&kvm->srcu); 1512 1513 /* 1514 * Increment the new memslot generation a second time, dropping the 1515 * update in-progress flag and incrementing the generation based on 1516 * the number of address spaces. This provides a unique and easily 1517 * identifiable generation number while the memslots are in flux. 1518 */ 1519 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1520 1521 /* 1522 * Generations must be unique even across address spaces. We do not need 1523 * a global counter for that, instead the generation space is evenly split 1524 * across address spaces. For example, with two address spaces, address 1525 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1526 * use generations 1, 3, 5, ... 1527 */ 1528 gen += KVM_ADDRESS_SPACE_NUM; 1529 1530 kvm_arch_memslots_updated(kvm, gen); 1531 1532 slots->generation = gen; 1533 } 1534 1535 static int kvm_prepare_memory_region(struct kvm *kvm, 1536 const struct kvm_memory_slot *old, 1537 struct kvm_memory_slot *new, 1538 enum kvm_mr_change change) 1539 { 1540 int r; 1541 1542 /* 1543 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1544 * will be freed on "commit". If logging is enabled in both old and 1545 * new, reuse the existing bitmap. If logging is enabled only in the 1546 * new and KVM isn't using a ring buffer, allocate and initialize a 1547 * new bitmap. 1548 */ 1549 if (change != KVM_MR_DELETE) { 1550 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1551 new->dirty_bitmap = NULL; 1552 else if (old && old->dirty_bitmap) 1553 new->dirty_bitmap = old->dirty_bitmap; 1554 else if (!kvm->dirty_ring_size) { 1555 r = kvm_alloc_dirty_bitmap(new); 1556 if (r) 1557 return r; 1558 1559 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1560 bitmap_set(new->dirty_bitmap, 0, new->npages); 1561 } 1562 } 1563 1564 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1565 1566 /* Free the bitmap on failure if it was allocated above. */ 1567 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1568 kvm_destroy_dirty_bitmap(new); 1569 1570 return r; 1571 } 1572 1573 static void kvm_commit_memory_region(struct kvm *kvm, 1574 struct kvm_memory_slot *old, 1575 const struct kvm_memory_slot *new, 1576 enum kvm_mr_change change) 1577 { 1578 /* 1579 * Update the total number of memslot pages before calling the arch 1580 * hook so that architectures can consume the result directly. 1581 */ 1582 if (change == KVM_MR_DELETE) 1583 kvm->nr_memslot_pages -= old->npages; 1584 else if (change == KVM_MR_CREATE) 1585 kvm->nr_memslot_pages += new->npages; 1586 1587 kvm_arch_commit_memory_region(kvm, old, new, change); 1588 1589 switch (change) { 1590 case KVM_MR_CREATE: 1591 /* Nothing more to do. */ 1592 break; 1593 case KVM_MR_DELETE: 1594 /* Free the old memslot and all its metadata. */ 1595 kvm_free_memslot(kvm, old); 1596 break; 1597 case KVM_MR_MOVE: 1598 case KVM_MR_FLAGS_ONLY: 1599 /* 1600 * Free the dirty bitmap as needed; the below check encompasses 1601 * both the flags and whether a ring buffer is being used) 1602 */ 1603 if (old->dirty_bitmap && !new->dirty_bitmap) 1604 kvm_destroy_dirty_bitmap(old); 1605 1606 /* 1607 * The final quirk. Free the detached, old slot, but only its 1608 * memory, not any metadata. Metadata, including arch specific 1609 * data, may be reused by @new. 1610 */ 1611 kfree(old); 1612 break; 1613 default: 1614 BUG(); 1615 } 1616 } 1617 1618 /* 1619 * Activate @new, which must be installed in the inactive slots by the caller, 1620 * by swapping the active slots and then propagating @new to @old once @old is 1621 * unreachable and can be safely modified. 1622 * 1623 * With NULL @old this simply adds @new to @active (while swapping the sets). 1624 * With NULL @new this simply removes @old from @active and frees it 1625 * (while also swapping the sets). 1626 */ 1627 static void kvm_activate_memslot(struct kvm *kvm, 1628 struct kvm_memory_slot *old, 1629 struct kvm_memory_slot *new) 1630 { 1631 int as_id = kvm_memslots_get_as_id(old, new); 1632 1633 kvm_swap_active_memslots(kvm, as_id); 1634 1635 /* Propagate the new memslot to the now inactive memslots. */ 1636 kvm_replace_memslot(kvm, old, new); 1637 } 1638 1639 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1640 const struct kvm_memory_slot *src) 1641 { 1642 dest->base_gfn = src->base_gfn; 1643 dest->npages = src->npages; 1644 dest->dirty_bitmap = src->dirty_bitmap; 1645 dest->arch = src->arch; 1646 dest->userspace_addr = src->userspace_addr; 1647 dest->flags = src->flags; 1648 dest->id = src->id; 1649 dest->as_id = src->as_id; 1650 } 1651 1652 static void kvm_invalidate_memslot(struct kvm *kvm, 1653 struct kvm_memory_slot *old, 1654 struct kvm_memory_slot *invalid_slot) 1655 { 1656 /* 1657 * Mark the current slot INVALID. As with all memslot modifications, 1658 * this must be done on an unreachable slot to avoid modifying the 1659 * current slot in the active tree. 1660 */ 1661 kvm_copy_memslot(invalid_slot, old); 1662 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1663 kvm_replace_memslot(kvm, old, invalid_slot); 1664 1665 /* 1666 * Activate the slot that is now marked INVALID, but don't propagate 1667 * the slot to the now inactive slots. The slot is either going to be 1668 * deleted or recreated as a new slot. 1669 */ 1670 kvm_swap_active_memslots(kvm, old->as_id); 1671 1672 /* 1673 * From this point no new shadow pages pointing to a deleted, or moved, 1674 * memslot will be created. Validation of sp->gfn happens in: 1675 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1676 * - kvm_is_visible_gfn (mmu_check_root) 1677 */ 1678 kvm_arch_flush_shadow_memslot(kvm, old); 1679 kvm_arch_guest_memory_reclaimed(kvm); 1680 1681 /* Was released by kvm_swap_active_memslots, reacquire. */ 1682 mutex_lock(&kvm->slots_arch_lock); 1683 1684 /* 1685 * Copy the arch-specific field of the newly-installed slot back to the 1686 * old slot as the arch data could have changed between releasing 1687 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1688 * above. Writers are required to retrieve memslots *after* acquiring 1689 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1690 */ 1691 old->arch = invalid_slot->arch; 1692 } 1693 1694 static void kvm_create_memslot(struct kvm *kvm, 1695 struct kvm_memory_slot *new) 1696 { 1697 /* Add the new memslot to the inactive set and activate. */ 1698 kvm_replace_memslot(kvm, NULL, new); 1699 kvm_activate_memslot(kvm, NULL, new); 1700 } 1701 1702 static void kvm_delete_memslot(struct kvm *kvm, 1703 struct kvm_memory_slot *old, 1704 struct kvm_memory_slot *invalid_slot) 1705 { 1706 /* 1707 * Remove the old memslot (in the inactive memslots) by passing NULL as 1708 * the "new" slot, and for the invalid version in the active slots. 1709 */ 1710 kvm_replace_memslot(kvm, old, NULL); 1711 kvm_activate_memslot(kvm, invalid_slot, NULL); 1712 } 1713 1714 static void kvm_move_memslot(struct kvm *kvm, 1715 struct kvm_memory_slot *old, 1716 struct kvm_memory_slot *new, 1717 struct kvm_memory_slot *invalid_slot) 1718 { 1719 /* 1720 * Replace the old memslot in the inactive slots, and then swap slots 1721 * and replace the current INVALID with the new as well. 1722 */ 1723 kvm_replace_memslot(kvm, old, new); 1724 kvm_activate_memslot(kvm, invalid_slot, new); 1725 } 1726 1727 static void kvm_update_flags_memslot(struct kvm *kvm, 1728 struct kvm_memory_slot *old, 1729 struct kvm_memory_slot *new) 1730 { 1731 /* 1732 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1733 * an intermediate step. Instead, the old memslot is simply replaced 1734 * with a new, updated copy in both memslot sets. 1735 */ 1736 kvm_replace_memslot(kvm, old, new); 1737 kvm_activate_memslot(kvm, old, new); 1738 } 1739 1740 static int kvm_set_memslot(struct kvm *kvm, 1741 struct kvm_memory_slot *old, 1742 struct kvm_memory_slot *new, 1743 enum kvm_mr_change change) 1744 { 1745 struct kvm_memory_slot *invalid_slot; 1746 int r; 1747 1748 /* 1749 * Released in kvm_swap_active_memslots. 1750 * 1751 * Must be held from before the current memslots are copied until 1752 * after the new memslots are installed with rcu_assign_pointer, 1753 * then released before the synchronize srcu in kvm_swap_active_memslots. 1754 * 1755 * When modifying memslots outside of the slots_lock, must be held 1756 * before reading the pointer to the current memslots until after all 1757 * changes to those memslots are complete. 1758 * 1759 * These rules ensure that installing new memslots does not lose 1760 * changes made to the previous memslots. 1761 */ 1762 mutex_lock(&kvm->slots_arch_lock); 1763 1764 /* 1765 * Invalidate the old slot if it's being deleted or moved. This is 1766 * done prior to actually deleting/moving the memslot to allow vCPUs to 1767 * continue running by ensuring there are no mappings or shadow pages 1768 * for the memslot when it is deleted/moved. Without pre-invalidation 1769 * (and without a lock), a window would exist between effecting the 1770 * delete/move and committing the changes in arch code where KVM or a 1771 * guest could access a non-existent memslot. 1772 * 1773 * Modifications are done on a temporary, unreachable slot. The old 1774 * slot needs to be preserved in case a later step fails and the 1775 * invalidation needs to be reverted. 1776 */ 1777 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1778 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1779 if (!invalid_slot) { 1780 mutex_unlock(&kvm->slots_arch_lock); 1781 return -ENOMEM; 1782 } 1783 kvm_invalidate_memslot(kvm, old, invalid_slot); 1784 } 1785 1786 r = kvm_prepare_memory_region(kvm, old, new, change); 1787 if (r) { 1788 /* 1789 * For DELETE/MOVE, revert the above INVALID change. No 1790 * modifications required since the original slot was preserved 1791 * in the inactive slots. Changing the active memslots also 1792 * release slots_arch_lock. 1793 */ 1794 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1795 kvm_activate_memslot(kvm, invalid_slot, old); 1796 kfree(invalid_slot); 1797 } else { 1798 mutex_unlock(&kvm->slots_arch_lock); 1799 } 1800 return r; 1801 } 1802 1803 /* 1804 * For DELETE and MOVE, the working slot is now active as the INVALID 1805 * version of the old slot. MOVE is particularly special as it reuses 1806 * the old slot and returns a copy of the old slot (in working_slot). 1807 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1808 * old slot is detached but otherwise preserved. 1809 */ 1810 if (change == KVM_MR_CREATE) 1811 kvm_create_memslot(kvm, new); 1812 else if (change == KVM_MR_DELETE) 1813 kvm_delete_memslot(kvm, old, invalid_slot); 1814 else if (change == KVM_MR_MOVE) 1815 kvm_move_memslot(kvm, old, new, invalid_slot); 1816 else if (change == KVM_MR_FLAGS_ONLY) 1817 kvm_update_flags_memslot(kvm, old, new); 1818 else 1819 BUG(); 1820 1821 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1822 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1823 kfree(invalid_slot); 1824 1825 /* 1826 * No need to refresh new->arch, changes after dropping slots_arch_lock 1827 * will directly hit the final, active memslot. Architectures are 1828 * responsible for knowing that new->arch may be stale. 1829 */ 1830 kvm_commit_memory_region(kvm, old, new, change); 1831 1832 return 0; 1833 } 1834 1835 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1836 gfn_t start, gfn_t end) 1837 { 1838 struct kvm_memslot_iter iter; 1839 1840 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1841 if (iter.slot->id != id) 1842 return true; 1843 } 1844 1845 return false; 1846 } 1847 1848 /* 1849 * Allocate some memory and give it an address in the guest physical address 1850 * space. 1851 * 1852 * Discontiguous memory is allowed, mostly for framebuffers. 1853 * 1854 * Must be called holding kvm->slots_lock for write. 1855 */ 1856 int __kvm_set_memory_region(struct kvm *kvm, 1857 const struct kvm_userspace_memory_region *mem) 1858 { 1859 struct kvm_memory_slot *old, *new; 1860 struct kvm_memslots *slots; 1861 enum kvm_mr_change change; 1862 unsigned long npages; 1863 gfn_t base_gfn; 1864 int as_id, id; 1865 int r; 1866 1867 r = check_memory_region_flags(mem); 1868 if (r) 1869 return r; 1870 1871 as_id = mem->slot >> 16; 1872 id = (u16)mem->slot; 1873 1874 /* General sanity checks */ 1875 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1876 (mem->memory_size != (unsigned long)mem->memory_size)) 1877 return -EINVAL; 1878 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1879 return -EINVAL; 1880 /* We can read the guest memory with __xxx_user() later on. */ 1881 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1882 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1883 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1884 mem->memory_size)) 1885 return -EINVAL; 1886 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1887 return -EINVAL; 1888 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1889 return -EINVAL; 1890 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1891 return -EINVAL; 1892 1893 slots = __kvm_memslots(kvm, as_id); 1894 1895 /* 1896 * Note, the old memslot (and the pointer itself!) may be invalidated 1897 * and/or destroyed by kvm_set_memslot(). 1898 */ 1899 old = id_to_memslot(slots, id); 1900 1901 if (!mem->memory_size) { 1902 if (!old || !old->npages) 1903 return -EINVAL; 1904 1905 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1906 return -EIO; 1907 1908 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1909 } 1910 1911 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1912 npages = (mem->memory_size >> PAGE_SHIFT); 1913 1914 if (!old || !old->npages) { 1915 change = KVM_MR_CREATE; 1916 1917 /* 1918 * To simplify KVM internals, the total number of pages across 1919 * all memslots must fit in an unsigned long. 1920 */ 1921 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1922 return -EINVAL; 1923 } else { /* Modify an existing slot. */ 1924 if ((mem->userspace_addr != old->userspace_addr) || 1925 (npages != old->npages) || 1926 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1927 return -EINVAL; 1928 1929 if (base_gfn != old->base_gfn) 1930 change = KVM_MR_MOVE; 1931 else if (mem->flags != old->flags) 1932 change = KVM_MR_FLAGS_ONLY; 1933 else /* Nothing to change. */ 1934 return 0; 1935 } 1936 1937 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 1938 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 1939 return -EEXIST; 1940 1941 /* Allocate a slot that will persist in the memslot. */ 1942 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 1943 if (!new) 1944 return -ENOMEM; 1945 1946 new->as_id = as_id; 1947 new->id = id; 1948 new->base_gfn = base_gfn; 1949 new->npages = npages; 1950 new->flags = mem->flags; 1951 new->userspace_addr = mem->userspace_addr; 1952 1953 r = kvm_set_memslot(kvm, old, new, change); 1954 if (r) 1955 kfree(new); 1956 return r; 1957 } 1958 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1959 1960 int kvm_set_memory_region(struct kvm *kvm, 1961 const struct kvm_userspace_memory_region *mem) 1962 { 1963 int r; 1964 1965 mutex_lock(&kvm->slots_lock); 1966 r = __kvm_set_memory_region(kvm, mem); 1967 mutex_unlock(&kvm->slots_lock); 1968 return r; 1969 } 1970 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1971 1972 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1973 struct kvm_userspace_memory_region *mem) 1974 { 1975 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1976 return -EINVAL; 1977 1978 return kvm_set_memory_region(kvm, mem); 1979 } 1980 1981 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1982 /** 1983 * kvm_get_dirty_log - get a snapshot of dirty pages 1984 * @kvm: pointer to kvm instance 1985 * @log: slot id and address to which we copy the log 1986 * @is_dirty: set to '1' if any dirty pages were found 1987 * @memslot: set to the associated memslot, always valid on success 1988 */ 1989 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1990 int *is_dirty, struct kvm_memory_slot **memslot) 1991 { 1992 struct kvm_memslots *slots; 1993 int i, as_id, id; 1994 unsigned long n; 1995 unsigned long any = 0; 1996 1997 /* Dirty ring tracking is exclusive to dirty log tracking */ 1998 if (kvm->dirty_ring_size) 1999 return -ENXIO; 2000 2001 *memslot = NULL; 2002 *is_dirty = 0; 2003 2004 as_id = log->slot >> 16; 2005 id = (u16)log->slot; 2006 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2007 return -EINVAL; 2008 2009 slots = __kvm_memslots(kvm, as_id); 2010 *memslot = id_to_memslot(slots, id); 2011 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2012 return -ENOENT; 2013 2014 kvm_arch_sync_dirty_log(kvm, *memslot); 2015 2016 n = kvm_dirty_bitmap_bytes(*memslot); 2017 2018 for (i = 0; !any && i < n/sizeof(long); ++i) 2019 any = (*memslot)->dirty_bitmap[i]; 2020 2021 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2022 return -EFAULT; 2023 2024 if (any) 2025 *is_dirty = 1; 2026 return 0; 2027 } 2028 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2029 2030 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2031 /** 2032 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2033 * and reenable dirty page tracking for the corresponding pages. 2034 * @kvm: pointer to kvm instance 2035 * @log: slot id and address to which we copy the log 2036 * 2037 * We need to keep it in mind that VCPU threads can write to the bitmap 2038 * concurrently. So, to avoid losing track of dirty pages we keep the 2039 * following order: 2040 * 2041 * 1. Take a snapshot of the bit and clear it if needed. 2042 * 2. Write protect the corresponding page. 2043 * 3. Copy the snapshot to the userspace. 2044 * 4. Upon return caller flushes TLB's if needed. 2045 * 2046 * Between 2 and 4, the guest may write to the page using the remaining TLB 2047 * entry. This is not a problem because the page is reported dirty using 2048 * the snapshot taken before and step 4 ensures that writes done after 2049 * exiting to userspace will be logged for the next call. 2050 * 2051 */ 2052 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2053 { 2054 struct kvm_memslots *slots; 2055 struct kvm_memory_slot *memslot; 2056 int i, as_id, id; 2057 unsigned long n; 2058 unsigned long *dirty_bitmap; 2059 unsigned long *dirty_bitmap_buffer; 2060 bool flush; 2061 2062 /* Dirty ring tracking is exclusive to dirty log tracking */ 2063 if (kvm->dirty_ring_size) 2064 return -ENXIO; 2065 2066 as_id = log->slot >> 16; 2067 id = (u16)log->slot; 2068 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2069 return -EINVAL; 2070 2071 slots = __kvm_memslots(kvm, as_id); 2072 memslot = id_to_memslot(slots, id); 2073 if (!memslot || !memslot->dirty_bitmap) 2074 return -ENOENT; 2075 2076 dirty_bitmap = memslot->dirty_bitmap; 2077 2078 kvm_arch_sync_dirty_log(kvm, memslot); 2079 2080 n = kvm_dirty_bitmap_bytes(memslot); 2081 flush = false; 2082 if (kvm->manual_dirty_log_protect) { 2083 /* 2084 * Unlike kvm_get_dirty_log, we always return false in *flush, 2085 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2086 * is some code duplication between this function and 2087 * kvm_get_dirty_log, but hopefully all architecture 2088 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2089 * can be eliminated. 2090 */ 2091 dirty_bitmap_buffer = dirty_bitmap; 2092 } else { 2093 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2094 memset(dirty_bitmap_buffer, 0, n); 2095 2096 KVM_MMU_LOCK(kvm); 2097 for (i = 0; i < n / sizeof(long); i++) { 2098 unsigned long mask; 2099 gfn_t offset; 2100 2101 if (!dirty_bitmap[i]) 2102 continue; 2103 2104 flush = true; 2105 mask = xchg(&dirty_bitmap[i], 0); 2106 dirty_bitmap_buffer[i] = mask; 2107 2108 offset = i * BITS_PER_LONG; 2109 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2110 offset, mask); 2111 } 2112 KVM_MMU_UNLOCK(kvm); 2113 } 2114 2115 if (flush) 2116 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2117 2118 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2119 return -EFAULT; 2120 return 0; 2121 } 2122 2123 2124 /** 2125 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2126 * @kvm: kvm instance 2127 * @log: slot id and address to which we copy the log 2128 * 2129 * Steps 1-4 below provide general overview of dirty page logging. See 2130 * kvm_get_dirty_log_protect() function description for additional details. 2131 * 2132 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2133 * always flush the TLB (step 4) even if previous step failed and the dirty 2134 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2135 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2136 * writes will be marked dirty for next log read. 2137 * 2138 * 1. Take a snapshot of the bit and clear it if needed. 2139 * 2. Write protect the corresponding page. 2140 * 3. Copy the snapshot to the userspace. 2141 * 4. Flush TLB's if needed. 2142 */ 2143 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2144 struct kvm_dirty_log *log) 2145 { 2146 int r; 2147 2148 mutex_lock(&kvm->slots_lock); 2149 2150 r = kvm_get_dirty_log_protect(kvm, log); 2151 2152 mutex_unlock(&kvm->slots_lock); 2153 return r; 2154 } 2155 2156 /** 2157 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2158 * and reenable dirty page tracking for the corresponding pages. 2159 * @kvm: pointer to kvm instance 2160 * @log: slot id and address from which to fetch the bitmap of dirty pages 2161 */ 2162 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2163 struct kvm_clear_dirty_log *log) 2164 { 2165 struct kvm_memslots *slots; 2166 struct kvm_memory_slot *memslot; 2167 int as_id, id; 2168 gfn_t offset; 2169 unsigned long i, n; 2170 unsigned long *dirty_bitmap; 2171 unsigned long *dirty_bitmap_buffer; 2172 bool flush; 2173 2174 /* Dirty ring tracking is exclusive to dirty log tracking */ 2175 if (kvm->dirty_ring_size) 2176 return -ENXIO; 2177 2178 as_id = log->slot >> 16; 2179 id = (u16)log->slot; 2180 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2181 return -EINVAL; 2182 2183 if (log->first_page & 63) 2184 return -EINVAL; 2185 2186 slots = __kvm_memslots(kvm, as_id); 2187 memslot = id_to_memslot(slots, id); 2188 if (!memslot || !memslot->dirty_bitmap) 2189 return -ENOENT; 2190 2191 dirty_bitmap = memslot->dirty_bitmap; 2192 2193 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2194 2195 if (log->first_page > memslot->npages || 2196 log->num_pages > memslot->npages - log->first_page || 2197 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2198 return -EINVAL; 2199 2200 kvm_arch_sync_dirty_log(kvm, memslot); 2201 2202 flush = false; 2203 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2204 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2205 return -EFAULT; 2206 2207 KVM_MMU_LOCK(kvm); 2208 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2209 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2210 i++, offset += BITS_PER_LONG) { 2211 unsigned long mask = *dirty_bitmap_buffer++; 2212 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2213 if (!mask) 2214 continue; 2215 2216 mask &= atomic_long_fetch_andnot(mask, p); 2217 2218 /* 2219 * mask contains the bits that really have been cleared. This 2220 * never includes any bits beyond the length of the memslot (if 2221 * the length is not aligned to 64 pages), therefore it is not 2222 * a problem if userspace sets them in log->dirty_bitmap. 2223 */ 2224 if (mask) { 2225 flush = true; 2226 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2227 offset, mask); 2228 } 2229 } 2230 KVM_MMU_UNLOCK(kvm); 2231 2232 if (flush) 2233 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2234 2235 return 0; 2236 } 2237 2238 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2239 struct kvm_clear_dirty_log *log) 2240 { 2241 int r; 2242 2243 mutex_lock(&kvm->slots_lock); 2244 2245 r = kvm_clear_dirty_log_protect(kvm, log); 2246 2247 mutex_unlock(&kvm->slots_lock); 2248 return r; 2249 } 2250 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2251 2252 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2253 { 2254 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2255 } 2256 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2257 2258 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2259 { 2260 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2261 u64 gen = slots->generation; 2262 struct kvm_memory_slot *slot; 2263 2264 /* 2265 * This also protects against using a memslot from a different address space, 2266 * since different address spaces have different generation numbers. 2267 */ 2268 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2269 vcpu->last_used_slot = NULL; 2270 vcpu->last_used_slot_gen = gen; 2271 } 2272 2273 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2274 if (slot) 2275 return slot; 2276 2277 /* 2278 * Fall back to searching all memslots. We purposely use 2279 * search_memslots() instead of __gfn_to_memslot() to avoid 2280 * thrashing the VM-wide last_used_slot in kvm_memslots. 2281 */ 2282 slot = search_memslots(slots, gfn, false); 2283 if (slot) { 2284 vcpu->last_used_slot = slot; 2285 return slot; 2286 } 2287 2288 return NULL; 2289 } 2290 2291 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2292 { 2293 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2294 2295 return kvm_is_visible_memslot(memslot); 2296 } 2297 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2298 2299 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2300 { 2301 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2302 2303 return kvm_is_visible_memslot(memslot); 2304 } 2305 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2306 2307 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2308 { 2309 struct vm_area_struct *vma; 2310 unsigned long addr, size; 2311 2312 size = PAGE_SIZE; 2313 2314 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2315 if (kvm_is_error_hva(addr)) 2316 return PAGE_SIZE; 2317 2318 mmap_read_lock(current->mm); 2319 vma = find_vma(current->mm, addr); 2320 if (!vma) 2321 goto out; 2322 2323 size = vma_kernel_pagesize(vma); 2324 2325 out: 2326 mmap_read_unlock(current->mm); 2327 2328 return size; 2329 } 2330 2331 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2332 { 2333 return slot->flags & KVM_MEM_READONLY; 2334 } 2335 2336 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2337 gfn_t *nr_pages, bool write) 2338 { 2339 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2340 return KVM_HVA_ERR_BAD; 2341 2342 if (memslot_is_readonly(slot) && write) 2343 return KVM_HVA_ERR_RO_BAD; 2344 2345 if (nr_pages) 2346 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2347 2348 return __gfn_to_hva_memslot(slot, gfn); 2349 } 2350 2351 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2352 gfn_t *nr_pages) 2353 { 2354 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2355 } 2356 2357 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2358 gfn_t gfn) 2359 { 2360 return gfn_to_hva_many(slot, gfn, NULL); 2361 } 2362 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2363 2364 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2365 { 2366 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2367 } 2368 EXPORT_SYMBOL_GPL(gfn_to_hva); 2369 2370 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2371 { 2372 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2373 } 2374 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2375 2376 /* 2377 * Return the hva of a @gfn and the R/W attribute if possible. 2378 * 2379 * @slot: the kvm_memory_slot which contains @gfn 2380 * @gfn: the gfn to be translated 2381 * @writable: used to return the read/write attribute of the @slot if the hva 2382 * is valid and @writable is not NULL 2383 */ 2384 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2385 gfn_t gfn, bool *writable) 2386 { 2387 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2388 2389 if (!kvm_is_error_hva(hva) && writable) 2390 *writable = !memslot_is_readonly(slot); 2391 2392 return hva; 2393 } 2394 2395 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2396 { 2397 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2398 2399 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2400 } 2401 2402 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2403 { 2404 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2405 2406 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2407 } 2408 2409 static inline int check_user_page_hwpoison(unsigned long addr) 2410 { 2411 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2412 2413 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2414 return rc == -EHWPOISON; 2415 } 2416 2417 /* 2418 * The fast path to get the writable pfn which will be stored in @pfn, 2419 * true indicates success, otherwise false is returned. It's also the 2420 * only part that runs if we can in atomic context. 2421 */ 2422 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2423 bool *writable, kvm_pfn_t *pfn) 2424 { 2425 struct page *page[1]; 2426 2427 /* 2428 * Fast pin a writable pfn only if it is a write fault request 2429 * or the caller allows to map a writable pfn for a read fault 2430 * request. 2431 */ 2432 if (!(write_fault || writable)) 2433 return false; 2434 2435 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2436 *pfn = page_to_pfn(page[0]); 2437 2438 if (writable) 2439 *writable = true; 2440 return true; 2441 } 2442 2443 return false; 2444 } 2445 2446 /* 2447 * The slow path to get the pfn of the specified host virtual address, 2448 * 1 indicates success, -errno is returned if error is detected. 2449 */ 2450 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2451 bool *writable, kvm_pfn_t *pfn) 2452 { 2453 unsigned int flags = FOLL_HWPOISON; 2454 struct page *page; 2455 int npages = 0; 2456 2457 might_sleep(); 2458 2459 if (writable) 2460 *writable = write_fault; 2461 2462 if (write_fault) 2463 flags |= FOLL_WRITE; 2464 if (async) 2465 flags |= FOLL_NOWAIT; 2466 2467 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2468 if (npages != 1) 2469 return npages; 2470 2471 /* map read fault as writable if possible */ 2472 if (unlikely(!write_fault) && writable) { 2473 struct page *wpage; 2474 2475 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2476 *writable = true; 2477 put_page(page); 2478 page = wpage; 2479 } 2480 } 2481 *pfn = page_to_pfn(page); 2482 return npages; 2483 } 2484 2485 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2486 { 2487 if (unlikely(!(vma->vm_flags & VM_READ))) 2488 return false; 2489 2490 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2491 return false; 2492 2493 return true; 2494 } 2495 2496 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2497 { 2498 if (kvm_is_reserved_pfn(pfn)) 2499 return 1; 2500 return get_page_unless_zero(pfn_to_page(pfn)); 2501 } 2502 2503 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2504 unsigned long addr, bool write_fault, 2505 bool *writable, kvm_pfn_t *p_pfn) 2506 { 2507 kvm_pfn_t pfn; 2508 pte_t *ptep; 2509 spinlock_t *ptl; 2510 int r; 2511 2512 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2513 if (r) { 2514 /* 2515 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2516 * not call the fault handler, so do it here. 2517 */ 2518 bool unlocked = false; 2519 r = fixup_user_fault(current->mm, addr, 2520 (write_fault ? FAULT_FLAG_WRITE : 0), 2521 &unlocked); 2522 if (unlocked) 2523 return -EAGAIN; 2524 if (r) 2525 return r; 2526 2527 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2528 if (r) 2529 return r; 2530 } 2531 2532 if (write_fault && !pte_write(*ptep)) { 2533 pfn = KVM_PFN_ERR_RO_FAULT; 2534 goto out; 2535 } 2536 2537 if (writable) 2538 *writable = pte_write(*ptep); 2539 pfn = pte_pfn(*ptep); 2540 2541 /* 2542 * Get a reference here because callers of *hva_to_pfn* and 2543 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2544 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2545 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2546 * simply do nothing for reserved pfns. 2547 * 2548 * Whoever called remap_pfn_range is also going to call e.g. 2549 * unmap_mapping_range before the underlying pages are freed, 2550 * causing a call to our MMU notifier. 2551 * 2552 * Certain IO or PFNMAP mappings can be backed with valid 2553 * struct pages, but be allocated without refcounting e.g., 2554 * tail pages of non-compound higher order allocations, which 2555 * would then underflow the refcount when the caller does the 2556 * required put_page. Don't allow those pages here. 2557 */ 2558 if (!kvm_try_get_pfn(pfn)) 2559 r = -EFAULT; 2560 2561 out: 2562 pte_unmap_unlock(ptep, ptl); 2563 *p_pfn = pfn; 2564 2565 return r; 2566 } 2567 2568 /* 2569 * Pin guest page in memory and return its pfn. 2570 * @addr: host virtual address which maps memory to the guest 2571 * @atomic: whether this function can sleep 2572 * @async: whether this function need to wait IO complete if the 2573 * host page is not in the memory 2574 * @write_fault: whether we should get a writable host page 2575 * @writable: whether it allows to map a writable host page for !@write_fault 2576 * 2577 * The function will map a writable host page for these two cases: 2578 * 1): @write_fault = true 2579 * 2): @write_fault = false && @writable, @writable will tell the caller 2580 * whether the mapping is writable. 2581 */ 2582 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2583 bool write_fault, bool *writable) 2584 { 2585 struct vm_area_struct *vma; 2586 kvm_pfn_t pfn = 0; 2587 int npages, r; 2588 2589 /* we can do it either atomically or asynchronously, not both */ 2590 BUG_ON(atomic && async); 2591 2592 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2593 return pfn; 2594 2595 if (atomic) 2596 return KVM_PFN_ERR_FAULT; 2597 2598 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2599 if (npages == 1) 2600 return pfn; 2601 2602 mmap_read_lock(current->mm); 2603 if (npages == -EHWPOISON || 2604 (!async && check_user_page_hwpoison(addr))) { 2605 pfn = KVM_PFN_ERR_HWPOISON; 2606 goto exit; 2607 } 2608 2609 retry: 2610 vma = vma_lookup(current->mm, addr); 2611 2612 if (vma == NULL) 2613 pfn = KVM_PFN_ERR_FAULT; 2614 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2615 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2616 if (r == -EAGAIN) 2617 goto retry; 2618 if (r < 0) 2619 pfn = KVM_PFN_ERR_FAULT; 2620 } else { 2621 if (async && vma_is_valid(vma, write_fault)) 2622 *async = true; 2623 pfn = KVM_PFN_ERR_FAULT; 2624 } 2625 exit: 2626 mmap_read_unlock(current->mm); 2627 return pfn; 2628 } 2629 2630 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2631 bool atomic, bool *async, bool write_fault, 2632 bool *writable, hva_t *hva) 2633 { 2634 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2635 2636 if (hva) 2637 *hva = addr; 2638 2639 if (addr == KVM_HVA_ERR_RO_BAD) { 2640 if (writable) 2641 *writable = false; 2642 return KVM_PFN_ERR_RO_FAULT; 2643 } 2644 2645 if (kvm_is_error_hva(addr)) { 2646 if (writable) 2647 *writable = false; 2648 return KVM_PFN_NOSLOT; 2649 } 2650 2651 /* Do not map writable pfn in the readonly memslot. */ 2652 if (writable && memslot_is_readonly(slot)) { 2653 *writable = false; 2654 writable = NULL; 2655 } 2656 2657 return hva_to_pfn(addr, atomic, async, write_fault, 2658 writable); 2659 } 2660 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2661 2662 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2663 bool *writable) 2664 { 2665 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2666 write_fault, writable, NULL); 2667 } 2668 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2669 2670 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2671 { 2672 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2673 } 2674 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2675 2676 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2677 { 2678 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2679 } 2680 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2681 2682 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2683 { 2684 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2685 } 2686 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2687 2688 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2689 { 2690 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2691 } 2692 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2693 2694 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2695 { 2696 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2697 } 2698 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2699 2700 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2701 struct page **pages, int nr_pages) 2702 { 2703 unsigned long addr; 2704 gfn_t entry = 0; 2705 2706 addr = gfn_to_hva_many(slot, gfn, &entry); 2707 if (kvm_is_error_hva(addr)) 2708 return -1; 2709 2710 if (entry < nr_pages) 2711 return 0; 2712 2713 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2714 } 2715 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2716 2717 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2718 { 2719 if (is_error_noslot_pfn(pfn)) 2720 return KVM_ERR_PTR_BAD_PAGE; 2721 2722 if (kvm_is_reserved_pfn(pfn)) { 2723 WARN_ON(1); 2724 return KVM_ERR_PTR_BAD_PAGE; 2725 } 2726 2727 return pfn_to_page(pfn); 2728 } 2729 2730 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2731 { 2732 kvm_pfn_t pfn; 2733 2734 pfn = gfn_to_pfn(kvm, gfn); 2735 2736 return kvm_pfn_to_page(pfn); 2737 } 2738 EXPORT_SYMBOL_GPL(gfn_to_page); 2739 2740 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2741 { 2742 if (pfn == 0) 2743 return; 2744 2745 if (dirty) 2746 kvm_release_pfn_dirty(pfn); 2747 else 2748 kvm_release_pfn_clean(pfn); 2749 } 2750 2751 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2752 { 2753 kvm_pfn_t pfn; 2754 void *hva = NULL; 2755 struct page *page = KVM_UNMAPPED_PAGE; 2756 2757 if (!map) 2758 return -EINVAL; 2759 2760 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2761 if (is_error_noslot_pfn(pfn)) 2762 return -EINVAL; 2763 2764 if (pfn_valid(pfn)) { 2765 page = pfn_to_page(pfn); 2766 hva = kmap(page); 2767 #ifdef CONFIG_HAS_IOMEM 2768 } else { 2769 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2770 #endif 2771 } 2772 2773 if (!hva) 2774 return -EFAULT; 2775 2776 map->page = page; 2777 map->hva = hva; 2778 map->pfn = pfn; 2779 map->gfn = gfn; 2780 2781 return 0; 2782 } 2783 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2784 2785 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2786 { 2787 if (!map) 2788 return; 2789 2790 if (!map->hva) 2791 return; 2792 2793 if (map->page != KVM_UNMAPPED_PAGE) 2794 kunmap(map->page); 2795 #ifdef CONFIG_HAS_IOMEM 2796 else 2797 memunmap(map->hva); 2798 #endif 2799 2800 if (dirty) 2801 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2802 2803 kvm_release_pfn(map->pfn, dirty); 2804 2805 map->hva = NULL; 2806 map->page = NULL; 2807 } 2808 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2809 2810 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2811 { 2812 kvm_pfn_t pfn; 2813 2814 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2815 2816 return kvm_pfn_to_page(pfn); 2817 } 2818 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2819 2820 void kvm_release_page_clean(struct page *page) 2821 { 2822 WARN_ON(is_error_page(page)); 2823 2824 kvm_release_pfn_clean(page_to_pfn(page)); 2825 } 2826 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2827 2828 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2829 { 2830 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2831 put_page(pfn_to_page(pfn)); 2832 } 2833 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2834 2835 void kvm_release_page_dirty(struct page *page) 2836 { 2837 WARN_ON(is_error_page(page)); 2838 2839 kvm_release_pfn_dirty(page_to_pfn(page)); 2840 } 2841 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2842 2843 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2844 { 2845 kvm_set_pfn_dirty(pfn); 2846 kvm_release_pfn_clean(pfn); 2847 } 2848 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2849 2850 static bool kvm_is_ad_tracked_pfn(kvm_pfn_t pfn) 2851 { 2852 if (!pfn_valid(pfn)) 2853 return false; 2854 2855 /* 2856 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2857 * touched (e.g. set dirty) except by its owner". 2858 */ 2859 return !PageReserved(pfn_to_page(pfn)); 2860 } 2861 2862 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2863 { 2864 if (kvm_is_ad_tracked_pfn(pfn)) 2865 SetPageDirty(pfn_to_page(pfn)); 2866 } 2867 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2868 2869 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2870 { 2871 if (kvm_is_ad_tracked_pfn(pfn)) 2872 mark_page_accessed(pfn_to_page(pfn)); 2873 } 2874 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2875 2876 static int next_segment(unsigned long len, int offset) 2877 { 2878 if (len > PAGE_SIZE - offset) 2879 return PAGE_SIZE - offset; 2880 else 2881 return len; 2882 } 2883 2884 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2885 void *data, int offset, int len) 2886 { 2887 int r; 2888 unsigned long addr; 2889 2890 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2891 if (kvm_is_error_hva(addr)) 2892 return -EFAULT; 2893 r = __copy_from_user(data, (void __user *)addr + offset, len); 2894 if (r) 2895 return -EFAULT; 2896 return 0; 2897 } 2898 2899 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2900 int len) 2901 { 2902 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2903 2904 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2905 } 2906 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2907 2908 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2909 int offset, int len) 2910 { 2911 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2912 2913 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2914 } 2915 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2916 2917 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2918 { 2919 gfn_t gfn = gpa >> PAGE_SHIFT; 2920 int seg; 2921 int offset = offset_in_page(gpa); 2922 int ret; 2923 2924 while ((seg = next_segment(len, offset)) != 0) { 2925 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2926 if (ret < 0) 2927 return ret; 2928 offset = 0; 2929 len -= seg; 2930 data += seg; 2931 ++gfn; 2932 } 2933 return 0; 2934 } 2935 EXPORT_SYMBOL_GPL(kvm_read_guest); 2936 2937 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2938 { 2939 gfn_t gfn = gpa >> PAGE_SHIFT; 2940 int seg; 2941 int offset = offset_in_page(gpa); 2942 int ret; 2943 2944 while ((seg = next_segment(len, offset)) != 0) { 2945 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2946 if (ret < 0) 2947 return ret; 2948 offset = 0; 2949 len -= seg; 2950 data += seg; 2951 ++gfn; 2952 } 2953 return 0; 2954 } 2955 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2956 2957 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2958 void *data, int offset, unsigned long len) 2959 { 2960 int r; 2961 unsigned long addr; 2962 2963 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2964 if (kvm_is_error_hva(addr)) 2965 return -EFAULT; 2966 pagefault_disable(); 2967 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2968 pagefault_enable(); 2969 if (r) 2970 return -EFAULT; 2971 return 0; 2972 } 2973 2974 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2975 void *data, unsigned long len) 2976 { 2977 gfn_t gfn = gpa >> PAGE_SHIFT; 2978 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2979 int offset = offset_in_page(gpa); 2980 2981 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2982 } 2983 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2984 2985 static int __kvm_write_guest_page(struct kvm *kvm, 2986 struct kvm_memory_slot *memslot, gfn_t gfn, 2987 const void *data, int offset, int len) 2988 { 2989 int r; 2990 unsigned long addr; 2991 2992 addr = gfn_to_hva_memslot(memslot, gfn); 2993 if (kvm_is_error_hva(addr)) 2994 return -EFAULT; 2995 r = __copy_to_user((void __user *)addr + offset, data, len); 2996 if (r) 2997 return -EFAULT; 2998 mark_page_dirty_in_slot(kvm, memslot, gfn); 2999 return 0; 3000 } 3001 3002 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3003 const void *data, int offset, int len) 3004 { 3005 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3006 3007 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3008 } 3009 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3010 3011 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3012 const void *data, int offset, int len) 3013 { 3014 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3015 3016 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3017 } 3018 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3019 3020 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3021 unsigned long len) 3022 { 3023 gfn_t gfn = gpa >> PAGE_SHIFT; 3024 int seg; 3025 int offset = offset_in_page(gpa); 3026 int ret; 3027 3028 while ((seg = next_segment(len, offset)) != 0) { 3029 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3030 if (ret < 0) 3031 return ret; 3032 offset = 0; 3033 len -= seg; 3034 data += seg; 3035 ++gfn; 3036 } 3037 return 0; 3038 } 3039 EXPORT_SYMBOL_GPL(kvm_write_guest); 3040 3041 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3042 unsigned long len) 3043 { 3044 gfn_t gfn = gpa >> PAGE_SHIFT; 3045 int seg; 3046 int offset = offset_in_page(gpa); 3047 int ret; 3048 3049 while ((seg = next_segment(len, offset)) != 0) { 3050 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3051 if (ret < 0) 3052 return ret; 3053 offset = 0; 3054 len -= seg; 3055 data += seg; 3056 ++gfn; 3057 } 3058 return 0; 3059 } 3060 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3061 3062 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3063 struct gfn_to_hva_cache *ghc, 3064 gpa_t gpa, unsigned long len) 3065 { 3066 int offset = offset_in_page(gpa); 3067 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3068 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3069 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3070 gfn_t nr_pages_avail; 3071 3072 /* Update ghc->generation before performing any error checks. */ 3073 ghc->generation = slots->generation; 3074 3075 if (start_gfn > end_gfn) { 3076 ghc->hva = KVM_HVA_ERR_BAD; 3077 return -EINVAL; 3078 } 3079 3080 /* 3081 * If the requested region crosses two memslots, we still 3082 * verify that the entire region is valid here. 3083 */ 3084 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3085 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3086 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3087 &nr_pages_avail); 3088 if (kvm_is_error_hva(ghc->hva)) 3089 return -EFAULT; 3090 } 3091 3092 /* Use the slow path for cross page reads and writes. */ 3093 if (nr_pages_needed == 1) 3094 ghc->hva += offset; 3095 else 3096 ghc->memslot = NULL; 3097 3098 ghc->gpa = gpa; 3099 ghc->len = len; 3100 return 0; 3101 } 3102 3103 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3104 gpa_t gpa, unsigned long len) 3105 { 3106 struct kvm_memslots *slots = kvm_memslots(kvm); 3107 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3108 } 3109 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3110 3111 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3112 void *data, unsigned int offset, 3113 unsigned long len) 3114 { 3115 struct kvm_memslots *slots = kvm_memslots(kvm); 3116 int r; 3117 gpa_t gpa = ghc->gpa + offset; 3118 3119 if (WARN_ON_ONCE(len + offset > ghc->len)) 3120 return -EINVAL; 3121 3122 if (slots->generation != ghc->generation) { 3123 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3124 return -EFAULT; 3125 } 3126 3127 if (kvm_is_error_hva(ghc->hva)) 3128 return -EFAULT; 3129 3130 if (unlikely(!ghc->memslot)) 3131 return kvm_write_guest(kvm, gpa, data, len); 3132 3133 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3134 if (r) 3135 return -EFAULT; 3136 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3137 3138 return 0; 3139 } 3140 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3141 3142 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3143 void *data, unsigned long len) 3144 { 3145 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3146 } 3147 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3148 3149 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3150 void *data, unsigned int offset, 3151 unsigned long len) 3152 { 3153 struct kvm_memslots *slots = kvm_memslots(kvm); 3154 int r; 3155 gpa_t gpa = ghc->gpa + offset; 3156 3157 if (WARN_ON_ONCE(len + offset > ghc->len)) 3158 return -EINVAL; 3159 3160 if (slots->generation != ghc->generation) { 3161 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3162 return -EFAULT; 3163 } 3164 3165 if (kvm_is_error_hva(ghc->hva)) 3166 return -EFAULT; 3167 3168 if (unlikely(!ghc->memslot)) 3169 return kvm_read_guest(kvm, gpa, data, len); 3170 3171 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3172 if (r) 3173 return -EFAULT; 3174 3175 return 0; 3176 } 3177 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3178 3179 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3180 void *data, unsigned long len) 3181 { 3182 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3183 } 3184 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3185 3186 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3187 { 3188 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3189 gfn_t gfn = gpa >> PAGE_SHIFT; 3190 int seg; 3191 int offset = offset_in_page(gpa); 3192 int ret; 3193 3194 while ((seg = next_segment(len, offset)) != 0) { 3195 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3196 if (ret < 0) 3197 return ret; 3198 offset = 0; 3199 len -= seg; 3200 ++gfn; 3201 } 3202 return 0; 3203 } 3204 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3205 3206 void mark_page_dirty_in_slot(struct kvm *kvm, 3207 const struct kvm_memory_slot *memslot, 3208 gfn_t gfn) 3209 { 3210 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3211 3212 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3213 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3214 return; 3215 #endif 3216 3217 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3218 unsigned long rel_gfn = gfn - memslot->base_gfn; 3219 u32 slot = (memslot->as_id << 16) | memslot->id; 3220 3221 if (kvm->dirty_ring_size) 3222 kvm_dirty_ring_push(&vcpu->dirty_ring, 3223 slot, rel_gfn); 3224 else 3225 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3226 } 3227 } 3228 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3229 3230 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3231 { 3232 struct kvm_memory_slot *memslot; 3233 3234 memslot = gfn_to_memslot(kvm, gfn); 3235 mark_page_dirty_in_slot(kvm, memslot, gfn); 3236 } 3237 EXPORT_SYMBOL_GPL(mark_page_dirty); 3238 3239 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3240 { 3241 struct kvm_memory_slot *memslot; 3242 3243 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3244 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3245 } 3246 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3247 3248 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3249 { 3250 if (!vcpu->sigset_active) 3251 return; 3252 3253 /* 3254 * This does a lockless modification of ->real_blocked, which is fine 3255 * because, only current can change ->real_blocked and all readers of 3256 * ->real_blocked don't care as long ->real_blocked is always a subset 3257 * of ->blocked. 3258 */ 3259 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3260 } 3261 3262 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3263 { 3264 if (!vcpu->sigset_active) 3265 return; 3266 3267 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3268 sigemptyset(¤t->real_blocked); 3269 } 3270 3271 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3272 { 3273 unsigned int old, val, grow, grow_start; 3274 3275 old = val = vcpu->halt_poll_ns; 3276 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3277 grow = READ_ONCE(halt_poll_ns_grow); 3278 if (!grow) 3279 goto out; 3280 3281 val *= grow; 3282 if (val < grow_start) 3283 val = grow_start; 3284 3285 if (val > vcpu->kvm->max_halt_poll_ns) 3286 val = vcpu->kvm->max_halt_poll_ns; 3287 3288 vcpu->halt_poll_ns = val; 3289 out: 3290 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3291 } 3292 3293 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3294 { 3295 unsigned int old, val, shrink, grow_start; 3296 3297 old = val = vcpu->halt_poll_ns; 3298 shrink = READ_ONCE(halt_poll_ns_shrink); 3299 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3300 if (shrink == 0) 3301 val = 0; 3302 else 3303 val /= shrink; 3304 3305 if (val < grow_start) 3306 val = 0; 3307 3308 vcpu->halt_poll_ns = val; 3309 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3310 } 3311 3312 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3313 { 3314 int ret = -EINTR; 3315 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3316 3317 if (kvm_arch_vcpu_runnable(vcpu)) { 3318 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3319 goto out; 3320 } 3321 if (kvm_cpu_has_pending_timer(vcpu)) 3322 goto out; 3323 if (signal_pending(current)) 3324 goto out; 3325 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3326 goto out; 3327 3328 ret = 0; 3329 out: 3330 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3331 return ret; 3332 } 3333 3334 /* 3335 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3336 * pending. This is mostly used when halting a vCPU, but may also be used 3337 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3338 */ 3339 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3340 { 3341 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3342 bool waited = false; 3343 3344 vcpu->stat.generic.blocking = 1; 3345 3346 preempt_disable(); 3347 kvm_arch_vcpu_blocking(vcpu); 3348 prepare_to_rcuwait(wait); 3349 preempt_enable(); 3350 3351 for (;;) { 3352 set_current_state(TASK_INTERRUPTIBLE); 3353 3354 if (kvm_vcpu_check_block(vcpu) < 0) 3355 break; 3356 3357 waited = true; 3358 schedule(); 3359 } 3360 3361 preempt_disable(); 3362 finish_rcuwait(wait); 3363 kvm_arch_vcpu_unblocking(vcpu); 3364 preempt_enable(); 3365 3366 vcpu->stat.generic.blocking = 0; 3367 3368 return waited; 3369 } 3370 3371 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3372 ktime_t end, bool success) 3373 { 3374 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3375 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3376 3377 ++vcpu->stat.generic.halt_attempted_poll; 3378 3379 if (success) { 3380 ++vcpu->stat.generic.halt_successful_poll; 3381 3382 if (!vcpu_valid_wakeup(vcpu)) 3383 ++vcpu->stat.generic.halt_poll_invalid; 3384 3385 stats->halt_poll_success_ns += poll_ns; 3386 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3387 } else { 3388 stats->halt_poll_fail_ns += poll_ns; 3389 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3390 } 3391 } 3392 3393 /* 3394 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3395 * polling is enabled, busy wait for a short time before blocking to avoid the 3396 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3397 * is halted. 3398 */ 3399 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3400 { 3401 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3402 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3403 ktime_t start, cur, poll_end; 3404 bool waited = false; 3405 u64 halt_ns; 3406 3407 start = cur = poll_end = ktime_get(); 3408 if (do_halt_poll) { 3409 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3410 3411 do { 3412 /* 3413 * This sets KVM_REQ_UNHALT if an interrupt 3414 * arrives. 3415 */ 3416 if (kvm_vcpu_check_block(vcpu) < 0) 3417 goto out; 3418 cpu_relax(); 3419 poll_end = cur = ktime_get(); 3420 } while (kvm_vcpu_can_poll(cur, stop)); 3421 } 3422 3423 waited = kvm_vcpu_block(vcpu); 3424 3425 cur = ktime_get(); 3426 if (waited) { 3427 vcpu->stat.generic.halt_wait_ns += 3428 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3429 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3430 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3431 } 3432 out: 3433 /* The total time the vCPU was "halted", including polling time. */ 3434 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3435 3436 /* 3437 * Note, halt-polling is considered successful so long as the vCPU was 3438 * never actually scheduled out, i.e. even if the wake event arrived 3439 * after of the halt-polling loop itself, but before the full wait. 3440 */ 3441 if (do_halt_poll) 3442 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3443 3444 if (halt_poll_allowed) { 3445 if (!vcpu_valid_wakeup(vcpu)) { 3446 shrink_halt_poll_ns(vcpu); 3447 } else if (vcpu->kvm->max_halt_poll_ns) { 3448 if (halt_ns <= vcpu->halt_poll_ns) 3449 ; 3450 /* we had a long block, shrink polling */ 3451 else if (vcpu->halt_poll_ns && 3452 halt_ns > vcpu->kvm->max_halt_poll_ns) 3453 shrink_halt_poll_ns(vcpu); 3454 /* we had a short halt and our poll time is too small */ 3455 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3456 halt_ns < vcpu->kvm->max_halt_poll_ns) 3457 grow_halt_poll_ns(vcpu); 3458 } else { 3459 vcpu->halt_poll_ns = 0; 3460 } 3461 } 3462 3463 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3464 } 3465 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3466 3467 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3468 { 3469 if (__kvm_vcpu_wake_up(vcpu)) { 3470 WRITE_ONCE(vcpu->ready, true); 3471 ++vcpu->stat.generic.halt_wakeup; 3472 return true; 3473 } 3474 3475 return false; 3476 } 3477 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3478 3479 #ifndef CONFIG_S390 3480 /* 3481 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3482 */ 3483 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3484 { 3485 int me, cpu; 3486 3487 if (kvm_vcpu_wake_up(vcpu)) 3488 return; 3489 3490 me = get_cpu(); 3491 /* 3492 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3493 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3494 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3495 * within the vCPU thread itself. 3496 */ 3497 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3498 if (vcpu->mode == IN_GUEST_MODE) 3499 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3500 goto out; 3501 } 3502 3503 /* 3504 * Note, the vCPU could get migrated to a different pCPU at any point 3505 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3506 * IPI to the previous pCPU. But, that's ok because the purpose of the 3507 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3508 * vCPU also requires it to leave IN_GUEST_MODE. 3509 */ 3510 if (kvm_arch_vcpu_should_kick(vcpu)) { 3511 cpu = READ_ONCE(vcpu->cpu); 3512 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3513 smp_send_reschedule(cpu); 3514 } 3515 out: 3516 put_cpu(); 3517 } 3518 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3519 #endif /* !CONFIG_S390 */ 3520 3521 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3522 { 3523 struct pid *pid; 3524 struct task_struct *task = NULL; 3525 int ret = 0; 3526 3527 rcu_read_lock(); 3528 pid = rcu_dereference(target->pid); 3529 if (pid) 3530 task = get_pid_task(pid, PIDTYPE_PID); 3531 rcu_read_unlock(); 3532 if (!task) 3533 return ret; 3534 ret = yield_to(task, 1); 3535 put_task_struct(task); 3536 3537 return ret; 3538 } 3539 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3540 3541 /* 3542 * Helper that checks whether a VCPU is eligible for directed yield. 3543 * Most eligible candidate to yield is decided by following heuristics: 3544 * 3545 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3546 * (preempted lock holder), indicated by @in_spin_loop. 3547 * Set at the beginning and cleared at the end of interception/PLE handler. 3548 * 3549 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3550 * chance last time (mostly it has become eligible now since we have probably 3551 * yielded to lockholder in last iteration. This is done by toggling 3552 * @dy_eligible each time a VCPU checked for eligibility.) 3553 * 3554 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3555 * to preempted lock-holder could result in wrong VCPU selection and CPU 3556 * burning. Giving priority for a potential lock-holder increases lock 3557 * progress. 3558 * 3559 * Since algorithm is based on heuristics, accessing another VCPU data without 3560 * locking does not harm. It may result in trying to yield to same VCPU, fail 3561 * and continue with next VCPU and so on. 3562 */ 3563 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3564 { 3565 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3566 bool eligible; 3567 3568 eligible = !vcpu->spin_loop.in_spin_loop || 3569 vcpu->spin_loop.dy_eligible; 3570 3571 if (vcpu->spin_loop.in_spin_loop) 3572 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3573 3574 return eligible; 3575 #else 3576 return true; 3577 #endif 3578 } 3579 3580 /* 3581 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3582 * a vcpu_load/vcpu_put pair. However, for most architectures 3583 * kvm_arch_vcpu_runnable does not require vcpu_load. 3584 */ 3585 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3586 { 3587 return kvm_arch_vcpu_runnable(vcpu); 3588 } 3589 3590 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3591 { 3592 if (kvm_arch_dy_runnable(vcpu)) 3593 return true; 3594 3595 #ifdef CONFIG_KVM_ASYNC_PF 3596 if (!list_empty_careful(&vcpu->async_pf.done)) 3597 return true; 3598 #endif 3599 3600 return false; 3601 } 3602 3603 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3604 { 3605 return false; 3606 } 3607 3608 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3609 { 3610 struct kvm *kvm = me->kvm; 3611 struct kvm_vcpu *vcpu; 3612 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3613 unsigned long i; 3614 int yielded = 0; 3615 int try = 3; 3616 int pass; 3617 3618 kvm_vcpu_set_in_spin_loop(me, true); 3619 /* 3620 * We boost the priority of a VCPU that is runnable but not 3621 * currently running, because it got preempted by something 3622 * else and called schedule in __vcpu_run. Hopefully that 3623 * VCPU is holding the lock that we need and will release it. 3624 * We approximate round-robin by starting at the last boosted VCPU. 3625 */ 3626 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3627 kvm_for_each_vcpu(i, vcpu, kvm) { 3628 if (!pass && i <= last_boosted_vcpu) { 3629 i = last_boosted_vcpu; 3630 continue; 3631 } else if (pass && i > last_boosted_vcpu) 3632 break; 3633 if (!READ_ONCE(vcpu->ready)) 3634 continue; 3635 if (vcpu == me) 3636 continue; 3637 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3638 continue; 3639 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3640 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3641 !kvm_arch_vcpu_in_kernel(vcpu)) 3642 continue; 3643 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3644 continue; 3645 3646 yielded = kvm_vcpu_yield_to(vcpu); 3647 if (yielded > 0) { 3648 kvm->last_boosted_vcpu = i; 3649 break; 3650 } else if (yielded < 0) { 3651 try--; 3652 if (!try) 3653 break; 3654 } 3655 } 3656 } 3657 kvm_vcpu_set_in_spin_loop(me, false); 3658 3659 /* Ensure vcpu is not eligible during next spinloop */ 3660 kvm_vcpu_set_dy_eligible(me, false); 3661 } 3662 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3663 3664 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3665 { 3666 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3667 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3668 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3669 kvm->dirty_ring_size / PAGE_SIZE); 3670 #else 3671 return false; 3672 #endif 3673 } 3674 3675 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3676 { 3677 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3678 struct page *page; 3679 3680 if (vmf->pgoff == 0) 3681 page = virt_to_page(vcpu->run); 3682 #ifdef CONFIG_X86 3683 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3684 page = virt_to_page(vcpu->arch.pio_data); 3685 #endif 3686 #ifdef CONFIG_KVM_MMIO 3687 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3688 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3689 #endif 3690 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3691 page = kvm_dirty_ring_get_page( 3692 &vcpu->dirty_ring, 3693 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3694 else 3695 return kvm_arch_vcpu_fault(vcpu, vmf); 3696 get_page(page); 3697 vmf->page = page; 3698 return 0; 3699 } 3700 3701 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3702 .fault = kvm_vcpu_fault, 3703 }; 3704 3705 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3706 { 3707 struct kvm_vcpu *vcpu = file->private_data; 3708 unsigned long pages = vma_pages(vma); 3709 3710 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3711 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3712 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3713 return -EINVAL; 3714 3715 vma->vm_ops = &kvm_vcpu_vm_ops; 3716 return 0; 3717 } 3718 3719 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3720 { 3721 struct kvm_vcpu *vcpu = filp->private_data; 3722 3723 kvm_put_kvm(vcpu->kvm); 3724 return 0; 3725 } 3726 3727 static const struct file_operations kvm_vcpu_fops = { 3728 .release = kvm_vcpu_release, 3729 .unlocked_ioctl = kvm_vcpu_ioctl, 3730 .mmap = kvm_vcpu_mmap, 3731 .llseek = noop_llseek, 3732 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3733 }; 3734 3735 /* 3736 * Allocates an inode for the vcpu. 3737 */ 3738 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3739 { 3740 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3741 3742 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3743 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3744 } 3745 3746 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3747 { 3748 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3749 struct dentry *debugfs_dentry; 3750 char dir_name[ITOA_MAX_LEN * 2]; 3751 3752 if (!debugfs_initialized()) 3753 return; 3754 3755 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3756 debugfs_dentry = debugfs_create_dir(dir_name, 3757 vcpu->kvm->debugfs_dentry); 3758 3759 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3760 #endif 3761 } 3762 3763 /* 3764 * Creates some virtual cpus. Good luck creating more than one. 3765 */ 3766 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3767 { 3768 int r; 3769 struct kvm_vcpu *vcpu; 3770 struct page *page; 3771 3772 if (id >= KVM_MAX_VCPU_IDS) 3773 return -EINVAL; 3774 3775 mutex_lock(&kvm->lock); 3776 if (kvm->created_vcpus >= kvm->max_vcpus) { 3777 mutex_unlock(&kvm->lock); 3778 return -EINVAL; 3779 } 3780 3781 kvm->created_vcpus++; 3782 mutex_unlock(&kvm->lock); 3783 3784 r = kvm_arch_vcpu_precreate(kvm, id); 3785 if (r) 3786 goto vcpu_decrement; 3787 3788 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3789 if (!vcpu) { 3790 r = -ENOMEM; 3791 goto vcpu_decrement; 3792 } 3793 3794 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3795 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3796 if (!page) { 3797 r = -ENOMEM; 3798 goto vcpu_free; 3799 } 3800 vcpu->run = page_address(page); 3801 3802 kvm_vcpu_init(vcpu, kvm, id); 3803 3804 r = kvm_arch_vcpu_create(vcpu); 3805 if (r) 3806 goto vcpu_free_run_page; 3807 3808 if (kvm->dirty_ring_size) { 3809 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3810 id, kvm->dirty_ring_size); 3811 if (r) 3812 goto arch_vcpu_destroy; 3813 } 3814 3815 mutex_lock(&kvm->lock); 3816 if (kvm_get_vcpu_by_id(kvm, id)) { 3817 r = -EEXIST; 3818 goto unlock_vcpu_destroy; 3819 } 3820 3821 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3822 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3823 BUG_ON(r == -EBUSY); 3824 if (r) 3825 goto unlock_vcpu_destroy; 3826 3827 /* Fill the stats id string for the vcpu */ 3828 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3829 task_pid_nr(current), id); 3830 3831 /* Now it's all set up, let userspace reach it */ 3832 kvm_get_kvm(kvm); 3833 r = create_vcpu_fd(vcpu); 3834 if (r < 0) { 3835 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3836 kvm_put_kvm_no_destroy(kvm); 3837 goto unlock_vcpu_destroy; 3838 } 3839 3840 /* 3841 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3842 * pointer before kvm->online_vcpu's incremented value. 3843 */ 3844 smp_wmb(); 3845 atomic_inc(&kvm->online_vcpus); 3846 3847 mutex_unlock(&kvm->lock); 3848 kvm_arch_vcpu_postcreate(vcpu); 3849 kvm_create_vcpu_debugfs(vcpu); 3850 return r; 3851 3852 unlock_vcpu_destroy: 3853 mutex_unlock(&kvm->lock); 3854 kvm_dirty_ring_free(&vcpu->dirty_ring); 3855 arch_vcpu_destroy: 3856 kvm_arch_vcpu_destroy(vcpu); 3857 vcpu_free_run_page: 3858 free_page((unsigned long)vcpu->run); 3859 vcpu_free: 3860 kmem_cache_free(kvm_vcpu_cache, vcpu); 3861 vcpu_decrement: 3862 mutex_lock(&kvm->lock); 3863 kvm->created_vcpus--; 3864 mutex_unlock(&kvm->lock); 3865 return r; 3866 } 3867 3868 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3869 { 3870 if (sigset) { 3871 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3872 vcpu->sigset_active = 1; 3873 vcpu->sigset = *sigset; 3874 } else 3875 vcpu->sigset_active = 0; 3876 return 0; 3877 } 3878 3879 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3880 size_t size, loff_t *offset) 3881 { 3882 struct kvm_vcpu *vcpu = file->private_data; 3883 3884 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3885 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3886 sizeof(vcpu->stat), user_buffer, size, offset); 3887 } 3888 3889 static const struct file_operations kvm_vcpu_stats_fops = { 3890 .read = kvm_vcpu_stats_read, 3891 .llseek = noop_llseek, 3892 }; 3893 3894 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3895 { 3896 int fd; 3897 struct file *file; 3898 char name[15 + ITOA_MAX_LEN + 1]; 3899 3900 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3901 3902 fd = get_unused_fd_flags(O_CLOEXEC); 3903 if (fd < 0) 3904 return fd; 3905 3906 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3907 if (IS_ERR(file)) { 3908 put_unused_fd(fd); 3909 return PTR_ERR(file); 3910 } 3911 file->f_mode |= FMODE_PREAD; 3912 fd_install(fd, file); 3913 3914 return fd; 3915 } 3916 3917 static long kvm_vcpu_ioctl(struct file *filp, 3918 unsigned int ioctl, unsigned long arg) 3919 { 3920 struct kvm_vcpu *vcpu = filp->private_data; 3921 void __user *argp = (void __user *)arg; 3922 int r; 3923 struct kvm_fpu *fpu = NULL; 3924 struct kvm_sregs *kvm_sregs = NULL; 3925 3926 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3927 return -EIO; 3928 3929 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3930 return -EINVAL; 3931 3932 /* 3933 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3934 * execution; mutex_lock() would break them. 3935 */ 3936 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3937 if (r != -ENOIOCTLCMD) 3938 return r; 3939 3940 if (mutex_lock_killable(&vcpu->mutex)) 3941 return -EINTR; 3942 switch (ioctl) { 3943 case KVM_RUN: { 3944 struct pid *oldpid; 3945 r = -EINVAL; 3946 if (arg) 3947 goto out; 3948 oldpid = rcu_access_pointer(vcpu->pid); 3949 if (unlikely(oldpid != task_pid(current))) { 3950 /* The thread running this VCPU changed. */ 3951 struct pid *newpid; 3952 3953 r = kvm_arch_vcpu_run_pid_change(vcpu); 3954 if (r) 3955 break; 3956 3957 newpid = get_task_pid(current, PIDTYPE_PID); 3958 rcu_assign_pointer(vcpu->pid, newpid); 3959 if (oldpid) 3960 synchronize_rcu(); 3961 put_pid(oldpid); 3962 } 3963 r = kvm_arch_vcpu_ioctl_run(vcpu); 3964 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3965 break; 3966 } 3967 case KVM_GET_REGS: { 3968 struct kvm_regs *kvm_regs; 3969 3970 r = -ENOMEM; 3971 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3972 if (!kvm_regs) 3973 goto out; 3974 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3975 if (r) 3976 goto out_free1; 3977 r = -EFAULT; 3978 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3979 goto out_free1; 3980 r = 0; 3981 out_free1: 3982 kfree(kvm_regs); 3983 break; 3984 } 3985 case KVM_SET_REGS: { 3986 struct kvm_regs *kvm_regs; 3987 3988 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3989 if (IS_ERR(kvm_regs)) { 3990 r = PTR_ERR(kvm_regs); 3991 goto out; 3992 } 3993 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3994 kfree(kvm_regs); 3995 break; 3996 } 3997 case KVM_GET_SREGS: { 3998 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3999 GFP_KERNEL_ACCOUNT); 4000 r = -ENOMEM; 4001 if (!kvm_sregs) 4002 goto out; 4003 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4004 if (r) 4005 goto out; 4006 r = -EFAULT; 4007 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4008 goto out; 4009 r = 0; 4010 break; 4011 } 4012 case KVM_SET_SREGS: { 4013 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4014 if (IS_ERR(kvm_sregs)) { 4015 r = PTR_ERR(kvm_sregs); 4016 kvm_sregs = NULL; 4017 goto out; 4018 } 4019 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4020 break; 4021 } 4022 case KVM_GET_MP_STATE: { 4023 struct kvm_mp_state mp_state; 4024 4025 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4026 if (r) 4027 goto out; 4028 r = -EFAULT; 4029 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4030 goto out; 4031 r = 0; 4032 break; 4033 } 4034 case KVM_SET_MP_STATE: { 4035 struct kvm_mp_state mp_state; 4036 4037 r = -EFAULT; 4038 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4039 goto out; 4040 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4041 break; 4042 } 4043 case KVM_TRANSLATE: { 4044 struct kvm_translation tr; 4045 4046 r = -EFAULT; 4047 if (copy_from_user(&tr, argp, sizeof(tr))) 4048 goto out; 4049 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4050 if (r) 4051 goto out; 4052 r = -EFAULT; 4053 if (copy_to_user(argp, &tr, sizeof(tr))) 4054 goto out; 4055 r = 0; 4056 break; 4057 } 4058 case KVM_SET_GUEST_DEBUG: { 4059 struct kvm_guest_debug dbg; 4060 4061 r = -EFAULT; 4062 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4063 goto out; 4064 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4065 break; 4066 } 4067 case KVM_SET_SIGNAL_MASK: { 4068 struct kvm_signal_mask __user *sigmask_arg = argp; 4069 struct kvm_signal_mask kvm_sigmask; 4070 sigset_t sigset, *p; 4071 4072 p = NULL; 4073 if (argp) { 4074 r = -EFAULT; 4075 if (copy_from_user(&kvm_sigmask, argp, 4076 sizeof(kvm_sigmask))) 4077 goto out; 4078 r = -EINVAL; 4079 if (kvm_sigmask.len != sizeof(sigset)) 4080 goto out; 4081 r = -EFAULT; 4082 if (copy_from_user(&sigset, sigmask_arg->sigset, 4083 sizeof(sigset))) 4084 goto out; 4085 p = &sigset; 4086 } 4087 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4088 break; 4089 } 4090 case KVM_GET_FPU: { 4091 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4092 r = -ENOMEM; 4093 if (!fpu) 4094 goto out; 4095 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4096 if (r) 4097 goto out; 4098 r = -EFAULT; 4099 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4100 goto out; 4101 r = 0; 4102 break; 4103 } 4104 case KVM_SET_FPU: { 4105 fpu = memdup_user(argp, sizeof(*fpu)); 4106 if (IS_ERR(fpu)) { 4107 r = PTR_ERR(fpu); 4108 fpu = NULL; 4109 goto out; 4110 } 4111 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4112 break; 4113 } 4114 case KVM_GET_STATS_FD: { 4115 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4116 break; 4117 } 4118 default: 4119 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4120 } 4121 out: 4122 mutex_unlock(&vcpu->mutex); 4123 kfree(fpu); 4124 kfree(kvm_sregs); 4125 return r; 4126 } 4127 4128 #ifdef CONFIG_KVM_COMPAT 4129 static long kvm_vcpu_compat_ioctl(struct file *filp, 4130 unsigned int ioctl, unsigned long arg) 4131 { 4132 struct kvm_vcpu *vcpu = filp->private_data; 4133 void __user *argp = compat_ptr(arg); 4134 int r; 4135 4136 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4137 return -EIO; 4138 4139 switch (ioctl) { 4140 case KVM_SET_SIGNAL_MASK: { 4141 struct kvm_signal_mask __user *sigmask_arg = argp; 4142 struct kvm_signal_mask kvm_sigmask; 4143 sigset_t sigset; 4144 4145 if (argp) { 4146 r = -EFAULT; 4147 if (copy_from_user(&kvm_sigmask, argp, 4148 sizeof(kvm_sigmask))) 4149 goto out; 4150 r = -EINVAL; 4151 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4152 goto out; 4153 r = -EFAULT; 4154 if (get_compat_sigset(&sigset, 4155 (compat_sigset_t __user *)sigmask_arg->sigset)) 4156 goto out; 4157 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4158 } else 4159 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4160 break; 4161 } 4162 default: 4163 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4164 } 4165 4166 out: 4167 return r; 4168 } 4169 #endif 4170 4171 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4172 { 4173 struct kvm_device *dev = filp->private_data; 4174 4175 if (dev->ops->mmap) 4176 return dev->ops->mmap(dev, vma); 4177 4178 return -ENODEV; 4179 } 4180 4181 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4182 int (*accessor)(struct kvm_device *dev, 4183 struct kvm_device_attr *attr), 4184 unsigned long arg) 4185 { 4186 struct kvm_device_attr attr; 4187 4188 if (!accessor) 4189 return -EPERM; 4190 4191 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4192 return -EFAULT; 4193 4194 return accessor(dev, &attr); 4195 } 4196 4197 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4198 unsigned long arg) 4199 { 4200 struct kvm_device *dev = filp->private_data; 4201 4202 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4203 return -EIO; 4204 4205 switch (ioctl) { 4206 case KVM_SET_DEVICE_ATTR: 4207 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4208 case KVM_GET_DEVICE_ATTR: 4209 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4210 case KVM_HAS_DEVICE_ATTR: 4211 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4212 default: 4213 if (dev->ops->ioctl) 4214 return dev->ops->ioctl(dev, ioctl, arg); 4215 4216 return -ENOTTY; 4217 } 4218 } 4219 4220 static int kvm_device_release(struct inode *inode, struct file *filp) 4221 { 4222 struct kvm_device *dev = filp->private_data; 4223 struct kvm *kvm = dev->kvm; 4224 4225 if (dev->ops->release) { 4226 mutex_lock(&kvm->lock); 4227 list_del(&dev->vm_node); 4228 dev->ops->release(dev); 4229 mutex_unlock(&kvm->lock); 4230 } 4231 4232 kvm_put_kvm(kvm); 4233 return 0; 4234 } 4235 4236 static const struct file_operations kvm_device_fops = { 4237 .unlocked_ioctl = kvm_device_ioctl, 4238 .release = kvm_device_release, 4239 KVM_COMPAT(kvm_device_ioctl), 4240 .mmap = kvm_device_mmap, 4241 }; 4242 4243 struct kvm_device *kvm_device_from_filp(struct file *filp) 4244 { 4245 if (filp->f_op != &kvm_device_fops) 4246 return NULL; 4247 4248 return filp->private_data; 4249 } 4250 4251 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4252 #ifdef CONFIG_KVM_MPIC 4253 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4254 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4255 #endif 4256 }; 4257 4258 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4259 { 4260 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4261 return -ENOSPC; 4262 4263 if (kvm_device_ops_table[type] != NULL) 4264 return -EEXIST; 4265 4266 kvm_device_ops_table[type] = ops; 4267 return 0; 4268 } 4269 4270 void kvm_unregister_device_ops(u32 type) 4271 { 4272 if (kvm_device_ops_table[type] != NULL) 4273 kvm_device_ops_table[type] = NULL; 4274 } 4275 4276 static int kvm_ioctl_create_device(struct kvm *kvm, 4277 struct kvm_create_device *cd) 4278 { 4279 const struct kvm_device_ops *ops = NULL; 4280 struct kvm_device *dev; 4281 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4282 int type; 4283 int ret; 4284 4285 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4286 return -ENODEV; 4287 4288 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4289 ops = kvm_device_ops_table[type]; 4290 if (ops == NULL) 4291 return -ENODEV; 4292 4293 if (test) 4294 return 0; 4295 4296 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4297 if (!dev) 4298 return -ENOMEM; 4299 4300 dev->ops = ops; 4301 dev->kvm = kvm; 4302 4303 mutex_lock(&kvm->lock); 4304 ret = ops->create(dev, type); 4305 if (ret < 0) { 4306 mutex_unlock(&kvm->lock); 4307 kfree(dev); 4308 return ret; 4309 } 4310 list_add(&dev->vm_node, &kvm->devices); 4311 mutex_unlock(&kvm->lock); 4312 4313 if (ops->init) 4314 ops->init(dev); 4315 4316 kvm_get_kvm(kvm); 4317 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4318 if (ret < 0) { 4319 kvm_put_kvm_no_destroy(kvm); 4320 mutex_lock(&kvm->lock); 4321 list_del(&dev->vm_node); 4322 if (ops->release) 4323 ops->release(dev); 4324 mutex_unlock(&kvm->lock); 4325 if (ops->destroy) 4326 ops->destroy(dev); 4327 return ret; 4328 } 4329 4330 cd->fd = ret; 4331 return 0; 4332 } 4333 4334 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4335 { 4336 switch (arg) { 4337 case KVM_CAP_USER_MEMORY: 4338 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4339 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4340 case KVM_CAP_INTERNAL_ERROR_DATA: 4341 #ifdef CONFIG_HAVE_KVM_MSI 4342 case KVM_CAP_SIGNAL_MSI: 4343 #endif 4344 #ifdef CONFIG_HAVE_KVM_IRQFD 4345 case KVM_CAP_IRQFD: 4346 case KVM_CAP_IRQFD_RESAMPLE: 4347 #endif 4348 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4349 case KVM_CAP_CHECK_EXTENSION_VM: 4350 case KVM_CAP_ENABLE_CAP_VM: 4351 case KVM_CAP_HALT_POLL: 4352 return 1; 4353 #ifdef CONFIG_KVM_MMIO 4354 case KVM_CAP_COALESCED_MMIO: 4355 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4356 case KVM_CAP_COALESCED_PIO: 4357 return 1; 4358 #endif 4359 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4360 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4361 return KVM_DIRTY_LOG_MANUAL_CAPS; 4362 #endif 4363 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4364 case KVM_CAP_IRQ_ROUTING: 4365 return KVM_MAX_IRQ_ROUTES; 4366 #endif 4367 #if KVM_ADDRESS_SPACE_NUM > 1 4368 case KVM_CAP_MULTI_ADDRESS_SPACE: 4369 return KVM_ADDRESS_SPACE_NUM; 4370 #endif 4371 case KVM_CAP_NR_MEMSLOTS: 4372 return KVM_USER_MEM_SLOTS; 4373 case KVM_CAP_DIRTY_LOG_RING: 4374 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4375 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4376 #else 4377 return 0; 4378 #endif 4379 case KVM_CAP_BINARY_STATS_FD: 4380 case KVM_CAP_SYSTEM_EVENT_DATA: 4381 return 1; 4382 default: 4383 break; 4384 } 4385 return kvm_vm_ioctl_check_extension(kvm, arg); 4386 } 4387 4388 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4389 { 4390 int r; 4391 4392 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4393 return -EINVAL; 4394 4395 /* the size should be power of 2 */ 4396 if (!size || (size & (size - 1))) 4397 return -EINVAL; 4398 4399 /* Should be bigger to keep the reserved entries, or a page */ 4400 if (size < kvm_dirty_ring_get_rsvd_entries() * 4401 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4402 return -EINVAL; 4403 4404 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4405 sizeof(struct kvm_dirty_gfn)) 4406 return -E2BIG; 4407 4408 /* We only allow it to set once */ 4409 if (kvm->dirty_ring_size) 4410 return -EINVAL; 4411 4412 mutex_lock(&kvm->lock); 4413 4414 if (kvm->created_vcpus) { 4415 /* We don't allow to change this value after vcpu created */ 4416 r = -EINVAL; 4417 } else { 4418 kvm->dirty_ring_size = size; 4419 r = 0; 4420 } 4421 4422 mutex_unlock(&kvm->lock); 4423 return r; 4424 } 4425 4426 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4427 { 4428 unsigned long i; 4429 struct kvm_vcpu *vcpu; 4430 int cleared = 0; 4431 4432 if (!kvm->dirty_ring_size) 4433 return -EINVAL; 4434 4435 mutex_lock(&kvm->slots_lock); 4436 4437 kvm_for_each_vcpu(i, vcpu, kvm) 4438 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4439 4440 mutex_unlock(&kvm->slots_lock); 4441 4442 if (cleared) 4443 kvm_flush_remote_tlbs(kvm); 4444 4445 return cleared; 4446 } 4447 4448 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4449 struct kvm_enable_cap *cap) 4450 { 4451 return -EINVAL; 4452 } 4453 4454 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4455 struct kvm_enable_cap *cap) 4456 { 4457 switch (cap->cap) { 4458 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4459 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4460 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4461 4462 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4463 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4464 4465 if (cap->flags || (cap->args[0] & ~allowed_options)) 4466 return -EINVAL; 4467 kvm->manual_dirty_log_protect = cap->args[0]; 4468 return 0; 4469 } 4470 #endif 4471 case KVM_CAP_HALT_POLL: { 4472 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4473 return -EINVAL; 4474 4475 kvm->max_halt_poll_ns = cap->args[0]; 4476 return 0; 4477 } 4478 case KVM_CAP_DIRTY_LOG_RING: 4479 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4480 default: 4481 return kvm_vm_ioctl_enable_cap(kvm, cap); 4482 } 4483 } 4484 4485 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4486 size_t size, loff_t *offset) 4487 { 4488 struct kvm *kvm = file->private_data; 4489 4490 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4491 &kvm_vm_stats_desc[0], &kvm->stat, 4492 sizeof(kvm->stat), user_buffer, size, offset); 4493 } 4494 4495 static const struct file_operations kvm_vm_stats_fops = { 4496 .read = kvm_vm_stats_read, 4497 .llseek = noop_llseek, 4498 }; 4499 4500 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4501 { 4502 int fd; 4503 struct file *file; 4504 4505 fd = get_unused_fd_flags(O_CLOEXEC); 4506 if (fd < 0) 4507 return fd; 4508 4509 file = anon_inode_getfile("kvm-vm-stats", 4510 &kvm_vm_stats_fops, kvm, O_RDONLY); 4511 if (IS_ERR(file)) { 4512 put_unused_fd(fd); 4513 return PTR_ERR(file); 4514 } 4515 file->f_mode |= FMODE_PREAD; 4516 fd_install(fd, file); 4517 4518 return fd; 4519 } 4520 4521 static long kvm_vm_ioctl(struct file *filp, 4522 unsigned int ioctl, unsigned long arg) 4523 { 4524 struct kvm *kvm = filp->private_data; 4525 void __user *argp = (void __user *)arg; 4526 int r; 4527 4528 if (kvm->mm != current->mm || kvm->vm_dead) 4529 return -EIO; 4530 switch (ioctl) { 4531 case KVM_CREATE_VCPU: 4532 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4533 break; 4534 case KVM_ENABLE_CAP: { 4535 struct kvm_enable_cap cap; 4536 4537 r = -EFAULT; 4538 if (copy_from_user(&cap, argp, sizeof(cap))) 4539 goto out; 4540 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4541 break; 4542 } 4543 case KVM_SET_USER_MEMORY_REGION: { 4544 struct kvm_userspace_memory_region kvm_userspace_mem; 4545 4546 r = -EFAULT; 4547 if (copy_from_user(&kvm_userspace_mem, argp, 4548 sizeof(kvm_userspace_mem))) 4549 goto out; 4550 4551 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4552 break; 4553 } 4554 case KVM_GET_DIRTY_LOG: { 4555 struct kvm_dirty_log log; 4556 4557 r = -EFAULT; 4558 if (copy_from_user(&log, argp, sizeof(log))) 4559 goto out; 4560 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4561 break; 4562 } 4563 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4564 case KVM_CLEAR_DIRTY_LOG: { 4565 struct kvm_clear_dirty_log log; 4566 4567 r = -EFAULT; 4568 if (copy_from_user(&log, argp, sizeof(log))) 4569 goto out; 4570 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4571 break; 4572 } 4573 #endif 4574 #ifdef CONFIG_KVM_MMIO 4575 case KVM_REGISTER_COALESCED_MMIO: { 4576 struct kvm_coalesced_mmio_zone zone; 4577 4578 r = -EFAULT; 4579 if (copy_from_user(&zone, argp, sizeof(zone))) 4580 goto out; 4581 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4582 break; 4583 } 4584 case KVM_UNREGISTER_COALESCED_MMIO: { 4585 struct kvm_coalesced_mmio_zone zone; 4586 4587 r = -EFAULT; 4588 if (copy_from_user(&zone, argp, sizeof(zone))) 4589 goto out; 4590 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4591 break; 4592 } 4593 #endif 4594 case KVM_IRQFD: { 4595 struct kvm_irqfd data; 4596 4597 r = -EFAULT; 4598 if (copy_from_user(&data, argp, sizeof(data))) 4599 goto out; 4600 r = kvm_irqfd(kvm, &data); 4601 break; 4602 } 4603 case KVM_IOEVENTFD: { 4604 struct kvm_ioeventfd data; 4605 4606 r = -EFAULT; 4607 if (copy_from_user(&data, argp, sizeof(data))) 4608 goto out; 4609 r = kvm_ioeventfd(kvm, &data); 4610 break; 4611 } 4612 #ifdef CONFIG_HAVE_KVM_MSI 4613 case KVM_SIGNAL_MSI: { 4614 struct kvm_msi msi; 4615 4616 r = -EFAULT; 4617 if (copy_from_user(&msi, argp, sizeof(msi))) 4618 goto out; 4619 r = kvm_send_userspace_msi(kvm, &msi); 4620 break; 4621 } 4622 #endif 4623 #ifdef __KVM_HAVE_IRQ_LINE 4624 case KVM_IRQ_LINE_STATUS: 4625 case KVM_IRQ_LINE: { 4626 struct kvm_irq_level irq_event; 4627 4628 r = -EFAULT; 4629 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4630 goto out; 4631 4632 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4633 ioctl == KVM_IRQ_LINE_STATUS); 4634 if (r) 4635 goto out; 4636 4637 r = -EFAULT; 4638 if (ioctl == KVM_IRQ_LINE_STATUS) { 4639 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4640 goto out; 4641 } 4642 4643 r = 0; 4644 break; 4645 } 4646 #endif 4647 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4648 case KVM_SET_GSI_ROUTING: { 4649 struct kvm_irq_routing routing; 4650 struct kvm_irq_routing __user *urouting; 4651 struct kvm_irq_routing_entry *entries = NULL; 4652 4653 r = -EFAULT; 4654 if (copy_from_user(&routing, argp, sizeof(routing))) 4655 goto out; 4656 r = -EINVAL; 4657 if (!kvm_arch_can_set_irq_routing(kvm)) 4658 goto out; 4659 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4660 goto out; 4661 if (routing.flags) 4662 goto out; 4663 if (routing.nr) { 4664 urouting = argp; 4665 entries = vmemdup_user(urouting->entries, 4666 array_size(sizeof(*entries), 4667 routing.nr)); 4668 if (IS_ERR(entries)) { 4669 r = PTR_ERR(entries); 4670 goto out; 4671 } 4672 } 4673 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4674 routing.flags); 4675 kvfree(entries); 4676 break; 4677 } 4678 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4679 case KVM_CREATE_DEVICE: { 4680 struct kvm_create_device cd; 4681 4682 r = -EFAULT; 4683 if (copy_from_user(&cd, argp, sizeof(cd))) 4684 goto out; 4685 4686 r = kvm_ioctl_create_device(kvm, &cd); 4687 if (r) 4688 goto out; 4689 4690 r = -EFAULT; 4691 if (copy_to_user(argp, &cd, sizeof(cd))) 4692 goto out; 4693 4694 r = 0; 4695 break; 4696 } 4697 case KVM_CHECK_EXTENSION: 4698 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4699 break; 4700 case KVM_RESET_DIRTY_RINGS: 4701 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4702 break; 4703 case KVM_GET_STATS_FD: 4704 r = kvm_vm_ioctl_get_stats_fd(kvm); 4705 break; 4706 default: 4707 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4708 } 4709 out: 4710 return r; 4711 } 4712 4713 #ifdef CONFIG_KVM_COMPAT 4714 struct compat_kvm_dirty_log { 4715 __u32 slot; 4716 __u32 padding1; 4717 union { 4718 compat_uptr_t dirty_bitmap; /* one bit per page */ 4719 __u64 padding2; 4720 }; 4721 }; 4722 4723 struct compat_kvm_clear_dirty_log { 4724 __u32 slot; 4725 __u32 num_pages; 4726 __u64 first_page; 4727 union { 4728 compat_uptr_t dirty_bitmap; /* one bit per page */ 4729 __u64 padding2; 4730 }; 4731 }; 4732 4733 static long kvm_vm_compat_ioctl(struct file *filp, 4734 unsigned int ioctl, unsigned long arg) 4735 { 4736 struct kvm *kvm = filp->private_data; 4737 int r; 4738 4739 if (kvm->mm != current->mm || kvm->vm_dead) 4740 return -EIO; 4741 switch (ioctl) { 4742 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4743 case KVM_CLEAR_DIRTY_LOG: { 4744 struct compat_kvm_clear_dirty_log compat_log; 4745 struct kvm_clear_dirty_log log; 4746 4747 if (copy_from_user(&compat_log, (void __user *)arg, 4748 sizeof(compat_log))) 4749 return -EFAULT; 4750 log.slot = compat_log.slot; 4751 log.num_pages = compat_log.num_pages; 4752 log.first_page = compat_log.first_page; 4753 log.padding2 = compat_log.padding2; 4754 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4755 4756 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4757 break; 4758 } 4759 #endif 4760 case KVM_GET_DIRTY_LOG: { 4761 struct compat_kvm_dirty_log compat_log; 4762 struct kvm_dirty_log log; 4763 4764 if (copy_from_user(&compat_log, (void __user *)arg, 4765 sizeof(compat_log))) 4766 return -EFAULT; 4767 log.slot = compat_log.slot; 4768 log.padding1 = compat_log.padding1; 4769 log.padding2 = compat_log.padding2; 4770 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4771 4772 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4773 break; 4774 } 4775 default: 4776 r = kvm_vm_ioctl(filp, ioctl, arg); 4777 } 4778 return r; 4779 } 4780 #endif 4781 4782 static const struct file_operations kvm_vm_fops = { 4783 .release = kvm_vm_release, 4784 .unlocked_ioctl = kvm_vm_ioctl, 4785 .llseek = noop_llseek, 4786 KVM_COMPAT(kvm_vm_compat_ioctl), 4787 }; 4788 4789 bool file_is_kvm(struct file *file) 4790 { 4791 return file && file->f_op == &kvm_vm_fops; 4792 } 4793 EXPORT_SYMBOL_GPL(file_is_kvm); 4794 4795 static int kvm_dev_ioctl_create_vm(unsigned long type) 4796 { 4797 int r; 4798 struct kvm *kvm; 4799 struct file *file; 4800 4801 kvm = kvm_create_vm(type); 4802 if (IS_ERR(kvm)) 4803 return PTR_ERR(kvm); 4804 #ifdef CONFIG_KVM_MMIO 4805 r = kvm_coalesced_mmio_init(kvm); 4806 if (r < 0) 4807 goto put_kvm; 4808 #endif 4809 r = get_unused_fd_flags(O_CLOEXEC); 4810 if (r < 0) 4811 goto put_kvm; 4812 4813 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4814 "kvm-%d", task_pid_nr(current)); 4815 4816 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4817 if (IS_ERR(file)) { 4818 put_unused_fd(r); 4819 r = PTR_ERR(file); 4820 goto put_kvm; 4821 } 4822 4823 /* 4824 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4825 * already set, with ->release() being kvm_vm_release(). In error 4826 * cases it will be called by the final fput(file) and will take 4827 * care of doing kvm_put_kvm(kvm). 4828 */ 4829 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4830 put_unused_fd(r); 4831 fput(file); 4832 return -ENOMEM; 4833 } 4834 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4835 4836 fd_install(r, file); 4837 return r; 4838 4839 put_kvm: 4840 kvm_put_kvm(kvm); 4841 return r; 4842 } 4843 4844 static long kvm_dev_ioctl(struct file *filp, 4845 unsigned int ioctl, unsigned long arg) 4846 { 4847 long r = -EINVAL; 4848 4849 switch (ioctl) { 4850 case KVM_GET_API_VERSION: 4851 if (arg) 4852 goto out; 4853 r = KVM_API_VERSION; 4854 break; 4855 case KVM_CREATE_VM: 4856 r = kvm_dev_ioctl_create_vm(arg); 4857 break; 4858 case KVM_CHECK_EXTENSION: 4859 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4860 break; 4861 case KVM_GET_VCPU_MMAP_SIZE: 4862 if (arg) 4863 goto out; 4864 r = PAGE_SIZE; /* struct kvm_run */ 4865 #ifdef CONFIG_X86 4866 r += PAGE_SIZE; /* pio data page */ 4867 #endif 4868 #ifdef CONFIG_KVM_MMIO 4869 r += PAGE_SIZE; /* coalesced mmio ring page */ 4870 #endif 4871 break; 4872 case KVM_TRACE_ENABLE: 4873 case KVM_TRACE_PAUSE: 4874 case KVM_TRACE_DISABLE: 4875 r = -EOPNOTSUPP; 4876 break; 4877 default: 4878 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4879 } 4880 out: 4881 return r; 4882 } 4883 4884 static struct file_operations kvm_chardev_ops = { 4885 .unlocked_ioctl = kvm_dev_ioctl, 4886 .llseek = noop_llseek, 4887 KVM_COMPAT(kvm_dev_ioctl), 4888 }; 4889 4890 static struct miscdevice kvm_dev = { 4891 KVM_MINOR, 4892 "kvm", 4893 &kvm_chardev_ops, 4894 }; 4895 4896 static void hardware_enable_nolock(void *junk) 4897 { 4898 int cpu = raw_smp_processor_id(); 4899 int r; 4900 4901 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4902 return; 4903 4904 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4905 4906 r = kvm_arch_hardware_enable(); 4907 4908 if (r) { 4909 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4910 atomic_inc(&hardware_enable_failed); 4911 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4912 } 4913 } 4914 4915 static int kvm_starting_cpu(unsigned int cpu) 4916 { 4917 raw_spin_lock(&kvm_count_lock); 4918 if (kvm_usage_count) 4919 hardware_enable_nolock(NULL); 4920 raw_spin_unlock(&kvm_count_lock); 4921 return 0; 4922 } 4923 4924 static void hardware_disable_nolock(void *junk) 4925 { 4926 int cpu = raw_smp_processor_id(); 4927 4928 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4929 return; 4930 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4931 kvm_arch_hardware_disable(); 4932 } 4933 4934 static int kvm_dying_cpu(unsigned int cpu) 4935 { 4936 raw_spin_lock(&kvm_count_lock); 4937 if (kvm_usage_count) 4938 hardware_disable_nolock(NULL); 4939 raw_spin_unlock(&kvm_count_lock); 4940 return 0; 4941 } 4942 4943 static void hardware_disable_all_nolock(void) 4944 { 4945 BUG_ON(!kvm_usage_count); 4946 4947 kvm_usage_count--; 4948 if (!kvm_usage_count) 4949 on_each_cpu(hardware_disable_nolock, NULL, 1); 4950 } 4951 4952 static void hardware_disable_all(void) 4953 { 4954 raw_spin_lock(&kvm_count_lock); 4955 hardware_disable_all_nolock(); 4956 raw_spin_unlock(&kvm_count_lock); 4957 } 4958 4959 static int hardware_enable_all(void) 4960 { 4961 int r = 0; 4962 4963 raw_spin_lock(&kvm_count_lock); 4964 4965 kvm_usage_count++; 4966 if (kvm_usage_count == 1) { 4967 atomic_set(&hardware_enable_failed, 0); 4968 on_each_cpu(hardware_enable_nolock, NULL, 1); 4969 4970 if (atomic_read(&hardware_enable_failed)) { 4971 hardware_disable_all_nolock(); 4972 r = -EBUSY; 4973 } 4974 } 4975 4976 raw_spin_unlock(&kvm_count_lock); 4977 4978 return r; 4979 } 4980 4981 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4982 void *v) 4983 { 4984 /* 4985 * Some (well, at least mine) BIOSes hang on reboot if 4986 * in vmx root mode. 4987 * 4988 * And Intel TXT required VMX off for all cpu when system shutdown. 4989 */ 4990 pr_info("kvm: exiting hardware virtualization\n"); 4991 kvm_rebooting = true; 4992 on_each_cpu(hardware_disable_nolock, NULL, 1); 4993 return NOTIFY_OK; 4994 } 4995 4996 static struct notifier_block kvm_reboot_notifier = { 4997 .notifier_call = kvm_reboot, 4998 .priority = 0, 4999 }; 5000 5001 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5002 { 5003 int i; 5004 5005 for (i = 0; i < bus->dev_count; i++) { 5006 struct kvm_io_device *pos = bus->range[i].dev; 5007 5008 kvm_iodevice_destructor(pos); 5009 } 5010 kfree(bus); 5011 } 5012 5013 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5014 const struct kvm_io_range *r2) 5015 { 5016 gpa_t addr1 = r1->addr; 5017 gpa_t addr2 = r2->addr; 5018 5019 if (addr1 < addr2) 5020 return -1; 5021 5022 /* If r2->len == 0, match the exact address. If r2->len != 0, 5023 * accept any overlapping write. Any order is acceptable for 5024 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5025 * we process all of them. 5026 */ 5027 if (r2->len) { 5028 addr1 += r1->len; 5029 addr2 += r2->len; 5030 } 5031 5032 if (addr1 > addr2) 5033 return 1; 5034 5035 return 0; 5036 } 5037 5038 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5039 { 5040 return kvm_io_bus_cmp(p1, p2); 5041 } 5042 5043 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5044 gpa_t addr, int len) 5045 { 5046 struct kvm_io_range *range, key; 5047 int off; 5048 5049 key = (struct kvm_io_range) { 5050 .addr = addr, 5051 .len = len, 5052 }; 5053 5054 range = bsearch(&key, bus->range, bus->dev_count, 5055 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5056 if (range == NULL) 5057 return -ENOENT; 5058 5059 off = range - bus->range; 5060 5061 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5062 off--; 5063 5064 return off; 5065 } 5066 5067 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5068 struct kvm_io_range *range, const void *val) 5069 { 5070 int idx; 5071 5072 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5073 if (idx < 0) 5074 return -EOPNOTSUPP; 5075 5076 while (idx < bus->dev_count && 5077 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5078 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5079 range->len, val)) 5080 return idx; 5081 idx++; 5082 } 5083 5084 return -EOPNOTSUPP; 5085 } 5086 5087 /* kvm_io_bus_write - called under kvm->slots_lock */ 5088 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5089 int len, const void *val) 5090 { 5091 struct kvm_io_bus *bus; 5092 struct kvm_io_range range; 5093 int r; 5094 5095 range = (struct kvm_io_range) { 5096 .addr = addr, 5097 .len = len, 5098 }; 5099 5100 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5101 if (!bus) 5102 return -ENOMEM; 5103 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5104 return r < 0 ? r : 0; 5105 } 5106 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5107 5108 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5109 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5110 gpa_t addr, int len, const void *val, long cookie) 5111 { 5112 struct kvm_io_bus *bus; 5113 struct kvm_io_range range; 5114 5115 range = (struct kvm_io_range) { 5116 .addr = addr, 5117 .len = len, 5118 }; 5119 5120 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5121 if (!bus) 5122 return -ENOMEM; 5123 5124 /* First try the device referenced by cookie. */ 5125 if ((cookie >= 0) && (cookie < bus->dev_count) && 5126 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5127 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5128 val)) 5129 return cookie; 5130 5131 /* 5132 * cookie contained garbage; fall back to search and return the 5133 * correct cookie value. 5134 */ 5135 return __kvm_io_bus_write(vcpu, bus, &range, val); 5136 } 5137 5138 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5139 struct kvm_io_range *range, void *val) 5140 { 5141 int idx; 5142 5143 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5144 if (idx < 0) 5145 return -EOPNOTSUPP; 5146 5147 while (idx < bus->dev_count && 5148 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5149 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5150 range->len, val)) 5151 return idx; 5152 idx++; 5153 } 5154 5155 return -EOPNOTSUPP; 5156 } 5157 5158 /* kvm_io_bus_read - called under kvm->slots_lock */ 5159 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5160 int len, void *val) 5161 { 5162 struct kvm_io_bus *bus; 5163 struct kvm_io_range range; 5164 int r; 5165 5166 range = (struct kvm_io_range) { 5167 .addr = addr, 5168 .len = len, 5169 }; 5170 5171 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5172 if (!bus) 5173 return -ENOMEM; 5174 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5175 return r < 0 ? r : 0; 5176 } 5177 5178 /* Caller must hold slots_lock. */ 5179 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5180 int len, struct kvm_io_device *dev) 5181 { 5182 int i; 5183 struct kvm_io_bus *new_bus, *bus; 5184 struct kvm_io_range range; 5185 5186 bus = kvm_get_bus(kvm, bus_idx); 5187 if (!bus) 5188 return -ENOMEM; 5189 5190 /* exclude ioeventfd which is limited by maximum fd */ 5191 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5192 return -ENOSPC; 5193 5194 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5195 GFP_KERNEL_ACCOUNT); 5196 if (!new_bus) 5197 return -ENOMEM; 5198 5199 range = (struct kvm_io_range) { 5200 .addr = addr, 5201 .len = len, 5202 .dev = dev, 5203 }; 5204 5205 for (i = 0; i < bus->dev_count; i++) 5206 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5207 break; 5208 5209 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5210 new_bus->dev_count++; 5211 new_bus->range[i] = range; 5212 memcpy(new_bus->range + i + 1, bus->range + i, 5213 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5214 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5215 synchronize_srcu_expedited(&kvm->srcu); 5216 kfree(bus); 5217 5218 return 0; 5219 } 5220 5221 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5222 struct kvm_io_device *dev) 5223 { 5224 int i, j; 5225 struct kvm_io_bus *new_bus, *bus; 5226 5227 lockdep_assert_held(&kvm->slots_lock); 5228 5229 bus = kvm_get_bus(kvm, bus_idx); 5230 if (!bus) 5231 return 0; 5232 5233 for (i = 0; i < bus->dev_count; i++) { 5234 if (bus->range[i].dev == dev) { 5235 break; 5236 } 5237 } 5238 5239 if (i == bus->dev_count) 5240 return 0; 5241 5242 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5243 GFP_KERNEL_ACCOUNT); 5244 if (new_bus) { 5245 memcpy(new_bus, bus, struct_size(bus, range, i)); 5246 new_bus->dev_count--; 5247 memcpy(new_bus->range + i, bus->range + i + 1, 5248 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5249 } 5250 5251 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5252 synchronize_srcu_expedited(&kvm->srcu); 5253 5254 /* Destroy the old bus _after_ installing the (null) bus. */ 5255 if (!new_bus) { 5256 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5257 for (j = 0; j < bus->dev_count; j++) { 5258 if (j == i) 5259 continue; 5260 kvm_iodevice_destructor(bus->range[j].dev); 5261 } 5262 } 5263 5264 kfree(bus); 5265 return new_bus ? 0 : -ENOMEM; 5266 } 5267 5268 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5269 gpa_t addr) 5270 { 5271 struct kvm_io_bus *bus; 5272 int dev_idx, srcu_idx; 5273 struct kvm_io_device *iodev = NULL; 5274 5275 srcu_idx = srcu_read_lock(&kvm->srcu); 5276 5277 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5278 if (!bus) 5279 goto out_unlock; 5280 5281 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5282 if (dev_idx < 0) 5283 goto out_unlock; 5284 5285 iodev = bus->range[dev_idx].dev; 5286 5287 out_unlock: 5288 srcu_read_unlock(&kvm->srcu, srcu_idx); 5289 5290 return iodev; 5291 } 5292 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5293 5294 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5295 int (*get)(void *, u64 *), int (*set)(void *, u64), 5296 const char *fmt) 5297 { 5298 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5299 inode->i_private; 5300 5301 /* 5302 * The debugfs files are a reference to the kvm struct which 5303 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5304 * avoids the race between open and the removal of the debugfs directory. 5305 */ 5306 if (!kvm_get_kvm_safe(stat_data->kvm)) 5307 return -ENOENT; 5308 5309 if (simple_attr_open(inode, file, get, 5310 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5311 ? set : NULL, 5312 fmt)) { 5313 kvm_put_kvm(stat_data->kvm); 5314 return -ENOMEM; 5315 } 5316 5317 return 0; 5318 } 5319 5320 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5321 { 5322 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5323 inode->i_private; 5324 5325 simple_attr_release(inode, file); 5326 kvm_put_kvm(stat_data->kvm); 5327 5328 return 0; 5329 } 5330 5331 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5332 { 5333 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5334 5335 return 0; 5336 } 5337 5338 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5339 { 5340 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5341 5342 return 0; 5343 } 5344 5345 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5346 { 5347 unsigned long i; 5348 struct kvm_vcpu *vcpu; 5349 5350 *val = 0; 5351 5352 kvm_for_each_vcpu(i, vcpu, kvm) 5353 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5354 5355 return 0; 5356 } 5357 5358 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5359 { 5360 unsigned long i; 5361 struct kvm_vcpu *vcpu; 5362 5363 kvm_for_each_vcpu(i, vcpu, kvm) 5364 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5365 5366 return 0; 5367 } 5368 5369 static int kvm_stat_data_get(void *data, u64 *val) 5370 { 5371 int r = -EFAULT; 5372 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5373 5374 switch (stat_data->kind) { 5375 case KVM_STAT_VM: 5376 r = kvm_get_stat_per_vm(stat_data->kvm, 5377 stat_data->desc->desc.offset, val); 5378 break; 5379 case KVM_STAT_VCPU: 5380 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5381 stat_data->desc->desc.offset, val); 5382 break; 5383 } 5384 5385 return r; 5386 } 5387 5388 static int kvm_stat_data_clear(void *data, u64 val) 5389 { 5390 int r = -EFAULT; 5391 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5392 5393 if (val) 5394 return -EINVAL; 5395 5396 switch (stat_data->kind) { 5397 case KVM_STAT_VM: 5398 r = kvm_clear_stat_per_vm(stat_data->kvm, 5399 stat_data->desc->desc.offset); 5400 break; 5401 case KVM_STAT_VCPU: 5402 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5403 stat_data->desc->desc.offset); 5404 break; 5405 } 5406 5407 return r; 5408 } 5409 5410 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5411 { 5412 __simple_attr_check_format("%llu\n", 0ull); 5413 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5414 kvm_stat_data_clear, "%llu\n"); 5415 } 5416 5417 static const struct file_operations stat_fops_per_vm = { 5418 .owner = THIS_MODULE, 5419 .open = kvm_stat_data_open, 5420 .release = kvm_debugfs_release, 5421 .read = simple_attr_read, 5422 .write = simple_attr_write, 5423 .llseek = no_llseek, 5424 }; 5425 5426 static int vm_stat_get(void *_offset, u64 *val) 5427 { 5428 unsigned offset = (long)_offset; 5429 struct kvm *kvm; 5430 u64 tmp_val; 5431 5432 *val = 0; 5433 mutex_lock(&kvm_lock); 5434 list_for_each_entry(kvm, &vm_list, vm_list) { 5435 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5436 *val += tmp_val; 5437 } 5438 mutex_unlock(&kvm_lock); 5439 return 0; 5440 } 5441 5442 static int vm_stat_clear(void *_offset, u64 val) 5443 { 5444 unsigned offset = (long)_offset; 5445 struct kvm *kvm; 5446 5447 if (val) 5448 return -EINVAL; 5449 5450 mutex_lock(&kvm_lock); 5451 list_for_each_entry(kvm, &vm_list, vm_list) { 5452 kvm_clear_stat_per_vm(kvm, offset); 5453 } 5454 mutex_unlock(&kvm_lock); 5455 5456 return 0; 5457 } 5458 5459 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5460 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5461 5462 static int vcpu_stat_get(void *_offset, u64 *val) 5463 { 5464 unsigned offset = (long)_offset; 5465 struct kvm *kvm; 5466 u64 tmp_val; 5467 5468 *val = 0; 5469 mutex_lock(&kvm_lock); 5470 list_for_each_entry(kvm, &vm_list, vm_list) { 5471 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5472 *val += tmp_val; 5473 } 5474 mutex_unlock(&kvm_lock); 5475 return 0; 5476 } 5477 5478 static int vcpu_stat_clear(void *_offset, u64 val) 5479 { 5480 unsigned offset = (long)_offset; 5481 struct kvm *kvm; 5482 5483 if (val) 5484 return -EINVAL; 5485 5486 mutex_lock(&kvm_lock); 5487 list_for_each_entry(kvm, &vm_list, vm_list) { 5488 kvm_clear_stat_per_vcpu(kvm, offset); 5489 } 5490 mutex_unlock(&kvm_lock); 5491 5492 return 0; 5493 } 5494 5495 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5496 "%llu\n"); 5497 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5498 5499 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5500 { 5501 struct kobj_uevent_env *env; 5502 unsigned long long created, active; 5503 5504 if (!kvm_dev.this_device || !kvm) 5505 return; 5506 5507 mutex_lock(&kvm_lock); 5508 if (type == KVM_EVENT_CREATE_VM) { 5509 kvm_createvm_count++; 5510 kvm_active_vms++; 5511 } else if (type == KVM_EVENT_DESTROY_VM) { 5512 kvm_active_vms--; 5513 } 5514 created = kvm_createvm_count; 5515 active = kvm_active_vms; 5516 mutex_unlock(&kvm_lock); 5517 5518 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5519 if (!env) 5520 return; 5521 5522 add_uevent_var(env, "CREATED=%llu", created); 5523 add_uevent_var(env, "COUNT=%llu", active); 5524 5525 if (type == KVM_EVENT_CREATE_VM) { 5526 add_uevent_var(env, "EVENT=create"); 5527 kvm->userspace_pid = task_pid_nr(current); 5528 } else if (type == KVM_EVENT_DESTROY_VM) { 5529 add_uevent_var(env, "EVENT=destroy"); 5530 } 5531 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5532 5533 if (!IS_ERR(kvm->debugfs_dentry)) { 5534 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5535 5536 if (p) { 5537 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5538 if (!IS_ERR(tmp)) 5539 add_uevent_var(env, "STATS_PATH=%s", tmp); 5540 kfree(p); 5541 } 5542 } 5543 /* no need for checks, since we are adding at most only 5 keys */ 5544 env->envp[env->envp_idx++] = NULL; 5545 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5546 kfree(env); 5547 } 5548 5549 static void kvm_init_debug(void) 5550 { 5551 const struct file_operations *fops; 5552 const struct _kvm_stats_desc *pdesc; 5553 int i; 5554 5555 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5556 5557 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5558 pdesc = &kvm_vm_stats_desc[i]; 5559 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5560 fops = &vm_stat_fops; 5561 else 5562 fops = &vm_stat_readonly_fops; 5563 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5564 kvm_debugfs_dir, 5565 (void *)(long)pdesc->desc.offset, fops); 5566 } 5567 5568 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5569 pdesc = &kvm_vcpu_stats_desc[i]; 5570 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5571 fops = &vcpu_stat_fops; 5572 else 5573 fops = &vcpu_stat_readonly_fops; 5574 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5575 kvm_debugfs_dir, 5576 (void *)(long)pdesc->desc.offset, fops); 5577 } 5578 } 5579 5580 static int kvm_suspend(void) 5581 { 5582 if (kvm_usage_count) 5583 hardware_disable_nolock(NULL); 5584 return 0; 5585 } 5586 5587 static void kvm_resume(void) 5588 { 5589 if (kvm_usage_count) { 5590 lockdep_assert_not_held(&kvm_count_lock); 5591 hardware_enable_nolock(NULL); 5592 } 5593 } 5594 5595 static struct syscore_ops kvm_syscore_ops = { 5596 .suspend = kvm_suspend, 5597 .resume = kvm_resume, 5598 }; 5599 5600 static inline 5601 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5602 { 5603 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5604 } 5605 5606 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5607 { 5608 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5609 5610 WRITE_ONCE(vcpu->preempted, false); 5611 WRITE_ONCE(vcpu->ready, false); 5612 5613 __this_cpu_write(kvm_running_vcpu, vcpu); 5614 kvm_arch_sched_in(vcpu, cpu); 5615 kvm_arch_vcpu_load(vcpu, cpu); 5616 } 5617 5618 static void kvm_sched_out(struct preempt_notifier *pn, 5619 struct task_struct *next) 5620 { 5621 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5622 5623 if (current->on_rq) { 5624 WRITE_ONCE(vcpu->preempted, true); 5625 WRITE_ONCE(vcpu->ready, true); 5626 } 5627 kvm_arch_vcpu_put(vcpu); 5628 __this_cpu_write(kvm_running_vcpu, NULL); 5629 } 5630 5631 /** 5632 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5633 * 5634 * We can disable preemption locally around accessing the per-CPU variable, 5635 * and use the resolved vcpu pointer after enabling preemption again, 5636 * because even if the current thread is migrated to another CPU, reading 5637 * the per-CPU value later will give us the same value as we update the 5638 * per-CPU variable in the preempt notifier handlers. 5639 */ 5640 struct kvm_vcpu *kvm_get_running_vcpu(void) 5641 { 5642 struct kvm_vcpu *vcpu; 5643 5644 preempt_disable(); 5645 vcpu = __this_cpu_read(kvm_running_vcpu); 5646 preempt_enable(); 5647 5648 return vcpu; 5649 } 5650 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5651 5652 /** 5653 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5654 */ 5655 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5656 { 5657 return &kvm_running_vcpu; 5658 } 5659