~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/virt/kvm/kvm_main.c

Version: ~ [ linux-6.4-rc3 ] ~ [ linux-6.3.4 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.30 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.113 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.180 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.243 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.283 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.315 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Kernel-based Virtual Machine driver for Linux
  4  *
  5  * This module enables machines with Intel VT-x extensions to run virtual
  6  * machines without emulation or binary translation.
  7  *
  8  * Copyright (C) 2006 Qumranet, Inc.
  9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 10  *
 11  * Authors:
 12  *   Avi Kivity   <avi@qumranet.com>
 13  *   Yaniv Kamay  <yaniv@qumranet.com>
 14  */
 15 
 16 #include <kvm/iodev.h>
 17 
 18 #include <linux/kvm_host.h>
 19 #include <linux/kvm.h>
 20 #include <linux/module.h>
 21 #include <linux/errno.h>
 22 #include <linux/percpu.h>
 23 #include <linux/mm.h>
 24 #include <linux/miscdevice.h>
 25 #include <linux/vmalloc.h>
 26 #include <linux/reboot.h>
 27 #include <linux/debugfs.h>
 28 #include <linux/highmem.h>
 29 #include <linux/file.h>
 30 #include <linux/syscore_ops.h>
 31 #include <linux/cpu.h>
 32 #include <linux/sched/signal.h>
 33 #include <linux/sched/mm.h>
 34 #include <linux/sched/stat.h>
 35 #include <linux/cpumask.h>
 36 #include <linux/smp.h>
 37 #include <linux/anon_inodes.h>
 38 #include <linux/profile.h>
 39 #include <linux/kvm_para.h>
 40 #include <linux/pagemap.h>
 41 #include <linux/mman.h>
 42 #include <linux/swap.h>
 43 #include <linux/bitops.h>
 44 #include <linux/spinlock.h>
 45 #include <linux/compat.h>
 46 #include <linux/srcu.h>
 47 #include <linux/hugetlb.h>
 48 #include <linux/slab.h>
 49 #include <linux/sort.h>
 50 #include <linux/bsearch.h>
 51 #include <linux/io.h>
 52 #include <linux/lockdep.h>
 53 #include <linux/kthread.h>
 54 #include <linux/suspend.h>
 55 
 56 #include <asm/processor.h>
 57 #include <asm/ioctl.h>
 58 #include <linux/uaccess.h>
 59 
 60 #include "coalesced_mmio.h"
 61 #include "async_pf.h"
 62 #include "kvm_mm.h"
 63 #include "vfio.h"
 64 
 65 #define CREATE_TRACE_POINTS
 66 #include <trace/events/kvm.h>
 67 
 68 #include <linux/kvm_dirty_ring.h>
 69 
 70 /* Worst case buffer size needed for holding an integer. */
 71 #define ITOA_MAX_LEN 12
 72 
 73 MODULE_AUTHOR("Qumranet");
 74 MODULE_LICENSE("GPL");
 75 
 76 /* Architectures should define their poll value according to the halt latency */
 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
 78 module_param(halt_poll_ns, uint, 0644);
 79 EXPORT_SYMBOL_GPL(halt_poll_ns);
 80 
 81 /* Default doubles per-vcpu halt_poll_ns. */
 82 unsigned int halt_poll_ns_grow = 2;
 83 module_param(halt_poll_ns_grow, uint, 0644);
 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
 85 
 86 /* The start value to grow halt_poll_ns from */
 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
 88 module_param(halt_poll_ns_grow_start, uint, 0644);
 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
 90 
 91 /* Default resets per-vcpu halt_poll_ns . */
 92 unsigned int halt_poll_ns_shrink;
 93 module_param(halt_poll_ns_shrink, uint, 0644);
 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
 95 
 96 /*
 97  * Ordering of locks:
 98  *
 99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static struct file_operations kvm_chardev_ops;
121 
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123                            unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126                                   unsigned long arg);
127 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137                                 unsigned long arg) { return -EINVAL; }
138 
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141         return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
144                         .open           = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148 
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150 
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153 
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159 
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161 
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163                                                    unsigned long start, unsigned long end)
164 {
165 }
166 
167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170 
171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
172 {
173         /*
174          * The metadata used by is_zone_device_page() to determine whether or
175          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176          * the device has been pinned, e.g. by get_user_pages().  WARN if the
177          * page_count() is zero to help detect bad usage of this helper.
178          */
179         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
180                 return false;
181 
182         return is_zone_device_page(pfn_to_page(pfn));
183 }
184 
185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
186 {
187         /*
188          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
189          * perspective they are "normal" pages, albeit with slightly different
190          * usage rules.
191          */
192         if (pfn_valid(pfn))
193                 return PageReserved(pfn_to_page(pfn)) &&
194                        !is_zero_pfn(pfn) &&
195                        !kvm_is_zone_device_pfn(pfn);
196 
197         return true;
198 }
199 
200 /*
201  * Switches to specified vcpu, until a matching vcpu_put()
202  */
203 void vcpu_load(struct kvm_vcpu *vcpu)
204 {
205         int cpu = get_cpu();
206 
207         __this_cpu_write(kvm_running_vcpu, vcpu);
208         preempt_notifier_register(&vcpu->preempt_notifier);
209         kvm_arch_vcpu_load(vcpu, cpu);
210         put_cpu();
211 }
212 EXPORT_SYMBOL_GPL(vcpu_load);
213 
214 void vcpu_put(struct kvm_vcpu *vcpu)
215 {
216         preempt_disable();
217         kvm_arch_vcpu_put(vcpu);
218         preempt_notifier_unregister(&vcpu->preempt_notifier);
219         __this_cpu_write(kvm_running_vcpu, NULL);
220         preempt_enable();
221 }
222 EXPORT_SYMBOL_GPL(vcpu_put);
223 
224 /* TODO: merge with kvm_arch_vcpu_should_kick */
225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
226 {
227         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
228 
229         /*
230          * We need to wait for the VCPU to reenable interrupts and get out of
231          * READING_SHADOW_PAGE_TABLES mode.
232          */
233         if (req & KVM_REQUEST_WAIT)
234                 return mode != OUTSIDE_GUEST_MODE;
235 
236         /*
237          * Need to kick a running VCPU, but otherwise there is nothing to do.
238          */
239         return mode == IN_GUEST_MODE;
240 }
241 
242 static void ack_flush(void *_completed)
243 {
244 }
245 
246 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
247 {
248         if (cpumask_empty(cpus))
249                 return false;
250 
251         smp_call_function_many(cpus, ack_flush, NULL, wait);
252         return true;
253 }
254 
255 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
256                                   struct cpumask *tmp, int current_cpu)
257 {
258         int cpu;
259 
260         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
261                 __kvm_make_request(req, vcpu);
262 
263         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
264                 return;
265 
266         /*
267          * Note, the vCPU could get migrated to a different pCPU at any point
268          * after kvm_request_needs_ipi(), which could result in sending an IPI
269          * to the previous pCPU.  But, that's OK because the purpose of the IPI
270          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
271          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
272          * after this point is also OK, as the requirement is only that KVM wait
273          * for vCPUs that were reading SPTEs _before_ any changes were
274          * finalized. See kvm_vcpu_kick() for more details on handling requests.
275          */
276         if (kvm_request_needs_ipi(vcpu, req)) {
277                 cpu = READ_ONCE(vcpu->cpu);
278                 if (cpu != -1 && cpu != current_cpu)
279                         __cpumask_set_cpu(cpu, tmp);
280         }
281 }
282 
283 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
284                                  unsigned long *vcpu_bitmap)
285 {
286         struct kvm_vcpu *vcpu;
287         struct cpumask *cpus;
288         int i, me;
289         bool called;
290 
291         me = get_cpu();
292 
293         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
294         cpumask_clear(cpus);
295 
296         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
297                 vcpu = kvm_get_vcpu(kvm, i);
298                 if (!vcpu)
299                         continue;
300                 kvm_make_vcpu_request(vcpu, req, cpus, me);
301         }
302 
303         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
304         put_cpu();
305 
306         return called;
307 }
308 
309 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
310                                       struct kvm_vcpu *except)
311 {
312         struct kvm_vcpu *vcpu;
313         struct cpumask *cpus;
314         unsigned long i;
315         bool called;
316         int me;
317 
318         me = get_cpu();
319 
320         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
321         cpumask_clear(cpus);
322 
323         kvm_for_each_vcpu(i, vcpu, kvm) {
324                 if (vcpu == except)
325                         continue;
326                 kvm_make_vcpu_request(vcpu, req, cpus, me);
327         }
328 
329         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
330         put_cpu();
331 
332         return called;
333 }
334 
335 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
336 {
337         return kvm_make_all_cpus_request_except(kvm, req, NULL);
338 }
339 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
340 
341 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
342 void kvm_flush_remote_tlbs(struct kvm *kvm)
343 {
344         ++kvm->stat.generic.remote_tlb_flush_requests;
345 
346         /*
347          * We want to publish modifications to the page tables before reading
348          * mode. Pairs with a memory barrier in arch-specific code.
349          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
350          * and smp_mb in walk_shadow_page_lockless_begin/end.
351          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
352          *
353          * There is already an smp_mb__after_atomic() before
354          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
355          * barrier here.
356          */
357         if (!kvm_arch_flush_remote_tlb(kvm)
358             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
359                 ++kvm->stat.generic.remote_tlb_flush;
360 }
361 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
362 #endif
363 
364 static void kvm_flush_shadow_all(struct kvm *kvm)
365 {
366         kvm_arch_flush_shadow_all(kvm);
367         kvm_arch_guest_memory_reclaimed(kvm);
368 }
369 
370 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
371 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
372                                                gfp_t gfp_flags)
373 {
374         gfp_flags |= mc->gfp_zero;
375 
376         if (mc->kmem_cache)
377                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
378         else
379                 return (void *)__get_free_page(gfp_flags);
380 }
381 
382 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
383 {
384         void *obj;
385 
386         if (mc->nobjs >= min)
387                 return 0;
388         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
389                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
390                 if (!obj)
391                         return mc->nobjs >= min ? 0 : -ENOMEM;
392                 mc->objects[mc->nobjs++] = obj;
393         }
394         return 0;
395 }
396 
397 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
398 {
399         return mc->nobjs;
400 }
401 
402 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
403 {
404         while (mc->nobjs) {
405                 if (mc->kmem_cache)
406                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
407                 else
408                         free_page((unsigned long)mc->objects[--mc->nobjs]);
409         }
410 }
411 
412 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
413 {
414         void *p;
415 
416         if (WARN_ON(!mc->nobjs))
417                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
418         else
419                 p = mc->objects[--mc->nobjs];
420         BUG_ON(!p);
421         return p;
422 }
423 #endif
424 
425 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
426 {
427         mutex_init(&vcpu->mutex);
428         vcpu->cpu = -1;
429         vcpu->kvm = kvm;
430         vcpu->vcpu_id = id;
431         vcpu->pid = NULL;
432 #ifndef __KVM_HAVE_ARCH_WQP
433         rcuwait_init(&vcpu->wait);
434 #endif
435         kvm_async_pf_vcpu_init(vcpu);
436 
437         kvm_vcpu_set_in_spin_loop(vcpu, false);
438         kvm_vcpu_set_dy_eligible(vcpu, false);
439         vcpu->preempted = false;
440         vcpu->ready = false;
441         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
442         vcpu->last_used_slot = NULL;
443 }
444 
445 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
446 {
447         kvm_arch_vcpu_destroy(vcpu);
448         kvm_dirty_ring_free(&vcpu->dirty_ring);
449 
450         /*
451          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
452          * the vcpu->pid pointer, and at destruction time all file descriptors
453          * are already gone.
454          */
455         put_pid(rcu_dereference_protected(vcpu->pid, 1));
456 
457         free_page((unsigned long)vcpu->run);
458         kmem_cache_free(kvm_vcpu_cache, vcpu);
459 }
460 
461 void kvm_destroy_vcpus(struct kvm *kvm)
462 {
463         unsigned long i;
464         struct kvm_vcpu *vcpu;
465 
466         kvm_for_each_vcpu(i, vcpu, kvm) {
467                 kvm_vcpu_destroy(vcpu);
468                 xa_erase(&kvm->vcpu_array, i);
469         }
470 
471         atomic_set(&kvm->online_vcpus, 0);
472 }
473 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
474 
475 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
476 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
477 {
478         return container_of(mn, struct kvm, mmu_notifier);
479 }
480 
481 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
482                                               struct mm_struct *mm,
483                                               unsigned long start, unsigned long end)
484 {
485         struct kvm *kvm = mmu_notifier_to_kvm(mn);
486         int idx;
487 
488         idx = srcu_read_lock(&kvm->srcu);
489         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
490         srcu_read_unlock(&kvm->srcu, idx);
491 }
492 
493 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
494 
495 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
496                              unsigned long end);
497 
498 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
499 
500 struct kvm_hva_range {
501         unsigned long start;
502         unsigned long end;
503         pte_t pte;
504         hva_handler_t handler;
505         on_lock_fn_t on_lock;
506         on_unlock_fn_t on_unlock;
507         bool flush_on_ret;
508         bool may_block;
509 };
510 
511 /*
512  * Use a dedicated stub instead of NULL to indicate that there is no callback
513  * function/handler.  The compiler technically can't guarantee that a real
514  * function will have a non-zero address, and so it will generate code to
515  * check for !NULL, whereas comparing against a stub will be elided at compile
516  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
517  */
518 static void kvm_null_fn(void)
519 {
520 
521 }
522 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
523 
524 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
525 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
526         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
527              node;                                                           \
528              node = interval_tree_iter_next(node, start, last))      \
529 
530 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
531                                                   const struct kvm_hva_range *range)
532 {
533         bool ret = false, locked = false;
534         struct kvm_gfn_range gfn_range;
535         struct kvm_memory_slot *slot;
536         struct kvm_memslots *slots;
537         int i, idx;
538 
539         if (WARN_ON_ONCE(range->end <= range->start))
540                 return 0;
541 
542         /* A null handler is allowed if and only if on_lock() is provided. */
543         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
544                          IS_KVM_NULL_FN(range->handler)))
545                 return 0;
546 
547         idx = srcu_read_lock(&kvm->srcu);
548 
549         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
550                 struct interval_tree_node *node;
551 
552                 slots = __kvm_memslots(kvm, i);
553                 kvm_for_each_memslot_in_hva_range(node, slots,
554                                                   range->start, range->end - 1) {
555                         unsigned long hva_start, hva_end;
556 
557                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
558                         hva_start = max(range->start, slot->userspace_addr);
559                         hva_end = min(range->end, slot->userspace_addr +
560                                                   (slot->npages << PAGE_SHIFT));
561 
562                         /*
563                          * To optimize for the likely case where the address
564                          * range is covered by zero or one memslots, don't
565                          * bother making these conditional (to avoid writes on
566                          * the second or later invocation of the handler).
567                          */
568                         gfn_range.pte = range->pte;
569                         gfn_range.may_block = range->may_block;
570 
571                         /*
572                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
573                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
574                          */
575                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
576                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
577                         gfn_range.slot = slot;
578 
579                         if (!locked) {
580                                 locked = true;
581                                 KVM_MMU_LOCK(kvm);
582                                 if (!IS_KVM_NULL_FN(range->on_lock))
583                                         range->on_lock(kvm, range->start, range->end);
584                                 if (IS_KVM_NULL_FN(range->handler))
585                                         break;
586                         }
587                         ret |= range->handler(kvm, &gfn_range);
588                 }
589         }
590 
591         if (range->flush_on_ret && ret)
592                 kvm_flush_remote_tlbs(kvm);
593 
594         if (locked) {
595                 KVM_MMU_UNLOCK(kvm);
596                 if (!IS_KVM_NULL_FN(range->on_unlock))
597                         range->on_unlock(kvm);
598         }
599 
600         srcu_read_unlock(&kvm->srcu, idx);
601 
602         /* The notifiers are averse to booleans. :-( */
603         return (int)ret;
604 }
605 
606 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
607                                                 unsigned long start,
608                                                 unsigned long end,
609                                                 pte_t pte,
610                                                 hva_handler_t handler)
611 {
612         struct kvm *kvm = mmu_notifier_to_kvm(mn);
613         const struct kvm_hva_range range = {
614                 .start          = start,
615                 .end            = end,
616                 .pte            = pte,
617                 .handler        = handler,
618                 .on_lock        = (void *)kvm_null_fn,
619                 .on_unlock      = (void *)kvm_null_fn,
620                 .flush_on_ret   = true,
621                 .may_block      = false,
622         };
623 
624         return __kvm_handle_hva_range(kvm, &range);
625 }
626 
627 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
628                                                          unsigned long start,
629                                                          unsigned long end,
630                                                          hva_handler_t handler)
631 {
632         struct kvm *kvm = mmu_notifier_to_kvm(mn);
633         const struct kvm_hva_range range = {
634                 .start          = start,
635                 .end            = end,
636                 .pte            = __pte(0),
637                 .handler        = handler,
638                 .on_lock        = (void *)kvm_null_fn,
639                 .on_unlock      = (void *)kvm_null_fn,
640                 .flush_on_ret   = false,
641                 .may_block      = false,
642         };
643 
644         return __kvm_handle_hva_range(kvm, &range);
645 }
646 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
647                                         struct mm_struct *mm,
648                                         unsigned long address,
649                                         pte_t pte)
650 {
651         struct kvm *kvm = mmu_notifier_to_kvm(mn);
652 
653         trace_kvm_set_spte_hva(address);
654 
655         /*
656          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
657          * If mmu_notifier_count is zero, then no in-progress invalidations,
658          * including this one, found a relevant memslot at start(); rechecking
659          * memslots here is unnecessary.  Note, a false positive (count elevated
660          * by a different invalidation) is sub-optimal but functionally ok.
661          */
662         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
663         if (!READ_ONCE(kvm->mmu_notifier_count))
664                 return;
665 
666         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
667 }
668 
669 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
670                                    unsigned long end)
671 {
672         /*
673          * The count increase must become visible at unlock time as no
674          * spte can be established without taking the mmu_lock and
675          * count is also read inside the mmu_lock critical section.
676          */
677         kvm->mmu_notifier_count++;
678         if (likely(kvm->mmu_notifier_count == 1)) {
679                 kvm->mmu_notifier_range_start = start;
680                 kvm->mmu_notifier_range_end = end;
681         } else {
682                 /*
683                  * Fully tracking multiple concurrent ranges has diminishing
684                  * returns. Keep things simple and just find the minimal range
685                  * which includes the current and new ranges. As there won't be
686                  * enough information to subtract a range after its invalidate
687                  * completes, any ranges invalidated concurrently will
688                  * accumulate and persist until all outstanding invalidates
689                  * complete.
690                  */
691                 kvm->mmu_notifier_range_start =
692                         min(kvm->mmu_notifier_range_start, start);
693                 kvm->mmu_notifier_range_end =
694                         max(kvm->mmu_notifier_range_end, end);
695         }
696 }
697 
698 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
699                                         const struct mmu_notifier_range *range)
700 {
701         struct kvm *kvm = mmu_notifier_to_kvm(mn);
702         const struct kvm_hva_range hva_range = {
703                 .start          = range->start,
704                 .end            = range->end,
705                 .pte            = __pte(0),
706                 .handler        = kvm_unmap_gfn_range,
707                 .on_lock        = kvm_inc_notifier_count,
708                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
709                 .flush_on_ret   = true,
710                 .may_block      = mmu_notifier_range_blockable(range),
711         };
712 
713         trace_kvm_unmap_hva_range(range->start, range->end);
714 
715         /*
716          * Prevent memslot modification between range_start() and range_end()
717          * so that conditionally locking provides the same result in both
718          * functions.  Without that guarantee, the mmu_notifier_count
719          * adjustments will be imbalanced.
720          *
721          * Pairs with the decrement in range_end().
722          */
723         spin_lock(&kvm->mn_invalidate_lock);
724         kvm->mn_active_invalidate_count++;
725         spin_unlock(&kvm->mn_invalidate_lock);
726 
727         /*
728          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
729          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
730          * each cache's lock.  There are relatively few caches in existence at
731          * any given time, and the caches themselves can check for hva overlap,
732          * i.e. don't need to rely on memslot overlap checks for performance.
733          * Because this runs without holding mmu_lock, the pfn caches must use
734          * mn_active_invalidate_count (see above) instead of mmu_notifier_count.
735          */
736         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
737                                           hva_range.may_block);
738 
739         __kvm_handle_hva_range(kvm, &hva_range);
740 
741         return 0;
742 }
743 
744 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
745                                    unsigned long end)
746 {
747         /*
748          * This sequence increase will notify the kvm page fault that
749          * the page that is going to be mapped in the spte could have
750          * been freed.
751          */
752         kvm->mmu_notifier_seq++;
753         smp_wmb();
754         /*
755          * The above sequence increase must be visible before the
756          * below count decrease, which is ensured by the smp_wmb above
757          * in conjunction with the smp_rmb in mmu_notifier_retry().
758          */
759         kvm->mmu_notifier_count--;
760 }
761 
762 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
763                                         const struct mmu_notifier_range *range)
764 {
765         struct kvm *kvm = mmu_notifier_to_kvm(mn);
766         const struct kvm_hva_range hva_range = {
767                 .start          = range->start,
768                 .end            = range->end,
769                 .pte            = __pte(0),
770                 .handler        = (void *)kvm_null_fn,
771                 .on_lock        = kvm_dec_notifier_count,
772                 .on_unlock      = (void *)kvm_null_fn,
773                 .flush_on_ret   = false,
774                 .may_block      = mmu_notifier_range_blockable(range),
775         };
776         bool wake;
777 
778         __kvm_handle_hva_range(kvm, &hva_range);
779 
780         /* Pairs with the increment in range_start(). */
781         spin_lock(&kvm->mn_invalidate_lock);
782         wake = (--kvm->mn_active_invalidate_count == 0);
783         spin_unlock(&kvm->mn_invalidate_lock);
784 
785         /*
786          * There can only be one waiter, since the wait happens under
787          * slots_lock.
788          */
789         if (wake)
790                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
791 
792         BUG_ON(kvm->mmu_notifier_count < 0);
793 }
794 
795 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
796                                               struct mm_struct *mm,
797                                               unsigned long start,
798                                               unsigned long end)
799 {
800         trace_kvm_age_hva(start, end);
801 
802         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
803 }
804 
805 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
806                                         struct mm_struct *mm,
807                                         unsigned long start,
808                                         unsigned long end)
809 {
810         trace_kvm_age_hva(start, end);
811 
812         /*
813          * Even though we do not flush TLB, this will still adversely
814          * affect performance on pre-Haswell Intel EPT, where there is
815          * no EPT Access Bit to clear so that we have to tear down EPT
816          * tables instead. If we find this unacceptable, we can always
817          * add a parameter to kvm_age_hva so that it effectively doesn't
818          * do anything on clear_young.
819          *
820          * Also note that currently we never issue secondary TLB flushes
821          * from clear_young, leaving this job up to the regular system
822          * cadence. If we find this inaccurate, we might come up with a
823          * more sophisticated heuristic later.
824          */
825         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
826 }
827 
828 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
829                                        struct mm_struct *mm,
830                                        unsigned long address)
831 {
832         trace_kvm_test_age_hva(address);
833 
834         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
835                                              kvm_test_age_gfn);
836 }
837 
838 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
839                                      struct mm_struct *mm)
840 {
841         struct kvm *kvm = mmu_notifier_to_kvm(mn);
842         int idx;
843 
844         idx = srcu_read_lock(&kvm->srcu);
845         kvm_flush_shadow_all(kvm);
846         srcu_read_unlock(&kvm->srcu, idx);
847 }
848 
849 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
850         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
851         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
852         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
853         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
854         .clear_young            = kvm_mmu_notifier_clear_young,
855         .test_young             = kvm_mmu_notifier_test_young,
856         .change_pte             = kvm_mmu_notifier_change_pte,
857         .release                = kvm_mmu_notifier_release,
858 };
859 
860 static int kvm_init_mmu_notifier(struct kvm *kvm)
861 {
862         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
863         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
864 }
865 
866 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
867 
868 static int kvm_init_mmu_notifier(struct kvm *kvm)
869 {
870         return 0;
871 }
872 
873 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
874 
875 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
876 static int kvm_pm_notifier_call(struct notifier_block *bl,
877                                 unsigned long state,
878                                 void *unused)
879 {
880         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
881 
882         return kvm_arch_pm_notifier(kvm, state);
883 }
884 
885 static void kvm_init_pm_notifier(struct kvm *kvm)
886 {
887         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
888         /* Suspend KVM before we suspend ftrace, RCU, etc. */
889         kvm->pm_notifier.priority = INT_MAX;
890         register_pm_notifier(&kvm->pm_notifier);
891 }
892 
893 static void kvm_destroy_pm_notifier(struct kvm *kvm)
894 {
895         unregister_pm_notifier(&kvm->pm_notifier);
896 }
897 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
898 static void kvm_init_pm_notifier(struct kvm *kvm)
899 {
900 }
901 
902 static void kvm_destroy_pm_notifier(struct kvm *kvm)
903 {
904 }
905 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
906 
907 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
908 {
909         if (!memslot->dirty_bitmap)
910                 return;
911 
912         kvfree(memslot->dirty_bitmap);
913         memslot->dirty_bitmap = NULL;
914 }
915 
916 /* This does not remove the slot from struct kvm_memslots data structures */
917 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
918 {
919         kvm_destroy_dirty_bitmap(slot);
920 
921         kvm_arch_free_memslot(kvm, slot);
922 
923         kfree(slot);
924 }
925 
926 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
927 {
928         struct hlist_node *idnode;
929         struct kvm_memory_slot *memslot;
930         int bkt;
931 
932         /*
933          * The same memslot objects live in both active and inactive sets,
934          * arbitrarily free using index '1' so the second invocation of this
935          * function isn't operating over a structure with dangling pointers
936          * (even though this function isn't actually touching them).
937          */
938         if (!slots->node_idx)
939                 return;
940 
941         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
942                 kvm_free_memslot(kvm, memslot);
943 }
944 
945 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
946 {
947         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
948         case KVM_STATS_TYPE_INSTANT:
949                 return 0444;
950         case KVM_STATS_TYPE_CUMULATIVE:
951         case KVM_STATS_TYPE_PEAK:
952         default:
953                 return 0644;
954         }
955 }
956 
957 
958 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
959 {
960         int i;
961         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
962                                       kvm_vcpu_stats_header.num_desc;
963 
964         if (IS_ERR(kvm->debugfs_dentry))
965                 return;
966 
967         debugfs_remove_recursive(kvm->debugfs_dentry);
968 
969         if (kvm->debugfs_stat_data) {
970                 for (i = 0; i < kvm_debugfs_num_entries; i++)
971                         kfree(kvm->debugfs_stat_data[i]);
972                 kfree(kvm->debugfs_stat_data);
973         }
974 }
975 
976 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
977 {
978         static DEFINE_MUTEX(kvm_debugfs_lock);
979         struct dentry *dent;
980         char dir_name[ITOA_MAX_LEN * 2];
981         struct kvm_stat_data *stat_data;
982         const struct _kvm_stats_desc *pdesc;
983         int i, ret;
984         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
985                                       kvm_vcpu_stats_header.num_desc;
986 
987         if (!debugfs_initialized())
988                 return 0;
989 
990         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
991         mutex_lock(&kvm_debugfs_lock);
992         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
993         if (dent) {
994                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
995                 dput(dent);
996                 mutex_unlock(&kvm_debugfs_lock);
997                 return 0;
998         }
999         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1000         mutex_unlock(&kvm_debugfs_lock);
1001         if (IS_ERR(dent))
1002                 return 0;
1003 
1004         kvm->debugfs_dentry = dent;
1005         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1006                                          sizeof(*kvm->debugfs_stat_data),
1007                                          GFP_KERNEL_ACCOUNT);
1008         if (!kvm->debugfs_stat_data)
1009                 return -ENOMEM;
1010 
1011         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1012                 pdesc = &kvm_vm_stats_desc[i];
1013                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1014                 if (!stat_data)
1015                         return -ENOMEM;
1016 
1017                 stat_data->kvm = kvm;
1018                 stat_data->desc = pdesc;
1019                 stat_data->kind = KVM_STAT_VM;
1020                 kvm->debugfs_stat_data[i] = stat_data;
1021                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1022                                     kvm->debugfs_dentry, stat_data,
1023                                     &stat_fops_per_vm);
1024         }
1025 
1026         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1027                 pdesc = &kvm_vcpu_stats_desc[i];
1028                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1029                 if (!stat_data)
1030                         return -ENOMEM;
1031 
1032                 stat_data->kvm = kvm;
1033                 stat_data->desc = pdesc;
1034                 stat_data->kind = KVM_STAT_VCPU;
1035                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1036                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1037                                     kvm->debugfs_dentry, stat_data,
1038                                     &stat_fops_per_vm);
1039         }
1040 
1041         ret = kvm_arch_create_vm_debugfs(kvm);
1042         if (ret) {
1043                 kvm_destroy_vm_debugfs(kvm);
1044                 return i;
1045         }
1046 
1047         return 0;
1048 }
1049 
1050 /*
1051  * Called after the VM is otherwise initialized, but just before adding it to
1052  * the vm_list.
1053  */
1054 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1055 {
1056         return 0;
1057 }
1058 
1059 /*
1060  * Called just after removing the VM from the vm_list, but before doing any
1061  * other destruction.
1062  */
1063 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1064 {
1065 }
1066 
1067 /*
1068  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1069  * be setup already, so we can create arch-specific debugfs entries under it.
1070  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1071  * a per-arch destroy interface is not needed.
1072  */
1073 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1074 {
1075         return 0;
1076 }
1077 
1078 static struct kvm *kvm_create_vm(unsigned long type)
1079 {
1080         struct kvm *kvm = kvm_arch_alloc_vm();
1081         struct kvm_memslots *slots;
1082         int r = -ENOMEM;
1083         int i, j;
1084 
1085         if (!kvm)
1086                 return ERR_PTR(-ENOMEM);
1087 
1088         /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1089         __module_get(kvm_chardev_ops.owner);
1090 
1091         KVM_MMU_LOCK_INIT(kvm);
1092         mmgrab(current->mm);
1093         kvm->mm = current->mm;
1094         kvm_eventfd_init(kvm);
1095         mutex_init(&kvm->lock);
1096         mutex_init(&kvm->irq_lock);
1097         mutex_init(&kvm->slots_lock);
1098         mutex_init(&kvm->slots_arch_lock);
1099         spin_lock_init(&kvm->mn_invalidate_lock);
1100         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1101         xa_init(&kvm->vcpu_array);
1102 
1103         INIT_LIST_HEAD(&kvm->gpc_list);
1104         spin_lock_init(&kvm->gpc_lock);
1105 
1106         INIT_LIST_HEAD(&kvm->devices);
1107         kvm->max_vcpus = KVM_MAX_VCPUS;
1108 
1109         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1110 
1111         /*
1112          * Force subsequent debugfs file creations to fail if the VM directory
1113          * is not created (by kvm_create_vm_debugfs()).
1114          */
1115         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1116 
1117         if (init_srcu_struct(&kvm->srcu))
1118                 goto out_err_no_srcu;
1119         if (init_srcu_struct(&kvm->irq_srcu))
1120                 goto out_err_no_irq_srcu;
1121 
1122         refcount_set(&kvm->users_count, 1);
1123         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1124                 for (j = 0; j < 2; j++) {
1125                         slots = &kvm->__memslots[i][j];
1126 
1127                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1128                         slots->hva_tree = RB_ROOT_CACHED;
1129                         slots->gfn_tree = RB_ROOT;
1130                         hash_init(slots->id_hash);
1131                         slots->node_idx = j;
1132 
1133                         /* Generations must be different for each address space. */
1134                         slots->generation = i;
1135                 }
1136 
1137                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1138         }
1139 
1140         for (i = 0; i < KVM_NR_BUSES; i++) {
1141                 rcu_assign_pointer(kvm->buses[i],
1142                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1143                 if (!kvm->buses[i])
1144                         goto out_err_no_arch_destroy_vm;
1145         }
1146 
1147         kvm->max_halt_poll_ns = halt_poll_ns;
1148 
1149         r = kvm_arch_init_vm(kvm, type);
1150         if (r)
1151                 goto out_err_no_arch_destroy_vm;
1152 
1153         r = hardware_enable_all();
1154         if (r)
1155                 goto out_err_no_disable;
1156 
1157 #ifdef CONFIG_HAVE_KVM_IRQFD
1158         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1159 #endif
1160 
1161         r = kvm_init_mmu_notifier(kvm);
1162         if (r)
1163                 goto out_err_no_mmu_notifier;
1164 
1165         r = kvm_arch_post_init_vm(kvm);
1166         if (r)
1167                 goto out_err;
1168 
1169         mutex_lock(&kvm_lock);
1170         list_add(&kvm->vm_list, &vm_list);
1171         mutex_unlock(&kvm_lock);
1172 
1173         preempt_notifier_inc();
1174         kvm_init_pm_notifier(kvm);
1175 
1176         return kvm;
1177 
1178 out_err:
1179 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1180         if (kvm->mmu_notifier.ops)
1181                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1182 #endif
1183 out_err_no_mmu_notifier:
1184         hardware_disable_all();
1185 out_err_no_disable:
1186         kvm_arch_destroy_vm(kvm);
1187 out_err_no_arch_destroy_vm:
1188         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1189         for (i = 0; i < KVM_NR_BUSES; i++)
1190                 kfree(kvm_get_bus(kvm, i));
1191         cleanup_srcu_struct(&kvm->irq_srcu);
1192 out_err_no_irq_srcu:
1193         cleanup_srcu_struct(&kvm->srcu);
1194 out_err_no_srcu:
1195         kvm_arch_free_vm(kvm);
1196         mmdrop(current->mm);
1197         module_put(kvm_chardev_ops.owner);
1198         return ERR_PTR(r);
1199 }
1200 
1201 static void kvm_destroy_devices(struct kvm *kvm)
1202 {
1203         struct kvm_device *dev, *tmp;
1204 
1205         /*
1206          * We do not need to take the kvm->lock here, because nobody else
1207          * has a reference to the struct kvm at this point and therefore
1208          * cannot access the devices list anyhow.
1209          */
1210         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1211                 list_del(&dev->vm_node);
1212                 dev->ops->destroy(dev);
1213         }
1214 }
1215 
1216 static void kvm_destroy_vm(struct kvm *kvm)
1217 {
1218         int i;
1219         struct mm_struct *mm = kvm->mm;
1220 
1221         kvm_destroy_pm_notifier(kvm);
1222         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1223         kvm_destroy_vm_debugfs(kvm);
1224         kvm_arch_sync_events(kvm);
1225         mutex_lock(&kvm_lock);
1226         list_del(&kvm->vm_list);
1227         mutex_unlock(&kvm_lock);
1228         kvm_arch_pre_destroy_vm(kvm);
1229 
1230         kvm_free_irq_routing(kvm);
1231         for (i = 0; i < KVM_NR_BUSES; i++) {
1232                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1233 
1234                 if (bus)
1235                         kvm_io_bus_destroy(bus);
1236                 kvm->buses[i] = NULL;
1237         }
1238         kvm_coalesced_mmio_free(kvm);
1239 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1240         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1241         /*
1242          * At this point, pending calls to invalidate_range_start()
1243          * have completed but no more MMU notifiers will run, so
1244          * mn_active_invalidate_count may remain unbalanced.
1245          * No threads can be waiting in install_new_memslots as the
1246          * last reference on KVM has been dropped, but freeing
1247          * memslots would deadlock without this manual intervention.
1248          */
1249         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1250         kvm->mn_active_invalidate_count = 0;
1251 #else
1252         kvm_flush_shadow_all(kvm);
1253 #endif
1254         kvm_arch_destroy_vm(kvm);
1255         kvm_destroy_devices(kvm);
1256         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1257                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1258                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1259         }
1260         cleanup_srcu_struct(&kvm->irq_srcu);
1261         cleanup_srcu_struct(&kvm->srcu);
1262         kvm_arch_free_vm(kvm);
1263         preempt_notifier_dec();
1264         hardware_disable_all();
1265         mmdrop(mm);
1266         module_put(kvm_chardev_ops.owner);
1267 }
1268 
1269 void kvm_get_kvm(struct kvm *kvm)
1270 {
1271         refcount_inc(&kvm->users_count);
1272 }
1273 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1274 
1275 /*
1276  * Make sure the vm is not during destruction, which is a safe version of
1277  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1278  */
1279 bool kvm_get_kvm_safe(struct kvm *kvm)
1280 {
1281         return refcount_inc_not_zero(&kvm->users_count);
1282 }
1283 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1284 
1285 void kvm_put_kvm(struct kvm *kvm)
1286 {
1287         if (refcount_dec_and_test(&kvm->users_count))
1288                 kvm_destroy_vm(kvm);
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1291 
1292 /*
1293  * Used to put a reference that was taken on behalf of an object associated
1294  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1295  * of the new file descriptor fails and the reference cannot be transferred to
1296  * its final owner.  In such cases, the caller is still actively using @kvm and
1297  * will fail miserably if the refcount unexpectedly hits zero.
1298  */
1299 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1300 {
1301         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1302 }
1303 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1304 
1305 static int kvm_vm_release(struct inode *inode, struct file *filp)
1306 {
1307         struct kvm *kvm = filp->private_data;
1308 
1309         kvm_irqfd_release(kvm);
1310 
1311         kvm_put_kvm(kvm);
1312         return 0;
1313 }
1314 
1315 /*
1316  * Allocation size is twice as large as the actual dirty bitmap size.
1317  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1318  */
1319 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1320 {
1321         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1322 
1323         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1324         if (!memslot->dirty_bitmap)
1325                 return -ENOMEM;
1326 
1327         return 0;
1328 }
1329 
1330 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1331 {
1332         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1333         int node_idx_inactive = active->node_idx ^ 1;
1334 
1335         return &kvm->__memslots[as_id][node_idx_inactive];
1336 }
1337 
1338 /*
1339  * Helper to get the address space ID when one of memslot pointers may be NULL.
1340  * This also serves as a sanity that at least one of the pointers is non-NULL,
1341  * and that their address space IDs don't diverge.
1342  */
1343 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1344                                   struct kvm_memory_slot *b)
1345 {
1346         if (WARN_ON_ONCE(!a && !b))
1347                 return 0;
1348 
1349         if (!a)
1350                 return b->as_id;
1351         if (!b)
1352                 return a->as_id;
1353 
1354         WARN_ON_ONCE(a->as_id != b->as_id);
1355         return a->as_id;
1356 }
1357 
1358 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1359                                 struct kvm_memory_slot *slot)
1360 {
1361         struct rb_root *gfn_tree = &slots->gfn_tree;
1362         struct rb_node **node, *parent;
1363         int idx = slots->node_idx;
1364 
1365         parent = NULL;
1366         for (node = &gfn_tree->rb_node; *node; ) {
1367                 struct kvm_memory_slot *tmp;
1368 
1369                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1370                 parent = *node;
1371                 if (slot->base_gfn < tmp->base_gfn)
1372                         node = &(*node)->rb_left;
1373                 else if (slot->base_gfn > tmp->base_gfn)
1374                         node = &(*node)->rb_right;
1375                 else
1376                         BUG();
1377         }
1378 
1379         rb_link_node(&slot->gfn_node[idx], parent, node);
1380         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1381 }
1382 
1383 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1384                                struct kvm_memory_slot *slot)
1385 {
1386         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1387 }
1388 
1389 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1390                                  struct kvm_memory_slot *old,
1391                                  struct kvm_memory_slot *new)
1392 {
1393         int idx = slots->node_idx;
1394 
1395         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1396 
1397         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1398                         &slots->gfn_tree);
1399 }
1400 
1401 /*
1402  * Replace @old with @new in the inactive memslots.
1403  *
1404  * With NULL @old this simply adds @new.
1405  * With NULL @new this simply removes @old.
1406  *
1407  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1408  * appropriately.
1409  */
1410 static void kvm_replace_memslot(struct kvm *kvm,
1411                                 struct kvm_memory_slot *old,
1412                                 struct kvm_memory_slot *new)
1413 {
1414         int as_id = kvm_memslots_get_as_id(old, new);
1415         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1416         int idx = slots->node_idx;
1417 
1418         if (old) {
1419                 hash_del(&old->id_node[idx]);
1420                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1421 
1422                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1423                         atomic_long_set(&slots->last_used_slot, (long)new);
1424 
1425                 if (!new) {
1426                         kvm_erase_gfn_node(slots, old);
1427                         return;
1428                 }
1429         }
1430 
1431         /*
1432          * Initialize @new's hva range.  Do this even when replacing an @old
1433          * slot, kvm_copy_memslot() deliberately does not touch node data.
1434          */
1435         new->hva_node[idx].start = new->userspace_addr;
1436         new->hva_node[idx].last = new->userspace_addr +
1437                                   (new->npages << PAGE_SHIFT) - 1;
1438 
1439         /*
1440          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1441          * hva_node needs to be swapped with remove+insert even though hva can't
1442          * change when replacing an existing slot.
1443          */
1444         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1445         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1446 
1447         /*
1448          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1449          * switch the node in the gfn tree instead of removing the old and
1450          * inserting the new as two separate operations. Replacement is a
1451          * single O(1) operation versus two O(log(n)) operations for
1452          * remove+insert.
1453          */
1454         if (old && old->base_gfn == new->base_gfn) {
1455                 kvm_replace_gfn_node(slots, old, new);
1456         } else {
1457                 if (old)
1458                         kvm_erase_gfn_node(slots, old);
1459                 kvm_insert_gfn_node(slots, new);
1460         }
1461 }
1462 
1463 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1464 {
1465         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1466 
1467 #ifdef __KVM_HAVE_READONLY_MEM
1468         valid_flags |= KVM_MEM_READONLY;
1469 #endif
1470 
1471         if (mem->flags & ~valid_flags)
1472                 return -EINVAL;
1473 
1474         return 0;
1475 }
1476 
1477 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1478 {
1479         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1480 
1481         /* Grab the generation from the activate memslots. */
1482         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1483 
1484         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1485         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1486 
1487         /*
1488          * Do not store the new memslots while there are invalidations in
1489          * progress, otherwise the locking in invalidate_range_start and
1490          * invalidate_range_end will be unbalanced.
1491          */
1492         spin_lock(&kvm->mn_invalidate_lock);
1493         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1494         while (kvm->mn_active_invalidate_count) {
1495                 set_current_state(TASK_UNINTERRUPTIBLE);
1496                 spin_unlock(&kvm->mn_invalidate_lock);
1497                 schedule();
1498                 spin_lock(&kvm->mn_invalidate_lock);
1499         }
1500         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1501         rcu_assign_pointer(kvm->memslots[as_id], slots);
1502         spin_unlock(&kvm->mn_invalidate_lock);
1503 
1504         /*
1505          * Acquired in kvm_set_memslot. Must be released before synchronize
1506          * SRCU below in order to avoid deadlock with another thread
1507          * acquiring the slots_arch_lock in an srcu critical section.
1508          */
1509         mutex_unlock(&kvm->slots_arch_lock);
1510 
1511         synchronize_srcu_expedited(&kvm->srcu);
1512 
1513         /*
1514          * Increment the new memslot generation a second time, dropping the
1515          * update in-progress flag and incrementing the generation based on
1516          * the number of address spaces.  This provides a unique and easily
1517          * identifiable generation number while the memslots are in flux.
1518          */
1519         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1520 
1521         /*
1522          * Generations must be unique even across address spaces.  We do not need
1523          * a global counter for that, instead the generation space is evenly split
1524          * across address spaces.  For example, with two address spaces, address
1525          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1526          * use generations 1, 3, 5, ...
1527          */
1528         gen += KVM_ADDRESS_SPACE_NUM;
1529 
1530         kvm_arch_memslots_updated(kvm, gen);
1531 
1532         slots->generation = gen;
1533 }
1534 
1535 static int kvm_prepare_memory_region(struct kvm *kvm,
1536                                      const struct kvm_memory_slot *old,
1537                                      struct kvm_memory_slot *new,
1538                                      enum kvm_mr_change change)
1539 {
1540         int r;
1541 
1542         /*
1543          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1544          * will be freed on "commit".  If logging is enabled in both old and
1545          * new, reuse the existing bitmap.  If logging is enabled only in the
1546          * new and KVM isn't using a ring buffer, allocate and initialize a
1547          * new bitmap.
1548          */
1549         if (change != KVM_MR_DELETE) {
1550                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1551                         new->dirty_bitmap = NULL;
1552                 else if (old && old->dirty_bitmap)
1553                         new->dirty_bitmap = old->dirty_bitmap;
1554                 else if (!kvm->dirty_ring_size) {
1555                         r = kvm_alloc_dirty_bitmap(new);
1556                         if (r)
1557                                 return r;
1558 
1559                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1560                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1561                 }
1562         }
1563 
1564         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1565 
1566         /* Free the bitmap on failure if it was allocated above. */
1567         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1568                 kvm_destroy_dirty_bitmap(new);
1569 
1570         return r;
1571 }
1572 
1573 static void kvm_commit_memory_region(struct kvm *kvm,
1574                                      struct kvm_memory_slot *old,
1575                                      const struct kvm_memory_slot *new,
1576                                      enum kvm_mr_change change)
1577 {
1578         /*
1579          * Update the total number of memslot pages before calling the arch
1580          * hook so that architectures can consume the result directly.
1581          */
1582         if (change == KVM_MR_DELETE)
1583                 kvm->nr_memslot_pages -= old->npages;
1584         else if (change == KVM_MR_CREATE)
1585                 kvm->nr_memslot_pages += new->npages;
1586 
1587         kvm_arch_commit_memory_region(kvm, old, new, change);
1588 
1589         switch (change) {
1590         case KVM_MR_CREATE:
1591                 /* Nothing more to do. */
1592                 break;
1593         case KVM_MR_DELETE:
1594                 /* Free the old memslot and all its metadata. */
1595                 kvm_free_memslot(kvm, old);
1596                 break;
1597         case KVM_MR_MOVE:
1598         case KVM_MR_FLAGS_ONLY:
1599                 /*
1600                  * Free the dirty bitmap as needed; the below check encompasses
1601                  * both the flags and whether a ring buffer is being used)
1602                  */
1603                 if (old->dirty_bitmap && !new->dirty_bitmap)
1604                         kvm_destroy_dirty_bitmap(old);
1605 
1606                 /*
1607                  * The final quirk.  Free the detached, old slot, but only its
1608                  * memory, not any metadata.  Metadata, including arch specific
1609                  * data, may be reused by @new.
1610                  */
1611                 kfree(old);
1612                 break;
1613         default:
1614                 BUG();
1615         }
1616 }
1617 
1618 /*
1619  * Activate @new, which must be installed in the inactive slots by the caller,
1620  * by swapping the active slots and then propagating @new to @old once @old is
1621  * unreachable and can be safely modified.
1622  *
1623  * With NULL @old this simply adds @new to @active (while swapping the sets).
1624  * With NULL @new this simply removes @old from @active and frees it
1625  * (while also swapping the sets).
1626  */
1627 static void kvm_activate_memslot(struct kvm *kvm,
1628                                  struct kvm_memory_slot *old,
1629                                  struct kvm_memory_slot *new)
1630 {
1631         int as_id = kvm_memslots_get_as_id(old, new);
1632 
1633         kvm_swap_active_memslots(kvm, as_id);
1634 
1635         /* Propagate the new memslot to the now inactive memslots. */
1636         kvm_replace_memslot(kvm, old, new);
1637 }
1638 
1639 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1640                              const struct kvm_memory_slot *src)
1641 {
1642         dest->base_gfn = src->base_gfn;
1643         dest->npages = src->npages;
1644         dest->dirty_bitmap = src->dirty_bitmap;
1645         dest->arch = src->arch;
1646         dest->userspace_addr = src->userspace_addr;
1647         dest->flags = src->flags;
1648         dest->id = src->id;
1649         dest->as_id = src->as_id;
1650 }
1651 
1652 static void kvm_invalidate_memslot(struct kvm *kvm,
1653                                    struct kvm_memory_slot *old,
1654                                    struct kvm_memory_slot *invalid_slot)
1655 {
1656         /*
1657          * Mark the current slot INVALID.  As with all memslot modifications,
1658          * this must be done on an unreachable slot to avoid modifying the
1659          * current slot in the active tree.
1660          */
1661         kvm_copy_memslot(invalid_slot, old);
1662         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1663         kvm_replace_memslot(kvm, old, invalid_slot);
1664 
1665         /*
1666          * Activate the slot that is now marked INVALID, but don't propagate
1667          * the slot to the now inactive slots. The slot is either going to be
1668          * deleted or recreated as a new slot.
1669          */
1670         kvm_swap_active_memslots(kvm, old->as_id);
1671 
1672         /*
1673          * From this point no new shadow pages pointing to a deleted, or moved,
1674          * memslot will be created.  Validation of sp->gfn happens in:
1675          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1676          *      - kvm_is_visible_gfn (mmu_check_root)
1677          */
1678         kvm_arch_flush_shadow_memslot(kvm, old);
1679         kvm_arch_guest_memory_reclaimed(kvm);
1680 
1681         /* Was released by kvm_swap_active_memslots, reacquire. */
1682         mutex_lock(&kvm->slots_arch_lock);
1683 
1684         /*
1685          * Copy the arch-specific field of the newly-installed slot back to the
1686          * old slot as the arch data could have changed between releasing
1687          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1688          * above.  Writers are required to retrieve memslots *after* acquiring
1689          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1690          */
1691         old->arch = invalid_slot->arch;
1692 }
1693 
1694 static void kvm_create_memslot(struct kvm *kvm,
1695                                struct kvm_memory_slot *new)
1696 {
1697         /* Add the new memslot to the inactive set and activate. */
1698         kvm_replace_memslot(kvm, NULL, new);
1699         kvm_activate_memslot(kvm, NULL, new);
1700 }
1701 
1702 static void kvm_delete_memslot(struct kvm *kvm,
1703                                struct kvm_memory_slot *old,
1704                                struct kvm_memory_slot *invalid_slot)
1705 {
1706         /*
1707          * Remove the old memslot (in the inactive memslots) by passing NULL as
1708          * the "new" slot, and for the invalid version in the active slots.
1709          */
1710         kvm_replace_memslot(kvm, old, NULL);
1711         kvm_activate_memslot(kvm, invalid_slot, NULL);
1712 }
1713 
1714 static void kvm_move_memslot(struct kvm *kvm,
1715                              struct kvm_memory_slot *old,
1716                              struct kvm_memory_slot *new,
1717                              struct kvm_memory_slot *invalid_slot)
1718 {
1719         /*
1720          * Replace the old memslot in the inactive slots, and then swap slots
1721          * and replace the current INVALID with the new as well.
1722          */
1723         kvm_replace_memslot(kvm, old, new);
1724         kvm_activate_memslot(kvm, invalid_slot, new);
1725 }
1726 
1727 static void kvm_update_flags_memslot(struct kvm *kvm,
1728                                      struct kvm_memory_slot *old,
1729                                      struct kvm_memory_slot *new)
1730 {
1731         /*
1732          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1733          * an intermediate step. Instead, the old memslot is simply replaced
1734          * with a new, updated copy in both memslot sets.
1735          */
1736         kvm_replace_memslot(kvm, old, new);
1737         kvm_activate_memslot(kvm, old, new);
1738 }
1739 
1740 static int kvm_set_memslot(struct kvm *kvm,
1741                            struct kvm_memory_slot *old,
1742                            struct kvm_memory_slot *new,
1743                            enum kvm_mr_change change)
1744 {
1745         struct kvm_memory_slot *invalid_slot;
1746         int r;
1747 
1748         /*
1749          * Released in kvm_swap_active_memslots.
1750          *
1751          * Must be held from before the current memslots are copied until
1752          * after the new memslots are installed with rcu_assign_pointer,
1753          * then released before the synchronize srcu in kvm_swap_active_memslots.
1754          *
1755          * When modifying memslots outside of the slots_lock, must be held
1756          * before reading the pointer to the current memslots until after all
1757          * changes to those memslots are complete.
1758          *
1759          * These rules ensure that installing new memslots does not lose
1760          * changes made to the previous memslots.
1761          */
1762         mutex_lock(&kvm->slots_arch_lock);
1763 
1764         /*
1765          * Invalidate the old slot if it's being deleted or moved.  This is
1766          * done prior to actually deleting/moving the memslot to allow vCPUs to
1767          * continue running by ensuring there are no mappings or shadow pages
1768          * for the memslot when it is deleted/moved.  Without pre-invalidation
1769          * (and without a lock), a window would exist between effecting the
1770          * delete/move and committing the changes in arch code where KVM or a
1771          * guest could access a non-existent memslot.
1772          *
1773          * Modifications are done on a temporary, unreachable slot.  The old
1774          * slot needs to be preserved in case a later step fails and the
1775          * invalidation needs to be reverted.
1776          */
1777         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1778                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1779                 if (!invalid_slot) {
1780                         mutex_unlock(&kvm->slots_arch_lock);
1781                         return -ENOMEM;
1782                 }
1783                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1784         }
1785 
1786         r = kvm_prepare_memory_region(kvm, old, new, change);
1787         if (r) {
1788                 /*
1789                  * For DELETE/MOVE, revert the above INVALID change.  No
1790                  * modifications required since the original slot was preserved
1791                  * in the inactive slots.  Changing the active memslots also
1792                  * release slots_arch_lock.
1793                  */
1794                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1795                         kvm_activate_memslot(kvm, invalid_slot, old);
1796                         kfree(invalid_slot);
1797                 } else {
1798                         mutex_unlock(&kvm->slots_arch_lock);
1799                 }
1800                 return r;
1801         }
1802 
1803         /*
1804          * For DELETE and MOVE, the working slot is now active as the INVALID
1805          * version of the old slot.  MOVE is particularly special as it reuses
1806          * the old slot and returns a copy of the old slot (in working_slot).
1807          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1808          * old slot is detached but otherwise preserved.
1809          */
1810         if (change == KVM_MR_CREATE)
1811                 kvm_create_memslot(kvm, new);
1812         else if (change == KVM_MR_DELETE)
1813                 kvm_delete_memslot(kvm, old, invalid_slot);
1814         else if (change == KVM_MR_MOVE)
1815                 kvm_move_memslot(kvm, old, new, invalid_slot);
1816         else if (change == KVM_MR_FLAGS_ONLY)
1817                 kvm_update_flags_memslot(kvm, old, new);
1818         else
1819                 BUG();
1820 
1821         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1822         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1823                 kfree(invalid_slot);
1824 
1825         /*
1826          * No need to refresh new->arch, changes after dropping slots_arch_lock
1827          * will directly hit the final, active memslot.  Architectures are
1828          * responsible for knowing that new->arch may be stale.
1829          */
1830         kvm_commit_memory_region(kvm, old, new, change);
1831 
1832         return 0;
1833 }
1834 
1835 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1836                                       gfn_t start, gfn_t end)
1837 {
1838         struct kvm_memslot_iter iter;
1839 
1840         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1841                 if (iter.slot->id != id)
1842                         return true;
1843         }
1844 
1845         return false;
1846 }
1847 
1848 /*
1849  * Allocate some memory and give it an address in the guest physical address
1850  * space.
1851  *
1852  * Discontiguous memory is allowed, mostly for framebuffers.
1853  *
1854  * Must be called holding kvm->slots_lock for write.
1855  */
1856 int __kvm_set_memory_region(struct kvm *kvm,
1857                             const struct kvm_userspace_memory_region *mem)
1858 {
1859         struct kvm_memory_slot *old, *new;
1860         struct kvm_memslots *slots;
1861         enum kvm_mr_change change;
1862         unsigned long npages;
1863         gfn_t base_gfn;
1864         int as_id, id;
1865         int r;
1866 
1867         r = check_memory_region_flags(mem);
1868         if (r)
1869                 return r;
1870 
1871         as_id = mem->slot >> 16;
1872         id = (u16)mem->slot;
1873 
1874         /* General sanity checks */
1875         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1876             (mem->memory_size != (unsigned long)mem->memory_size))
1877                 return -EINVAL;
1878         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1879                 return -EINVAL;
1880         /* We can read the guest memory with __xxx_user() later on. */
1881         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1882             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1883              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1884                         mem->memory_size))
1885                 return -EINVAL;
1886         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1887                 return -EINVAL;
1888         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1889                 return -EINVAL;
1890         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1891                 return -EINVAL;
1892 
1893         slots = __kvm_memslots(kvm, as_id);
1894 
1895         /*
1896          * Note, the old memslot (and the pointer itself!) may be invalidated
1897          * and/or destroyed by kvm_set_memslot().
1898          */
1899         old = id_to_memslot(slots, id);
1900 
1901         if (!mem->memory_size) {
1902                 if (!old || !old->npages)
1903                         return -EINVAL;
1904 
1905                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1906                         return -EIO;
1907 
1908                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1909         }
1910 
1911         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1912         npages = (mem->memory_size >> PAGE_SHIFT);
1913 
1914         if (!old || !old->npages) {
1915                 change = KVM_MR_CREATE;
1916 
1917                 /*
1918                  * To simplify KVM internals, the total number of pages across
1919                  * all memslots must fit in an unsigned long.
1920                  */
1921                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1922                         return -EINVAL;
1923         } else { /* Modify an existing slot. */
1924                 if ((mem->userspace_addr != old->userspace_addr) ||
1925                     (npages != old->npages) ||
1926                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1927                         return -EINVAL;
1928 
1929                 if (base_gfn != old->base_gfn)
1930                         change = KVM_MR_MOVE;
1931                 else if (mem->flags != old->flags)
1932                         change = KVM_MR_FLAGS_ONLY;
1933                 else /* Nothing to change. */
1934                         return 0;
1935         }
1936 
1937         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1938             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1939                 return -EEXIST;
1940 
1941         /* Allocate a slot that will persist in the memslot. */
1942         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1943         if (!new)
1944                 return -ENOMEM;
1945 
1946         new->as_id = as_id;
1947         new->id = id;
1948         new->base_gfn = base_gfn;
1949         new->npages = npages;
1950         new->flags = mem->flags;
1951         new->userspace_addr = mem->userspace_addr;
1952 
1953         r = kvm_set_memslot(kvm, old, new, change);
1954         if (r)
1955                 kfree(new);
1956         return r;
1957 }
1958 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1959 
1960 int kvm_set_memory_region(struct kvm *kvm,
1961                           const struct kvm_userspace_memory_region *mem)
1962 {
1963         int r;
1964 
1965         mutex_lock(&kvm->slots_lock);
1966         r = __kvm_set_memory_region(kvm, mem);
1967         mutex_unlock(&kvm->slots_lock);
1968         return r;
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1971 
1972 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1973                                           struct kvm_userspace_memory_region *mem)
1974 {
1975         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1976                 return -EINVAL;
1977 
1978         return kvm_set_memory_region(kvm, mem);
1979 }
1980 
1981 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1982 /**
1983  * kvm_get_dirty_log - get a snapshot of dirty pages
1984  * @kvm:        pointer to kvm instance
1985  * @log:        slot id and address to which we copy the log
1986  * @is_dirty:   set to '1' if any dirty pages were found
1987  * @memslot:    set to the associated memslot, always valid on success
1988  */
1989 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1990                       int *is_dirty, struct kvm_memory_slot **memslot)
1991 {
1992         struct kvm_memslots *slots;
1993         int i, as_id, id;
1994         unsigned long n;
1995         unsigned long any = 0;
1996 
1997         /* Dirty ring tracking is exclusive to dirty log tracking */
1998         if (kvm->dirty_ring_size)
1999                 return -ENXIO;
2000 
2001         *memslot = NULL;
2002         *is_dirty = 0;
2003 
2004         as_id = log->slot >> 16;
2005         id = (u16)log->slot;
2006         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2007                 return -EINVAL;
2008 
2009         slots = __kvm_memslots(kvm, as_id);
2010         *memslot = id_to_memslot(slots, id);
2011         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2012                 return -ENOENT;
2013 
2014         kvm_arch_sync_dirty_log(kvm, *memslot);
2015 
2016         n = kvm_dirty_bitmap_bytes(*memslot);
2017 
2018         for (i = 0; !any && i < n/sizeof(long); ++i)
2019                 any = (*memslot)->dirty_bitmap[i];
2020 
2021         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2022                 return -EFAULT;
2023 
2024         if (any)
2025                 *is_dirty = 1;
2026         return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2029 
2030 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2031 /**
2032  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2033  *      and reenable dirty page tracking for the corresponding pages.
2034  * @kvm:        pointer to kvm instance
2035  * @log:        slot id and address to which we copy the log
2036  *
2037  * We need to keep it in mind that VCPU threads can write to the bitmap
2038  * concurrently. So, to avoid losing track of dirty pages we keep the
2039  * following order:
2040  *
2041  *    1. Take a snapshot of the bit and clear it if needed.
2042  *    2. Write protect the corresponding page.
2043  *    3. Copy the snapshot to the userspace.
2044  *    4. Upon return caller flushes TLB's if needed.
2045  *
2046  * Between 2 and 4, the guest may write to the page using the remaining TLB
2047  * entry.  This is not a problem because the page is reported dirty using
2048  * the snapshot taken before and step 4 ensures that writes done after
2049  * exiting to userspace will be logged for the next call.
2050  *
2051  */
2052 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2053 {
2054         struct kvm_memslots *slots;
2055         struct kvm_memory_slot *memslot;
2056         int i, as_id, id;
2057         unsigned long n;
2058         unsigned long *dirty_bitmap;
2059         unsigned long *dirty_bitmap_buffer;
2060         bool flush;
2061 
2062         /* Dirty ring tracking is exclusive to dirty log tracking */
2063         if (kvm->dirty_ring_size)
2064                 return -ENXIO;
2065 
2066         as_id = log->slot >> 16;
2067         id = (u16)log->slot;
2068         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2069                 return -EINVAL;
2070 
2071         slots = __kvm_memslots(kvm, as_id);
2072         memslot = id_to_memslot(slots, id);
2073         if (!memslot || !memslot->dirty_bitmap)
2074                 return -ENOENT;
2075 
2076         dirty_bitmap = memslot->dirty_bitmap;
2077 
2078         kvm_arch_sync_dirty_log(kvm, memslot);
2079 
2080         n = kvm_dirty_bitmap_bytes(memslot);
2081         flush = false;
2082         if (kvm->manual_dirty_log_protect) {
2083                 /*
2084                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2085                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2086                  * is some code duplication between this function and
2087                  * kvm_get_dirty_log, but hopefully all architecture
2088                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2089                  * can be eliminated.
2090                  */
2091                 dirty_bitmap_buffer = dirty_bitmap;
2092         } else {
2093                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2094                 memset(dirty_bitmap_buffer, 0, n);
2095 
2096                 KVM_MMU_LOCK(kvm);
2097                 for (i = 0; i < n / sizeof(long); i++) {
2098                         unsigned long mask;
2099                         gfn_t offset;
2100 
2101                         if (!dirty_bitmap[i])
2102                                 continue;
2103 
2104                         flush = true;
2105                         mask = xchg(&dirty_bitmap[i], 0);
2106                         dirty_bitmap_buffer[i] = mask;
2107 
2108                         offset = i * BITS_PER_LONG;
2109                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2110                                                                 offset, mask);
2111                 }
2112                 KVM_MMU_UNLOCK(kvm);
2113         }
2114 
2115         if (flush)
2116                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2117 
2118         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2119                 return -EFAULT;
2120         return 0;
2121 }
2122 
2123 
2124 /**
2125  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2126  * @kvm: kvm instance
2127  * @log: slot id and address to which we copy the log
2128  *
2129  * Steps 1-4 below provide general overview of dirty page logging. See
2130  * kvm_get_dirty_log_protect() function description for additional details.
2131  *
2132  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2133  * always flush the TLB (step 4) even if previous step failed  and the dirty
2134  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2135  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2136  * writes will be marked dirty for next log read.
2137  *
2138  *   1. Take a snapshot of the bit and clear it if needed.
2139  *   2. Write protect the corresponding page.
2140  *   3. Copy the snapshot to the userspace.
2141  *   4. Flush TLB's if needed.
2142  */
2143 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2144                                       struct kvm_dirty_log *log)
2145 {
2146         int r;
2147 
2148         mutex_lock(&kvm->slots_lock);
2149 
2150         r = kvm_get_dirty_log_protect(kvm, log);
2151 
2152         mutex_unlock(&kvm->slots_lock);
2153         return r;
2154 }
2155 
2156 /**
2157  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2158  *      and reenable dirty page tracking for the corresponding pages.
2159  * @kvm:        pointer to kvm instance
2160  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2161  */
2162 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2163                                        struct kvm_clear_dirty_log *log)
2164 {
2165         struct kvm_memslots *slots;
2166         struct kvm_memory_slot *memslot;
2167         int as_id, id;
2168         gfn_t offset;
2169         unsigned long i, n;
2170         unsigned long *dirty_bitmap;
2171         unsigned long *dirty_bitmap_buffer;
2172         bool flush;
2173 
2174         /* Dirty ring tracking is exclusive to dirty log tracking */
2175         if (kvm->dirty_ring_size)
2176                 return -ENXIO;
2177 
2178         as_id = log->slot >> 16;
2179         id = (u16)log->slot;
2180         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2181                 return -EINVAL;
2182 
2183         if (log->first_page & 63)
2184                 return -EINVAL;
2185 
2186         slots = __kvm_memslots(kvm, as_id);
2187         memslot = id_to_memslot(slots, id);
2188         if (!memslot || !memslot->dirty_bitmap)
2189                 return -ENOENT;
2190 
2191         dirty_bitmap = memslot->dirty_bitmap;
2192 
2193         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2194 
2195         if (log->first_page > memslot->npages ||
2196             log->num_pages > memslot->npages - log->first_page ||
2197             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2198             return -EINVAL;
2199 
2200         kvm_arch_sync_dirty_log(kvm, memslot);
2201 
2202         flush = false;
2203         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2204         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2205                 return -EFAULT;
2206 
2207         KVM_MMU_LOCK(kvm);
2208         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2209                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2210              i++, offset += BITS_PER_LONG) {
2211                 unsigned long mask = *dirty_bitmap_buffer++;
2212                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2213                 if (!mask)
2214                         continue;
2215 
2216                 mask &= atomic_long_fetch_andnot(mask, p);
2217 
2218                 /*
2219                  * mask contains the bits that really have been cleared.  This
2220                  * never includes any bits beyond the length of the memslot (if
2221                  * the length is not aligned to 64 pages), therefore it is not
2222                  * a problem if userspace sets them in log->dirty_bitmap.
2223                 */
2224                 if (mask) {
2225                         flush = true;
2226                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2227                                                                 offset, mask);
2228                 }
2229         }
2230         KVM_MMU_UNLOCK(kvm);
2231 
2232         if (flush)
2233                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2234 
2235         return 0;
2236 }
2237 
2238 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2239                                         struct kvm_clear_dirty_log *log)
2240 {
2241         int r;
2242 
2243         mutex_lock(&kvm->slots_lock);
2244 
2245         r = kvm_clear_dirty_log_protect(kvm, log);
2246 
2247         mutex_unlock(&kvm->slots_lock);
2248         return r;
2249 }
2250 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2251 
2252 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2253 {
2254         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2255 }
2256 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2257 
2258 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2259 {
2260         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2261         u64 gen = slots->generation;
2262         struct kvm_memory_slot *slot;
2263 
2264         /*
2265          * This also protects against using a memslot from a different address space,
2266          * since different address spaces have different generation numbers.
2267          */
2268         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2269                 vcpu->last_used_slot = NULL;
2270                 vcpu->last_used_slot_gen = gen;
2271         }
2272 
2273         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2274         if (slot)
2275                 return slot;
2276 
2277         /*
2278          * Fall back to searching all memslots. We purposely use
2279          * search_memslots() instead of __gfn_to_memslot() to avoid
2280          * thrashing the VM-wide last_used_slot in kvm_memslots.
2281          */
2282         slot = search_memslots(slots, gfn, false);
2283         if (slot) {
2284                 vcpu->last_used_slot = slot;
2285                 return slot;
2286         }
2287 
2288         return NULL;
2289 }
2290 
2291 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2292 {
2293         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2294 
2295         return kvm_is_visible_memslot(memslot);
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2298 
2299 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2300 {
2301         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2302 
2303         return kvm_is_visible_memslot(memslot);
2304 }
2305 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2306 
2307 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2308 {
2309         struct vm_area_struct *vma;
2310         unsigned long addr, size;
2311 
2312         size = PAGE_SIZE;
2313 
2314         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2315         if (kvm_is_error_hva(addr))
2316                 return PAGE_SIZE;
2317 
2318         mmap_read_lock(current->mm);
2319         vma = find_vma(current->mm, addr);
2320         if (!vma)
2321                 goto out;
2322 
2323         size = vma_kernel_pagesize(vma);
2324 
2325 out:
2326         mmap_read_unlock(current->mm);
2327 
2328         return size;
2329 }
2330 
2331 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2332 {
2333         return slot->flags & KVM_MEM_READONLY;
2334 }
2335 
2336 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2337                                        gfn_t *nr_pages, bool write)
2338 {
2339         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2340                 return KVM_HVA_ERR_BAD;
2341 
2342         if (memslot_is_readonly(slot) && write)
2343                 return KVM_HVA_ERR_RO_BAD;
2344 
2345         if (nr_pages)
2346                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2347 
2348         return __gfn_to_hva_memslot(slot, gfn);
2349 }
2350 
2351 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2352                                      gfn_t *nr_pages)
2353 {
2354         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2355 }
2356 
2357 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2358                                         gfn_t gfn)
2359 {
2360         return gfn_to_hva_many(slot, gfn, NULL);
2361 }
2362 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2363 
2364 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2365 {
2366         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2367 }
2368 EXPORT_SYMBOL_GPL(gfn_to_hva);
2369 
2370 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2371 {
2372         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2373 }
2374 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2375 
2376 /*
2377  * Return the hva of a @gfn and the R/W attribute if possible.
2378  *
2379  * @slot: the kvm_memory_slot which contains @gfn
2380  * @gfn: the gfn to be translated
2381  * @writable: used to return the read/write attribute of the @slot if the hva
2382  * is valid and @writable is not NULL
2383  */
2384 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2385                                       gfn_t gfn, bool *writable)
2386 {
2387         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2388 
2389         if (!kvm_is_error_hva(hva) && writable)
2390                 *writable = !memslot_is_readonly(slot);
2391 
2392         return hva;
2393 }
2394 
2395 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2396 {
2397         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2398 
2399         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2400 }
2401 
2402 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2403 {
2404         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2405 
2406         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2407 }
2408 
2409 static inline int check_user_page_hwpoison(unsigned long addr)
2410 {
2411         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2412 
2413         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2414         return rc == -EHWPOISON;
2415 }
2416 
2417 /*
2418  * The fast path to get the writable pfn which will be stored in @pfn,
2419  * true indicates success, otherwise false is returned.  It's also the
2420  * only part that runs if we can in atomic context.
2421  */
2422 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2423                             bool *writable, kvm_pfn_t *pfn)
2424 {
2425         struct page *page[1];
2426 
2427         /*
2428          * Fast pin a writable pfn only if it is a write fault request
2429          * or the caller allows to map a writable pfn for a read fault
2430          * request.
2431          */
2432         if (!(write_fault || writable))
2433                 return false;
2434 
2435         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2436                 *pfn = page_to_pfn(page[0]);
2437 
2438                 if (writable)
2439                         *writable = true;
2440                 return true;
2441         }
2442 
2443         return false;
2444 }
2445 
2446 /*
2447  * The slow path to get the pfn of the specified host virtual address,
2448  * 1 indicates success, -errno is returned if error is detected.
2449  */
2450 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2451                            bool *writable, kvm_pfn_t *pfn)
2452 {
2453         unsigned int flags = FOLL_HWPOISON;
2454         struct page *page;
2455         int npages = 0;
2456 
2457         might_sleep();
2458 
2459         if (writable)
2460                 *writable = write_fault;
2461 
2462         if (write_fault)
2463                 flags |= FOLL_WRITE;
2464         if (async)
2465                 flags |= FOLL_NOWAIT;
2466 
2467         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2468         if (npages != 1)
2469                 return npages;
2470 
2471         /* map read fault as writable if possible */
2472         if (unlikely(!write_fault) && writable) {
2473                 struct page *wpage;
2474 
2475                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2476                         *writable = true;
2477                         put_page(page);
2478                         page = wpage;
2479                 }
2480         }
2481         *pfn = page_to_pfn(page);
2482         return npages;
2483 }
2484 
2485 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2486 {
2487         if (unlikely(!(vma->vm_flags & VM_READ)))
2488                 return false;
2489 
2490         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2491                 return false;
2492 
2493         return true;
2494 }
2495 
2496 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2497 {
2498         if (kvm_is_reserved_pfn(pfn))
2499                 return 1;
2500         return get_page_unless_zero(pfn_to_page(pfn));
2501 }
2502 
2503 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2504                                unsigned long addr, bool write_fault,
2505                                bool *writable, kvm_pfn_t *p_pfn)
2506 {
2507         kvm_pfn_t pfn;
2508         pte_t *ptep;
2509         spinlock_t *ptl;
2510         int r;
2511 
2512         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2513         if (r) {
2514                 /*
2515                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2516                  * not call the fault handler, so do it here.
2517                  */
2518                 bool unlocked = false;
2519                 r = fixup_user_fault(current->mm, addr,
2520                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2521                                      &unlocked);
2522                 if (unlocked)
2523                         return -EAGAIN;
2524                 if (r)
2525                         return r;
2526 
2527                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2528                 if (r)
2529                         return r;
2530         }
2531 
2532         if (write_fault && !pte_write(*ptep)) {
2533                 pfn = KVM_PFN_ERR_RO_FAULT;
2534                 goto out;
2535         }
2536 
2537         if (writable)
2538                 *writable = pte_write(*ptep);
2539         pfn = pte_pfn(*ptep);
2540 
2541         /*
2542          * Get a reference here because callers of *hva_to_pfn* and
2543          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2544          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2545          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2546          * simply do nothing for reserved pfns.
2547          *
2548          * Whoever called remap_pfn_range is also going to call e.g.
2549          * unmap_mapping_range before the underlying pages are freed,
2550          * causing a call to our MMU notifier.
2551          *
2552          * Certain IO or PFNMAP mappings can be backed with valid
2553          * struct pages, but be allocated without refcounting e.g.,
2554          * tail pages of non-compound higher order allocations, which
2555          * would then underflow the refcount when the caller does the
2556          * required put_page. Don't allow those pages here.
2557          */ 
2558         if (!kvm_try_get_pfn(pfn))
2559                 r = -EFAULT;
2560 
2561 out:
2562         pte_unmap_unlock(ptep, ptl);
2563         *p_pfn = pfn;
2564 
2565         return r;
2566 }
2567 
2568 /*
2569  * Pin guest page in memory and return its pfn.
2570  * @addr: host virtual address which maps memory to the guest
2571  * @atomic: whether this function can sleep
2572  * @async: whether this function need to wait IO complete if the
2573  *         host page is not in the memory
2574  * @write_fault: whether we should get a writable host page
2575  * @writable: whether it allows to map a writable host page for !@write_fault
2576  *
2577  * The function will map a writable host page for these two cases:
2578  * 1): @write_fault = true
2579  * 2): @write_fault = false && @writable, @writable will tell the caller
2580  *     whether the mapping is writable.
2581  */
2582 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2583                      bool write_fault, bool *writable)
2584 {
2585         struct vm_area_struct *vma;
2586         kvm_pfn_t pfn = 0;
2587         int npages, r;
2588 
2589         /* we can do it either atomically or asynchronously, not both */
2590         BUG_ON(atomic && async);
2591 
2592         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2593                 return pfn;
2594 
2595         if (atomic)
2596                 return KVM_PFN_ERR_FAULT;
2597 
2598         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2599         if (npages == 1)
2600                 return pfn;
2601 
2602         mmap_read_lock(current->mm);
2603         if (npages == -EHWPOISON ||
2604               (!async && check_user_page_hwpoison(addr))) {
2605                 pfn = KVM_PFN_ERR_HWPOISON;
2606                 goto exit;
2607         }
2608 
2609 retry:
2610         vma = vma_lookup(current->mm, addr);
2611 
2612         if (vma == NULL)
2613                 pfn = KVM_PFN_ERR_FAULT;
2614         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2615                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2616                 if (r == -EAGAIN)
2617                         goto retry;
2618                 if (r < 0)
2619                         pfn = KVM_PFN_ERR_FAULT;
2620         } else {
2621                 if (async && vma_is_valid(vma, write_fault))
2622                         *async = true;
2623                 pfn = KVM_PFN_ERR_FAULT;
2624         }
2625 exit:
2626         mmap_read_unlock(current->mm);
2627         return pfn;
2628 }
2629 
2630 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2631                                bool atomic, bool *async, bool write_fault,
2632                                bool *writable, hva_t *hva)
2633 {
2634         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2635 
2636         if (hva)
2637                 *hva = addr;
2638 
2639         if (addr == KVM_HVA_ERR_RO_BAD) {
2640                 if (writable)
2641                         *writable = false;
2642                 return KVM_PFN_ERR_RO_FAULT;
2643         }
2644 
2645         if (kvm_is_error_hva(addr)) {
2646                 if (writable)
2647                         *writable = false;
2648                 return KVM_PFN_NOSLOT;
2649         }
2650 
2651         /* Do not map writable pfn in the readonly memslot. */
2652         if (writable && memslot_is_readonly(slot)) {
2653                 *writable = false;
2654                 writable = NULL;
2655         }
2656 
2657         return hva_to_pfn(addr, atomic, async, write_fault,
2658                           writable);
2659 }
2660 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2661 
2662 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2663                       bool *writable)
2664 {
2665         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2666                                     write_fault, writable, NULL);
2667 }
2668 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2669 
2670 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2671 {
2672         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2673 }
2674 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2675 
2676 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2677 {
2678         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2679 }
2680 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2681 
2682 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2683 {
2684         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2685 }
2686 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2687 
2688 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2689 {
2690         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2691 }
2692 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2693 
2694 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2695 {
2696         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2697 }
2698 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2699 
2700 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2701                             struct page **pages, int nr_pages)
2702 {
2703         unsigned long addr;
2704         gfn_t entry = 0;
2705 
2706         addr = gfn_to_hva_many(slot, gfn, &entry);
2707         if (kvm_is_error_hva(addr))
2708                 return -1;
2709 
2710         if (entry < nr_pages)
2711                 return 0;
2712 
2713         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2714 }
2715 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2716 
2717 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2718 {
2719         if (is_error_noslot_pfn(pfn))
2720                 return KVM_ERR_PTR_BAD_PAGE;
2721 
2722         if (kvm_is_reserved_pfn(pfn)) {
2723                 WARN_ON(1);
2724                 return KVM_ERR_PTR_BAD_PAGE;
2725         }
2726 
2727         return pfn_to_page(pfn);
2728 }
2729 
2730 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2731 {
2732         kvm_pfn_t pfn;
2733 
2734         pfn = gfn_to_pfn(kvm, gfn);
2735 
2736         return kvm_pfn_to_page(pfn);
2737 }
2738 EXPORT_SYMBOL_GPL(gfn_to_page);
2739 
2740 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2741 {
2742         if (pfn == 0)
2743                 return;
2744 
2745         if (dirty)
2746                 kvm_release_pfn_dirty(pfn);
2747         else
2748                 kvm_release_pfn_clean(pfn);
2749 }
2750 
2751 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2752 {
2753         kvm_pfn_t pfn;
2754         void *hva = NULL;
2755         struct page *page = KVM_UNMAPPED_PAGE;
2756 
2757         if (!map)
2758                 return -EINVAL;
2759 
2760         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2761         if (is_error_noslot_pfn(pfn))
2762                 return -EINVAL;
2763 
2764         if (pfn_valid(pfn)) {
2765                 page = pfn_to_page(pfn);
2766                 hva = kmap(page);
2767 #ifdef CONFIG_HAS_IOMEM
2768         } else {
2769                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2770 #endif
2771         }
2772 
2773         if (!hva)
2774                 return -EFAULT;
2775 
2776         map->page = page;
2777         map->hva = hva;
2778         map->pfn = pfn;
2779         map->gfn = gfn;
2780 
2781         return 0;
2782 }
2783 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2784 
2785 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2786 {
2787         if (!map)
2788                 return;
2789 
2790         if (!map->hva)
2791                 return;
2792 
2793         if (map->page != KVM_UNMAPPED_PAGE)
2794                 kunmap(map->page);
2795 #ifdef CONFIG_HAS_IOMEM
2796         else
2797                 memunmap(map->hva);
2798 #endif
2799 
2800         if (dirty)
2801                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2802 
2803         kvm_release_pfn(map->pfn, dirty);
2804 
2805         map->hva = NULL;
2806         map->page = NULL;
2807 }
2808 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2809 
2810 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2811 {
2812         kvm_pfn_t pfn;
2813 
2814         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2815 
2816         return kvm_pfn_to_page(pfn);
2817 }
2818 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2819 
2820 void kvm_release_page_clean(struct page *page)
2821 {
2822         WARN_ON(is_error_page(page));
2823 
2824         kvm_release_pfn_clean(page_to_pfn(page));
2825 }
2826 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2827 
2828 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2829 {
2830         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2831                 put_page(pfn_to_page(pfn));
2832 }
2833 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2834 
2835 void kvm_release_page_dirty(struct page *page)
2836 {
2837         WARN_ON(is_error_page(page));
2838 
2839         kvm_release_pfn_dirty(page_to_pfn(page));
2840 }
2841 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2842 
2843 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2844 {
2845         kvm_set_pfn_dirty(pfn);
2846         kvm_release_pfn_clean(pfn);
2847 }
2848 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2849 
2850 static bool kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)
2851 {
2852         if (!pfn_valid(pfn))
2853                 return false;
2854 
2855         /*
2856          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2857          * touched (e.g. set dirty) except by its owner".
2858          */
2859         return !PageReserved(pfn_to_page(pfn));
2860 }
2861 
2862 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2863 {
2864         if (kvm_is_ad_tracked_pfn(pfn))
2865                 SetPageDirty(pfn_to_page(pfn));
2866 }
2867 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2868 
2869 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2870 {
2871         if (kvm_is_ad_tracked_pfn(pfn))
2872                 mark_page_accessed(pfn_to_page(pfn));
2873 }
2874 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2875 
2876 static int next_segment(unsigned long len, int offset)
2877 {
2878         if (len > PAGE_SIZE - offset)
2879                 return PAGE_SIZE - offset;
2880         else
2881                 return len;
2882 }
2883 
2884 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2885                                  void *data, int offset, int len)
2886 {
2887         int r;
2888         unsigned long addr;
2889 
2890         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2891         if (kvm_is_error_hva(addr))
2892                 return -EFAULT;
2893         r = __copy_from_user(data, (void __user *)addr + offset, len);
2894         if (r)
2895                 return -EFAULT;
2896         return 0;
2897 }
2898 
2899 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2900                         int len)
2901 {
2902         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2903 
2904         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2905 }
2906 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2907 
2908 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2909                              int offset, int len)
2910 {
2911         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2912 
2913         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2914 }
2915 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2916 
2917 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2918 {
2919         gfn_t gfn = gpa >> PAGE_SHIFT;
2920         int seg;
2921         int offset = offset_in_page(gpa);
2922         int ret;
2923 
2924         while ((seg = next_segment(len, offset)) != 0) {
2925                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2926                 if (ret < 0)
2927                         return ret;
2928                 offset = 0;
2929                 len -= seg;
2930                 data += seg;
2931                 ++gfn;
2932         }
2933         return 0;
2934 }
2935 EXPORT_SYMBOL_GPL(kvm_read_guest);
2936 
2937 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2938 {
2939         gfn_t gfn = gpa >> PAGE_SHIFT;
2940         int seg;
2941         int offset = offset_in_page(gpa);
2942         int ret;
2943 
2944         while ((seg = next_segment(len, offset)) != 0) {
2945                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2946                 if (ret < 0)
2947                         return ret;
2948                 offset = 0;
2949                 len -= seg;
2950                 data += seg;
2951                 ++gfn;
2952         }
2953         return 0;
2954 }
2955 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2956 
2957 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2958                                    void *data, int offset, unsigned long len)
2959 {
2960         int r;
2961         unsigned long addr;
2962 
2963         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2964         if (kvm_is_error_hva(addr))
2965                 return -EFAULT;
2966         pagefault_disable();
2967         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2968         pagefault_enable();
2969         if (r)
2970                 return -EFAULT;
2971         return 0;
2972 }
2973 
2974 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2975                                void *data, unsigned long len)
2976 {
2977         gfn_t gfn = gpa >> PAGE_SHIFT;
2978         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2979         int offset = offset_in_page(gpa);
2980 
2981         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2982 }
2983 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2984 
2985 static int __kvm_write_guest_page(struct kvm *kvm,
2986                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2987                                   const void *data, int offset, int len)
2988 {
2989         int r;
2990         unsigned long addr;
2991 
2992         addr = gfn_to_hva_memslot(memslot, gfn);
2993         if (kvm_is_error_hva(addr))
2994                 return -EFAULT;
2995         r = __copy_to_user((void __user *)addr + offset, data, len);
2996         if (r)
2997                 return -EFAULT;
2998         mark_page_dirty_in_slot(kvm, memslot, gfn);
2999         return 0;
3000 }
3001 
3002 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3003                          const void *data, int offset, int len)
3004 {
3005         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3006 
3007         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3008 }
3009 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3010 
3011 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3012                               const void *data, int offset, int len)
3013 {
3014         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3015 
3016         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3017 }
3018 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3019 
3020 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3021                     unsigned long len)
3022 {
3023         gfn_t gfn = gpa >> PAGE_SHIFT;
3024         int seg;
3025         int offset = offset_in_page(gpa);
3026         int ret;
3027 
3028         while ((seg = next_segment(len, offset)) != 0) {
3029                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3030                 if (ret < 0)
3031                         return ret;
3032                 offset = 0;
3033                 len -= seg;
3034                 data += seg;
3035                 ++gfn;
3036         }
3037         return 0;
3038 }
3039 EXPORT_SYMBOL_GPL(kvm_write_guest);
3040 
3041 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3042                          unsigned long len)
3043 {
3044         gfn_t gfn = gpa >> PAGE_SHIFT;
3045         int seg;
3046         int offset = offset_in_page(gpa);
3047         int ret;
3048 
3049         while ((seg = next_segment(len, offset)) != 0) {
3050                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3051                 if (ret < 0)
3052                         return ret;
3053                 offset = 0;
3054                 len -= seg;
3055                 data += seg;
3056                 ++gfn;
3057         }
3058         return 0;
3059 }
3060 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3061 
3062 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3063                                        struct gfn_to_hva_cache *ghc,
3064                                        gpa_t gpa, unsigned long len)
3065 {
3066         int offset = offset_in_page(gpa);
3067         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3068         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3069         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3070         gfn_t nr_pages_avail;
3071 
3072         /* Update ghc->generation before performing any error checks. */
3073         ghc->generation = slots->generation;
3074 
3075         if (start_gfn > end_gfn) {
3076                 ghc->hva = KVM_HVA_ERR_BAD;
3077                 return -EINVAL;
3078         }
3079 
3080         /*
3081          * If the requested region crosses two memslots, we still
3082          * verify that the entire region is valid here.
3083          */
3084         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3085                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3086                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3087                                            &nr_pages_avail);
3088                 if (kvm_is_error_hva(ghc->hva))
3089                         return -EFAULT;
3090         }
3091 
3092         /* Use the slow path for cross page reads and writes. */
3093         if (nr_pages_needed == 1)
3094                 ghc->hva += offset;
3095         else
3096                 ghc->memslot = NULL;
3097 
3098         ghc->gpa = gpa;
3099         ghc->len = len;
3100         return 0;
3101 }
3102 
3103 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3104                               gpa_t gpa, unsigned long len)
3105 {
3106         struct kvm_memslots *slots = kvm_memslots(kvm);
3107         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3108 }
3109 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3110 
3111 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3112                                   void *data, unsigned int offset,
3113                                   unsigned long len)
3114 {
3115         struct kvm_memslots *slots = kvm_memslots(kvm);
3116         int r;
3117         gpa_t gpa = ghc->gpa + offset;
3118 
3119         if (WARN_ON_ONCE(len + offset > ghc->len))
3120                 return -EINVAL;
3121 
3122         if (slots->generation != ghc->generation) {
3123                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3124                         return -EFAULT;
3125         }
3126 
3127         if (kvm_is_error_hva(ghc->hva))
3128                 return -EFAULT;
3129 
3130         if (unlikely(!ghc->memslot))
3131                 return kvm_write_guest(kvm, gpa, data, len);
3132 
3133         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3134         if (r)
3135                 return -EFAULT;
3136         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3137 
3138         return 0;
3139 }
3140 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3141 
3142 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3143                            void *data, unsigned long len)
3144 {
3145         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3146 }
3147 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3148 
3149 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3150                                  void *data, unsigned int offset,
3151                                  unsigned long len)
3152 {
3153         struct kvm_memslots *slots = kvm_memslots(kvm);
3154         int r;
3155         gpa_t gpa = ghc->gpa + offset;
3156 
3157         if (WARN_ON_ONCE(len + offset > ghc->len))
3158                 return -EINVAL;
3159 
3160         if (slots->generation != ghc->generation) {
3161                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3162                         return -EFAULT;
3163         }
3164 
3165         if (kvm_is_error_hva(ghc->hva))
3166                 return -EFAULT;
3167 
3168         if (unlikely(!ghc->memslot))
3169                 return kvm_read_guest(kvm, gpa, data, len);
3170 
3171         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3172         if (r)
3173                 return -EFAULT;
3174 
3175         return 0;
3176 }
3177 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3178 
3179 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3180                           void *data, unsigned long len)
3181 {
3182         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3183 }
3184 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3185 
3186 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3187 {
3188         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3189         gfn_t gfn = gpa >> PAGE_SHIFT;
3190         int seg;
3191         int offset = offset_in_page(gpa);
3192         int ret;
3193 
3194         while ((seg = next_segment(len, offset)) != 0) {
3195                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3196                 if (ret < 0)
3197                         return ret;
3198                 offset = 0;
3199                 len -= seg;
3200                 ++gfn;
3201         }
3202         return 0;
3203 }
3204 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3205 
3206 void mark_page_dirty_in_slot(struct kvm *kvm,
3207                              const struct kvm_memory_slot *memslot,
3208                              gfn_t gfn)
3209 {
3210         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3211 
3212 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3213         if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3214                 return;
3215 #endif
3216 
3217         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3218                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3219                 u32 slot = (memslot->as_id << 16) | memslot->id;
3220 
3221                 if (kvm->dirty_ring_size)
3222                         kvm_dirty_ring_push(&vcpu->dirty_ring,
3223                                             slot, rel_gfn);
3224                 else
3225                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3226         }
3227 }
3228 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3229 
3230 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3231 {
3232         struct kvm_memory_slot *memslot;
3233 
3234         memslot = gfn_to_memslot(kvm, gfn);
3235         mark_page_dirty_in_slot(kvm, memslot, gfn);
3236 }
3237 EXPORT_SYMBOL_GPL(mark_page_dirty);
3238 
3239 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3240 {
3241         struct kvm_memory_slot *memslot;
3242 
3243         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3244         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3245 }
3246 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3247 
3248 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3249 {
3250         if (!vcpu->sigset_active)
3251                 return;
3252 
3253         /*
3254          * This does a lockless modification of ->real_blocked, which is fine
3255          * because, only current can change ->real_blocked and all readers of
3256          * ->real_blocked don't care as long ->real_blocked is always a subset
3257          * of ->blocked.
3258          */
3259         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3260 }
3261 
3262 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3263 {
3264         if (!vcpu->sigset_active)
3265                 return;
3266 
3267         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3268         sigemptyset(&current->real_blocked);
3269 }
3270 
3271 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3272 {
3273         unsigned int old, val, grow, grow_start;
3274 
3275         old = val = vcpu->halt_poll_ns;
3276         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3277         grow = READ_ONCE(halt_poll_ns_grow);
3278         if (!grow)
3279                 goto out;
3280 
3281         val *= grow;
3282         if (val < grow_start)
3283                 val = grow_start;
3284 
3285         if (val > vcpu->kvm->max_halt_poll_ns)
3286                 val = vcpu->kvm->max_halt_poll_ns;
3287 
3288         vcpu->halt_poll_ns = val;
3289 out:
3290         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3291 }
3292 
3293 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3294 {
3295         unsigned int old, val, shrink, grow_start;
3296 
3297         old = val = vcpu->halt_poll_ns;
3298         shrink = READ_ONCE(halt_poll_ns_shrink);
3299         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3300         if (shrink == 0)
3301                 val = 0;
3302         else
3303                 val /= shrink;
3304 
3305         if (val < grow_start)
3306                 val = 0;
3307 
3308         vcpu->halt_poll_ns = val;
3309         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3310 }
3311 
3312 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3313 {
3314         int ret = -EINTR;
3315         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3316 
3317         if (kvm_arch_vcpu_runnable(vcpu)) {
3318                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3319                 goto out;
3320         }
3321         if (kvm_cpu_has_pending_timer(vcpu))
3322                 goto out;
3323         if (signal_pending(current))
3324                 goto out;
3325         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3326                 goto out;
3327 
3328         ret = 0;
3329 out:
3330         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3331         return ret;
3332 }
3333 
3334 /*
3335  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3336  * pending.  This is mostly used when halting a vCPU, but may also be used
3337  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3338  */
3339 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3340 {
3341         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3342         bool waited = false;
3343 
3344         vcpu->stat.generic.blocking = 1;
3345 
3346         preempt_disable();
3347         kvm_arch_vcpu_blocking(vcpu);
3348         prepare_to_rcuwait(wait);
3349         preempt_enable();
3350 
3351         for (;;) {
3352                 set_current_state(TASK_INTERRUPTIBLE);
3353 
3354                 if (kvm_vcpu_check_block(vcpu) < 0)
3355                         break;
3356 
3357                 waited = true;
3358                 schedule();
3359         }
3360 
3361         preempt_disable();
3362         finish_rcuwait(wait);
3363         kvm_arch_vcpu_unblocking(vcpu);
3364         preempt_enable();
3365 
3366         vcpu->stat.generic.blocking = 0;
3367 
3368         return waited;
3369 }
3370 
3371 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3372                                           ktime_t end, bool success)
3373 {
3374         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3375         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3376 
3377         ++vcpu->stat.generic.halt_attempted_poll;
3378 
3379         if (success) {
3380                 ++vcpu->stat.generic.halt_successful_poll;
3381 
3382                 if (!vcpu_valid_wakeup(vcpu))
3383                         ++vcpu->stat.generic.halt_poll_invalid;
3384 
3385                 stats->halt_poll_success_ns += poll_ns;
3386                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3387         } else {
3388                 stats->halt_poll_fail_ns += poll_ns;
3389                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3390         }
3391 }
3392 
3393 /*
3394  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3395  * polling is enabled, busy wait for a short time before blocking to avoid the
3396  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3397  * is halted.
3398  */
3399 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3400 {
3401         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3402         bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3403         ktime_t start, cur, poll_end;
3404         bool waited = false;
3405         u64 halt_ns;
3406 
3407         start = cur = poll_end = ktime_get();
3408         if (do_halt_poll) {
3409                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3410 
3411                 do {
3412                         /*
3413                          * This sets KVM_REQ_UNHALT if an interrupt
3414                          * arrives.
3415                          */
3416                         if (kvm_vcpu_check_block(vcpu) < 0)
3417                                 goto out;
3418                         cpu_relax();
3419                         poll_end = cur = ktime_get();
3420                 } while (kvm_vcpu_can_poll(cur, stop));
3421         }
3422 
3423         waited = kvm_vcpu_block(vcpu);
3424 
3425         cur = ktime_get();
3426         if (waited) {
3427                 vcpu->stat.generic.halt_wait_ns +=
3428                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3429                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3430                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3431         }
3432 out:
3433         /* The total time the vCPU was "halted", including polling time. */
3434         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3435 
3436         /*
3437          * Note, halt-polling is considered successful so long as the vCPU was
3438          * never actually scheduled out, i.e. even if the wake event arrived
3439          * after of the halt-polling loop itself, but before the full wait.
3440          */
3441         if (do_halt_poll)
3442                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3443 
3444         if (halt_poll_allowed) {
3445                 if (!vcpu_valid_wakeup(vcpu)) {
3446                         shrink_halt_poll_ns(vcpu);
3447                 } else if (vcpu->kvm->max_halt_poll_ns) {
3448                         if (halt_ns <= vcpu->halt_poll_ns)
3449                                 ;
3450                         /* we had a long block, shrink polling */
3451                         else if (vcpu->halt_poll_ns &&
3452                                  halt_ns > vcpu->kvm->max_halt_poll_ns)
3453                                 shrink_halt_poll_ns(vcpu);
3454                         /* we had a short halt and our poll time is too small */
3455                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3456                                  halt_ns < vcpu->kvm->max_halt_poll_ns)
3457                                 grow_halt_poll_ns(vcpu);
3458                 } else {
3459                         vcpu->halt_poll_ns = 0;
3460                 }
3461         }
3462 
3463         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3464 }
3465 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3466 
3467 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3468 {
3469         if (__kvm_vcpu_wake_up(vcpu)) {
3470                 WRITE_ONCE(vcpu->ready, true);
3471                 ++vcpu->stat.generic.halt_wakeup;
3472                 return true;
3473         }
3474 
3475         return false;
3476 }
3477 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3478 
3479 #ifndef CONFIG_S390
3480 /*
3481  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3482  */
3483 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3484 {
3485         int me, cpu;
3486 
3487         if (kvm_vcpu_wake_up(vcpu))
3488                 return;
3489 
3490         me = get_cpu();
3491         /*
3492          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3493          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3494          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3495          * within the vCPU thread itself.
3496          */
3497         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3498                 if (vcpu->mode == IN_GUEST_MODE)
3499                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3500                 goto out;
3501         }
3502 
3503         /*
3504          * Note, the vCPU could get migrated to a different pCPU at any point
3505          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3506          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3507          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3508          * vCPU also requires it to leave IN_GUEST_MODE.
3509          */
3510         if (kvm_arch_vcpu_should_kick(vcpu)) {
3511                 cpu = READ_ONCE(vcpu->cpu);
3512                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3513                         smp_send_reschedule(cpu);
3514         }
3515 out:
3516         put_cpu();
3517 }
3518 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3519 #endif /* !CONFIG_S390 */
3520 
3521 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3522 {
3523         struct pid *pid;
3524         struct task_struct *task = NULL;
3525         int ret = 0;
3526 
3527         rcu_read_lock();
3528         pid = rcu_dereference(target->pid);
3529         if (pid)
3530                 task = get_pid_task(pid, PIDTYPE_PID);
3531         rcu_read_unlock();
3532         if (!task)
3533                 return ret;
3534         ret = yield_to(task, 1);
3535         put_task_struct(task);
3536 
3537         return ret;
3538 }
3539 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3540 
3541 /*
3542  * Helper that checks whether a VCPU is eligible for directed yield.
3543  * Most eligible candidate to yield is decided by following heuristics:
3544  *
3545  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3546  *  (preempted lock holder), indicated by @in_spin_loop.
3547  *  Set at the beginning and cleared at the end of interception/PLE handler.
3548  *
3549  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3550  *  chance last time (mostly it has become eligible now since we have probably
3551  *  yielded to lockholder in last iteration. This is done by toggling
3552  *  @dy_eligible each time a VCPU checked for eligibility.)
3553  *
3554  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3555  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3556  *  burning. Giving priority for a potential lock-holder increases lock
3557  *  progress.
3558  *
3559  *  Since algorithm is based on heuristics, accessing another VCPU data without
3560  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3561  *  and continue with next VCPU and so on.
3562  */
3563 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3564 {
3565 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3566         bool eligible;
3567 
3568         eligible = !vcpu->spin_loop.in_spin_loop ||
3569                     vcpu->spin_loop.dy_eligible;
3570 
3571         if (vcpu->spin_loop.in_spin_loop)
3572                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3573 
3574         return eligible;
3575 #else
3576         return true;
3577 #endif
3578 }
3579 
3580 /*
3581  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3582  * a vcpu_load/vcpu_put pair.  However, for most architectures
3583  * kvm_arch_vcpu_runnable does not require vcpu_load.
3584  */
3585 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3586 {
3587         return kvm_arch_vcpu_runnable(vcpu);
3588 }
3589 
3590 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3591 {
3592         if (kvm_arch_dy_runnable(vcpu))
3593                 return true;
3594 
3595 #ifdef CONFIG_KVM_ASYNC_PF
3596         if (!list_empty_careful(&vcpu->async_pf.done))
3597                 return true;
3598 #endif
3599 
3600         return false;
3601 }
3602 
3603 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3604 {
3605         return false;
3606 }
3607 
3608 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3609 {
3610         struct kvm *kvm = me->kvm;
3611         struct kvm_vcpu *vcpu;
3612         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3613         unsigned long i;
3614         int yielded = 0;
3615         int try = 3;
3616         int pass;
3617 
3618         kvm_vcpu_set_in_spin_loop(me, true);
3619         /*
3620          * We boost the priority of a VCPU that is runnable but not
3621          * currently running, because it got preempted by something
3622          * else and called schedule in __vcpu_run.  Hopefully that
3623          * VCPU is holding the lock that we need and will release it.
3624          * We approximate round-robin by starting at the last boosted VCPU.
3625          */
3626         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3627                 kvm_for_each_vcpu(i, vcpu, kvm) {
3628                         if (!pass && i <= last_boosted_vcpu) {
3629                                 i = last_boosted_vcpu;
3630                                 continue;
3631                         } else if (pass && i > last_boosted_vcpu)
3632                                 break;
3633                         if (!READ_ONCE(vcpu->ready))
3634                                 continue;
3635                         if (vcpu == me)
3636                                 continue;
3637                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3638                                 continue;
3639                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3640                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3641                             !kvm_arch_vcpu_in_kernel(vcpu))
3642                                 continue;
3643                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3644                                 continue;
3645 
3646                         yielded = kvm_vcpu_yield_to(vcpu);
3647                         if (yielded > 0) {
3648                                 kvm->last_boosted_vcpu = i;
3649                                 break;
3650                         } else if (yielded < 0) {
3651                                 try--;
3652                                 if (!try)
3653                                         break;
3654                         }
3655                 }
3656         }
3657         kvm_vcpu_set_in_spin_loop(me, false);
3658 
3659         /* Ensure vcpu is not eligible during next spinloop */
3660         kvm_vcpu_set_dy_eligible(me, false);
3661 }
3662 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3663 
3664 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3665 {
3666 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3667         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3668             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3669              kvm->dirty_ring_size / PAGE_SIZE);
3670 #else
3671         return false;
3672 #endif
3673 }
3674 
3675 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3676 {
3677         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3678         struct page *page;
3679 
3680         if (vmf->pgoff == 0)
3681                 page = virt_to_page(vcpu->run);
3682 #ifdef CONFIG_X86
3683         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3684                 page = virt_to_page(vcpu->arch.pio_data);
3685 #endif
3686 #ifdef CONFIG_KVM_MMIO
3687         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3688                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3689 #endif
3690         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3691                 page = kvm_dirty_ring_get_page(
3692                     &vcpu->dirty_ring,
3693                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3694         else
3695                 return kvm_arch_vcpu_fault(vcpu, vmf);
3696         get_page(page);
3697         vmf->page = page;
3698         return 0;
3699 }
3700 
3701 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3702         .fault = kvm_vcpu_fault,
3703 };
3704 
3705 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3706 {
3707         struct kvm_vcpu *vcpu = file->private_data;
3708         unsigned long pages = vma_pages(vma);
3709 
3710         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3711              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3712             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3713                 return -EINVAL;
3714 
3715         vma->vm_ops = &kvm_vcpu_vm_ops;
3716         return 0;
3717 }
3718 
3719 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3720 {
3721         struct kvm_vcpu *vcpu = filp->private_data;
3722 
3723         kvm_put_kvm(vcpu->kvm);
3724         return 0;
3725 }
3726 
3727 static const struct file_operations kvm_vcpu_fops = {
3728         .release        = kvm_vcpu_release,
3729         .unlocked_ioctl = kvm_vcpu_ioctl,
3730         .mmap           = kvm_vcpu_mmap,
3731         .llseek         = noop_llseek,
3732         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3733 };
3734 
3735 /*
3736  * Allocates an inode for the vcpu.
3737  */
3738 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3739 {
3740         char name[8 + 1 + ITOA_MAX_LEN + 1];
3741 
3742         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3743         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3744 }
3745 
3746 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3747 {
3748 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3749         struct dentry *debugfs_dentry;
3750         char dir_name[ITOA_MAX_LEN * 2];
3751 
3752         if (!debugfs_initialized())
3753                 return;
3754 
3755         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3756         debugfs_dentry = debugfs_create_dir(dir_name,
3757                                             vcpu->kvm->debugfs_dentry);
3758 
3759         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3760 #endif
3761 }
3762 
3763 /*
3764  * Creates some virtual cpus.  Good luck creating more than one.
3765  */
3766 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3767 {
3768         int r;
3769         struct kvm_vcpu *vcpu;
3770         struct page *page;
3771 
3772         if (id >= KVM_MAX_VCPU_IDS)
3773                 return -EINVAL;
3774 
3775         mutex_lock(&kvm->lock);
3776         if (kvm->created_vcpus >= kvm->max_vcpus) {
3777                 mutex_unlock(&kvm->lock);
3778                 return -EINVAL;
3779         }
3780 
3781         kvm->created_vcpus++;
3782         mutex_unlock(&kvm->lock);
3783 
3784         r = kvm_arch_vcpu_precreate(kvm, id);
3785         if (r)
3786                 goto vcpu_decrement;
3787 
3788         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3789         if (!vcpu) {
3790                 r = -ENOMEM;
3791                 goto vcpu_decrement;
3792         }
3793 
3794         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3795         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3796         if (!page) {
3797                 r = -ENOMEM;
3798                 goto vcpu_free;
3799         }
3800         vcpu->run = page_address(page);
3801 
3802         kvm_vcpu_init(vcpu, kvm, id);
3803 
3804         r = kvm_arch_vcpu_create(vcpu);
3805         if (r)
3806                 goto vcpu_free_run_page;
3807 
3808         if (kvm->dirty_ring_size) {
3809                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3810                                          id, kvm->dirty_ring_size);
3811                 if (r)
3812                         goto arch_vcpu_destroy;
3813         }
3814 
3815         mutex_lock(&kvm->lock);
3816         if (kvm_get_vcpu_by_id(kvm, id)) {
3817                 r = -EEXIST;
3818                 goto unlock_vcpu_destroy;
3819         }
3820 
3821         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3822         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3823         BUG_ON(r == -EBUSY);
3824         if (r)
3825                 goto unlock_vcpu_destroy;
3826 
3827         /* Fill the stats id string for the vcpu */
3828         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3829                  task_pid_nr(current), id);
3830 
3831         /* Now it's all set up, let userspace reach it */
3832         kvm_get_kvm(kvm);
3833         r = create_vcpu_fd(vcpu);
3834         if (r < 0) {
3835                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3836                 kvm_put_kvm_no_destroy(kvm);
3837                 goto unlock_vcpu_destroy;
3838         }
3839 
3840         /*
3841          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3842          * pointer before kvm->online_vcpu's incremented value.
3843          */
3844         smp_wmb();
3845         atomic_inc(&kvm->online_vcpus);
3846 
3847         mutex_unlock(&kvm->lock);
3848         kvm_arch_vcpu_postcreate(vcpu);
3849         kvm_create_vcpu_debugfs(vcpu);
3850         return r;
3851 
3852 unlock_vcpu_destroy:
3853         mutex_unlock(&kvm->lock);
3854         kvm_dirty_ring_free(&vcpu->dirty_ring);
3855 arch_vcpu_destroy:
3856         kvm_arch_vcpu_destroy(vcpu);
3857 vcpu_free_run_page:
3858         free_page((unsigned long)vcpu->run);
3859 vcpu_free:
3860         kmem_cache_free(kvm_vcpu_cache, vcpu);
3861 vcpu_decrement:
3862         mutex_lock(&kvm->lock);
3863         kvm->created_vcpus--;
3864         mutex_unlock(&kvm->lock);
3865         return r;
3866 }
3867 
3868 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3869 {
3870         if (sigset) {
3871                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3872                 vcpu->sigset_active = 1;
3873                 vcpu->sigset = *sigset;
3874         } else
3875                 vcpu->sigset_active = 0;
3876         return 0;
3877 }
3878 
3879 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3880                               size_t size, loff_t *offset)
3881 {
3882         struct kvm_vcpu *vcpu = file->private_data;
3883 
3884         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3885                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3886                         sizeof(vcpu->stat), user_buffer, size, offset);
3887 }
3888 
3889 static const struct file_operations kvm_vcpu_stats_fops = {
3890         .read = kvm_vcpu_stats_read,
3891         .llseek = noop_llseek,
3892 };
3893 
3894 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3895 {
3896         int fd;
3897         struct file *file;
3898         char name[15 + ITOA_MAX_LEN + 1];
3899 
3900         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3901 
3902         fd = get_unused_fd_flags(O_CLOEXEC);
3903         if (fd < 0)
3904                 return fd;
3905 
3906         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3907         if (IS_ERR(file)) {
3908                 put_unused_fd(fd);
3909                 return PTR_ERR(file);
3910         }
3911         file->f_mode |= FMODE_PREAD;
3912         fd_install(fd, file);
3913 
3914         return fd;
3915 }
3916 
3917 static long kvm_vcpu_ioctl(struct file *filp,
3918                            unsigned int ioctl, unsigned long arg)
3919 {
3920         struct kvm_vcpu *vcpu = filp->private_data;
3921         void __user *argp = (void __user *)arg;
3922         int r;
3923         struct kvm_fpu *fpu = NULL;
3924         struct kvm_sregs *kvm_sregs = NULL;
3925 
3926         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3927                 return -EIO;
3928 
3929         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3930                 return -EINVAL;
3931 
3932         /*
3933          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3934          * execution; mutex_lock() would break them.
3935          */
3936         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3937         if (r != -ENOIOCTLCMD)
3938                 return r;
3939 
3940         if (mutex_lock_killable(&vcpu->mutex))
3941                 return -EINTR;
3942         switch (ioctl) {
3943         case KVM_RUN: {
3944                 struct pid *oldpid;
3945                 r = -EINVAL;
3946                 if (arg)
3947                         goto out;
3948                 oldpid = rcu_access_pointer(vcpu->pid);
3949                 if (unlikely(oldpid != task_pid(current))) {
3950                         /* The thread running this VCPU changed. */
3951                         struct pid *newpid;
3952 
3953                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3954                         if (r)
3955                                 break;
3956 
3957                         newpid = get_task_pid(current, PIDTYPE_PID);
3958                         rcu_assign_pointer(vcpu->pid, newpid);
3959                         if (oldpid)
3960                                 synchronize_rcu();
3961                         put_pid(oldpid);
3962                 }
3963                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3964                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3965                 break;
3966         }
3967         case KVM_GET_REGS: {
3968                 struct kvm_regs *kvm_regs;
3969 
3970                 r = -ENOMEM;
3971                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3972                 if (!kvm_regs)
3973                         goto out;
3974                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3975                 if (r)
3976                         goto out_free1;
3977                 r = -EFAULT;
3978                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3979                         goto out_free1;
3980                 r = 0;
3981 out_free1:
3982                 kfree(kvm_regs);
3983                 break;
3984         }
3985         case KVM_SET_REGS: {
3986                 struct kvm_regs *kvm_regs;
3987 
3988                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3989                 if (IS_ERR(kvm_regs)) {
3990                         r = PTR_ERR(kvm_regs);
3991                         goto out;
3992                 }
3993                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3994                 kfree(kvm_regs);
3995                 break;
3996         }
3997         case KVM_GET_SREGS: {
3998                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3999                                     GFP_KERNEL_ACCOUNT);
4000                 r = -ENOMEM;
4001                 if (!kvm_sregs)
4002                         goto out;
4003                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4004                 if (r)
4005                         goto out;
4006                 r = -EFAULT;
4007                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4008                         goto out;
4009                 r = 0;
4010                 break;
4011         }
4012         case KVM_SET_SREGS: {
4013                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4014                 if (IS_ERR(kvm_sregs)) {
4015                         r = PTR_ERR(kvm_sregs);
4016                         kvm_sregs = NULL;
4017                         goto out;
4018                 }
4019                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4020                 break;
4021         }
4022         case KVM_GET_MP_STATE: {
4023                 struct kvm_mp_state mp_state;
4024 
4025                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4026                 if (r)
4027                         goto out;
4028                 r = -EFAULT;
4029                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4030                         goto out;
4031                 r = 0;
4032                 break;
4033         }
4034         case KVM_SET_MP_STATE: {
4035                 struct kvm_mp_state mp_state;
4036 
4037                 r = -EFAULT;
4038                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4039                         goto out;
4040                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4041                 break;
4042         }
4043         case KVM_TRANSLATE: {
4044                 struct kvm_translation tr;
4045 
4046                 r = -EFAULT;
4047                 if (copy_from_user(&tr, argp, sizeof(tr)))
4048                         goto out;
4049                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4050                 if (r)
4051                         goto out;
4052                 r = -EFAULT;
4053                 if (copy_to_user(argp, &tr, sizeof(tr)))
4054                         goto out;
4055                 r = 0;
4056                 break;
4057         }
4058         case KVM_SET_GUEST_DEBUG: {
4059                 struct kvm_guest_debug dbg;
4060 
4061                 r = -EFAULT;
4062                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4063                         goto out;
4064                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4065                 break;
4066         }
4067         case KVM_SET_SIGNAL_MASK: {
4068                 struct kvm_signal_mask __user *sigmask_arg = argp;
4069                 struct kvm_signal_mask kvm_sigmask;
4070                 sigset_t sigset, *p;
4071 
4072                 p = NULL;
4073                 if (argp) {
4074                         r = -EFAULT;
4075                         if (copy_from_user(&kvm_sigmask, argp,
4076                                            sizeof(kvm_sigmask)))
4077                                 goto out;
4078                         r = -EINVAL;
4079                         if (kvm_sigmask.len != sizeof(sigset))
4080                                 goto out;
4081                         r = -EFAULT;
4082                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4083                                            sizeof(sigset)))
4084                                 goto out;
4085                         p = &sigset;
4086                 }
4087                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4088                 break;
4089         }
4090         case KVM_GET_FPU: {
4091                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4092                 r = -ENOMEM;
4093                 if (!fpu)
4094                         goto out;
4095                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4096                 if (r)
4097                         goto out;
4098                 r = -EFAULT;
4099                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4100                         goto out;
4101                 r = 0;
4102                 break;
4103         }
4104         case KVM_SET_FPU: {
4105                 fpu = memdup_user(argp, sizeof(*fpu));
4106                 if (IS_ERR(fpu)) {
4107                         r = PTR_ERR(fpu);
4108                         fpu = NULL;
4109                         goto out;
4110                 }
4111                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4112                 break;
4113         }
4114         case KVM_GET_STATS_FD: {
4115                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4116                 break;
4117         }
4118         default:
4119                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4120         }
4121 out:
4122         mutex_unlock(&vcpu->mutex);
4123         kfree(fpu);
4124         kfree(kvm_sregs);
4125         return r;
4126 }
4127 
4128 #ifdef CONFIG_KVM_COMPAT
4129 static long kvm_vcpu_compat_ioctl(struct file *filp,
4130                                   unsigned int ioctl, unsigned long arg)
4131 {
4132         struct kvm_vcpu *vcpu = filp->private_data;
4133         void __user *argp = compat_ptr(arg);
4134         int r;
4135 
4136         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4137                 return -EIO;
4138 
4139         switch (ioctl) {
4140         case KVM_SET_SIGNAL_MASK: {
4141                 struct kvm_signal_mask __user *sigmask_arg = argp;
4142                 struct kvm_signal_mask kvm_sigmask;
4143                 sigset_t sigset;
4144 
4145                 if (argp) {
4146                         r = -EFAULT;
4147                         if (copy_from_user(&kvm_sigmask, argp,
4148                                            sizeof(kvm_sigmask)))
4149                                 goto out;
4150                         r = -EINVAL;
4151                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4152                                 goto out;
4153                         r = -EFAULT;
4154                         if (get_compat_sigset(&sigset,
4155                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4156                                 goto out;
4157                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4158                 } else
4159                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4160                 break;
4161         }
4162         default:
4163                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4164         }
4165 
4166 out:
4167         return r;
4168 }
4169 #endif
4170 
4171 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4172 {
4173         struct kvm_device *dev = filp->private_data;
4174 
4175         if (dev->ops->mmap)
4176                 return dev->ops->mmap(dev, vma);
4177 
4178         return -ENODEV;
4179 }
4180 
4181 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4182                                  int (*accessor)(struct kvm_device *dev,
4183                                                  struct kvm_device_attr *attr),
4184                                  unsigned long arg)
4185 {
4186         struct kvm_device_attr attr;
4187 
4188         if (!accessor)
4189                 return -EPERM;
4190 
4191         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4192                 return -EFAULT;
4193 
4194         return accessor(dev, &attr);
4195 }
4196 
4197 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4198                              unsigned long arg)
4199 {
4200         struct kvm_device *dev = filp->private_data;
4201 
4202         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4203                 return -EIO;
4204 
4205         switch (ioctl) {
4206         case KVM_SET_DEVICE_ATTR:
4207                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4208         case KVM_GET_DEVICE_ATTR:
4209                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4210         case KVM_HAS_DEVICE_ATTR:
4211                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4212         default:
4213                 if (dev->ops->ioctl)
4214                         return dev->ops->ioctl(dev, ioctl, arg);
4215 
4216                 return -ENOTTY;
4217         }
4218 }
4219 
4220 static int kvm_device_release(struct inode *inode, struct file *filp)
4221 {
4222         struct kvm_device *dev = filp->private_data;
4223         struct kvm *kvm = dev->kvm;
4224 
4225         if (dev->ops->release) {
4226                 mutex_lock(&kvm->lock);
4227                 list_del(&dev->vm_node);
4228                 dev->ops->release(dev);
4229                 mutex_unlock(&kvm->lock);
4230         }
4231 
4232         kvm_put_kvm(kvm);
4233         return 0;
4234 }
4235 
4236 static const struct file_operations kvm_device_fops = {
4237         .unlocked_ioctl = kvm_device_ioctl,
4238         .release = kvm_device_release,
4239         KVM_COMPAT(kvm_device_ioctl),
4240         .mmap = kvm_device_mmap,
4241 };
4242 
4243 struct kvm_device *kvm_device_from_filp(struct file *filp)
4244 {
4245         if (filp->f_op != &kvm_device_fops)
4246                 return NULL;
4247 
4248         return filp->private_data;
4249 }
4250 
4251 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4252 #ifdef CONFIG_KVM_MPIC
4253         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4254         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4255 #endif
4256 };
4257 
4258 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4259 {
4260         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4261                 return -ENOSPC;
4262 
4263         if (kvm_device_ops_table[type] != NULL)
4264                 return -EEXIST;
4265 
4266         kvm_device_ops_table[type] = ops;
4267         return 0;
4268 }
4269 
4270 void kvm_unregister_device_ops(u32 type)
4271 {
4272         if (kvm_device_ops_table[type] != NULL)
4273                 kvm_device_ops_table[type] = NULL;
4274 }
4275 
4276 static int kvm_ioctl_create_device(struct kvm *kvm,
4277                                    struct kvm_create_device *cd)
4278 {
4279         const struct kvm_device_ops *ops = NULL;
4280         struct kvm_device *dev;
4281         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4282         int type;
4283         int ret;
4284 
4285         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4286                 return -ENODEV;
4287 
4288         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4289         ops = kvm_device_ops_table[type];
4290         if (ops == NULL)
4291                 return -ENODEV;
4292 
4293         if (test)
4294                 return 0;
4295 
4296         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4297         if (!dev)
4298                 return -ENOMEM;
4299 
4300         dev->ops = ops;
4301         dev->kvm = kvm;
4302 
4303         mutex_lock(&kvm->lock);
4304         ret = ops->create(dev, type);
4305         if (ret < 0) {
4306                 mutex_unlock(&kvm->lock);
4307                 kfree(dev);
4308                 return ret;
4309         }
4310         list_add(&dev->vm_node, &kvm->devices);
4311         mutex_unlock(&kvm->lock);
4312 
4313         if (ops->init)
4314                 ops->init(dev);
4315 
4316         kvm_get_kvm(kvm);
4317         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4318         if (ret < 0) {
4319                 kvm_put_kvm_no_destroy(kvm);
4320                 mutex_lock(&kvm->lock);
4321                 list_del(&dev->vm_node);
4322                 if (ops->release)
4323                         ops->release(dev);
4324                 mutex_unlock(&kvm->lock);
4325                 if (ops->destroy)
4326                         ops->destroy(dev);
4327                 return ret;
4328         }
4329 
4330         cd->fd = ret;
4331         return 0;
4332 }
4333 
4334 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4335 {
4336         switch (arg) {
4337         case KVM_CAP_USER_MEMORY:
4338         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4339         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4340         case KVM_CAP_INTERNAL_ERROR_DATA:
4341 #ifdef CONFIG_HAVE_KVM_MSI
4342         case KVM_CAP_SIGNAL_MSI:
4343 #endif
4344 #ifdef CONFIG_HAVE_KVM_IRQFD
4345         case KVM_CAP_IRQFD:
4346         case KVM_CAP_IRQFD_RESAMPLE:
4347 #endif
4348         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4349         case KVM_CAP_CHECK_EXTENSION_VM:
4350         case KVM_CAP_ENABLE_CAP_VM:
4351         case KVM_CAP_HALT_POLL:
4352                 return 1;
4353 #ifdef CONFIG_KVM_MMIO
4354         case KVM_CAP_COALESCED_MMIO:
4355                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4356         case KVM_CAP_COALESCED_PIO:
4357                 return 1;
4358 #endif
4359 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4360         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4361                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4362 #endif
4363 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4364         case KVM_CAP_IRQ_ROUTING:
4365                 return KVM_MAX_IRQ_ROUTES;
4366 #endif
4367 #if KVM_ADDRESS_SPACE_NUM > 1
4368         case KVM_CAP_MULTI_ADDRESS_SPACE:
4369                 return KVM_ADDRESS_SPACE_NUM;
4370 #endif
4371         case KVM_CAP_NR_MEMSLOTS:
4372                 return KVM_USER_MEM_SLOTS;
4373         case KVM_CAP_DIRTY_LOG_RING:
4374 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4375                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4376 #else
4377                 return 0;
4378 #endif
4379         case KVM_CAP_BINARY_STATS_FD:
4380         case KVM_CAP_SYSTEM_EVENT_DATA:
4381                 return 1;
4382         default:
4383                 break;
4384         }
4385         return kvm_vm_ioctl_check_extension(kvm, arg);
4386 }
4387 
4388 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4389 {
4390         int r;
4391 
4392         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4393                 return -EINVAL;
4394 
4395         /* the size should be power of 2 */
4396         if (!size || (size & (size - 1)))
4397                 return -EINVAL;
4398 
4399         /* Should be bigger to keep the reserved entries, or a page */
4400         if (size < kvm_dirty_ring_get_rsvd_entries() *
4401             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4402                 return -EINVAL;
4403 
4404         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4405             sizeof(struct kvm_dirty_gfn))
4406                 return -E2BIG;
4407 
4408         /* We only allow it to set once */
4409         if (kvm->dirty_ring_size)
4410                 return -EINVAL;
4411 
4412         mutex_lock(&kvm->lock);
4413 
4414         if (kvm->created_vcpus) {
4415                 /* We don't allow to change this value after vcpu created */
4416                 r = -EINVAL;
4417         } else {
4418                 kvm->dirty_ring_size = size;
4419                 r = 0;
4420         }
4421 
4422         mutex_unlock(&kvm->lock);
4423         return r;
4424 }
4425 
4426 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4427 {
4428         unsigned long i;
4429         struct kvm_vcpu *vcpu;
4430         int cleared = 0;
4431 
4432         if (!kvm->dirty_ring_size)
4433                 return -EINVAL;
4434 
4435         mutex_lock(&kvm->slots_lock);
4436 
4437         kvm_for_each_vcpu(i, vcpu, kvm)
4438                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4439 
4440         mutex_unlock(&kvm->slots_lock);
4441 
4442         if (cleared)
4443                 kvm_flush_remote_tlbs(kvm);
4444 
4445         return cleared;
4446 }
4447 
4448 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4449                                                   struct kvm_enable_cap *cap)
4450 {
4451         return -EINVAL;
4452 }
4453 
4454 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4455                                            struct kvm_enable_cap *cap)
4456 {
4457         switch (cap->cap) {
4458 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4459         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4460                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4461 
4462                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4463                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4464 
4465                 if (cap->flags || (cap->args[0] & ~allowed_options))
4466                         return -EINVAL;
4467                 kvm->manual_dirty_log_protect = cap->args[0];
4468                 return 0;
4469         }
4470 #endif
4471         case KVM_CAP_HALT_POLL: {
4472                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4473                         return -EINVAL;
4474 
4475                 kvm->max_halt_poll_ns = cap->args[0];
4476                 return 0;
4477         }
4478         case KVM_CAP_DIRTY_LOG_RING:
4479                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4480         default:
4481                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4482         }
4483 }
4484 
4485 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4486                               size_t size, loff_t *offset)
4487 {
4488         struct kvm *kvm = file->private_data;
4489 
4490         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4491                                 &kvm_vm_stats_desc[0], &kvm->stat,
4492                                 sizeof(kvm->stat), user_buffer, size, offset);
4493 }
4494 
4495 static const struct file_operations kvm_vm_stats_fops = {
4496         .read = kvm_vm_stats_read,
4497         .llseek = noop_llseek,
4498 };
4499 
4500 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4501 {
4502         int fd;
4503         struct file *file;
4504 
4505         fd = get_unused_fd_flags(O_CLOEXEC);
4506         if (fd < 0)
4507                 return fd;
4508 
4509         file = anon_inode_getfile("kvm-vm-stats",
4510                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4511         if (IS_ERR(file)) {
4512                 put_unused_fd(fd);
4513                 return PTR_ERR(file);
4514         }
4515         file->f_mode |= FMODE_PREAD;
4516         fd_install(fd, file);
4517 
4518         return fd;
4519 }
4520 
4521 static long kvm_vm_ioctl(struct file *filp,
4522                            unsigned int ioctl, unsigned long arg)
4523 {
4524         struct kvm *kvm = filp->private_data;
4525         void __user *argp = (void __user *)arg;
4526         int r;
4527 
4528         if (kvm->mm != current->mm || kvm->vm_dead)
4529                 return -EIO;
4530         switch (ioctl) {
4531         case KVM_CREATE_VCPU:
4532                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4533                 break;
4534         case KVM_ENABLE_CAP: {
4535                 struct kvm_enable_cap cap;
4536 
4537                 r = -EFAULT;
4538                 if (copy_from_user(&cap, argp, sizeof(cap)))
4539                         goto out;
4540                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4541                 break;
4542         }
4543         case KVM_SET_USER_MEMORY_REGION: {
4544                 struct kvm_userspace_memory_region kvm_userspace_mem;
4545 
4546                 r = -EFAULT;
4547                 if (copy_from_user(&kvm_userspace_mem, argp,
4548                                                 sizeof(kvm_userspace_mem)))
4549                         goto out;
4550 
4551                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4552                 break;
4553         }
4554         case KVM_GET_DIRTY_LOG: {
4555                 struct kvm_dirty_log log;
4556 
4557                 r = -EFAULT;
4558                 if (copy_from_user(&log, argp, sizeof(log)))
4559                         goto out;
4560                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4561                 break;
4562         }
4563 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4564         case KVM_CLEAR_DIRTY_LOG: {
4565                 struct kvm_clear_dirty_log log;
4566 
4567                 r = -EFAULT;
4568                 if (copy_from_user(&log, argp, sizeof(log)))
4569                         goto out;
4570                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4571                 break;
4572         }
4573 #endif
4574 #ifdef CONFIG_KVM_MMIO
4575         case KVM_REGISTER_COALESCED_MMIO: {
4576                 struct kvm_coalesced_mmio_zone zone;
4577 
4578                 r = -EFAULT;
4579                 if (copy_from_user(&zone, argp, sizeof(zone)))
4580                         goto out;
4581                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4582                 break;
4583         }
4584         case KVM_UNREGISTER_COALESCED_MMIO: {
4585                 struct kvm_coalesced_mmio_zone zone;
4586 
4587                 r = -EFAULT;
4588                 if (copy_from_user(&zone, argp, sizeof(zone)))
4589                         goto out;
4590                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4591                 break;
4592         }
4593 #endif
4594         case KVM_IRQFD: {
4595                 struct kvm_irqfd data;
4596 
4597                 r = -EFAULT;
4598                 if (copy_from_user(&data, argp, sizeof(data)))
4599                         goto out;
4600                 r = kvm_irqfd(kvm, &data);
4601                 break;
4602         }
4603         case KVM_IOEVENTFD: {
4604                 struct kvm_ioeventfd data;
4605 
4606                 r = -EFAULT;
4607                 if (copy_from_user(&data, argp, sizeof(data)))
4608                         goto out;
4609                 r = kvm_ioeventfd(kvm, &data);
4610                 break;
4611         }
4612 #ifdef CONFIG_HAVE_KVM_MSI
4613         case KVM_SIGNAL_MSI: {
4614                 struct kvm_msi msi;
4615 
4616                 r = -EFAULT;
4617                 if (copy_from_user(&msi, argp, sizeof(msi)))
4618                         goto out;
4619                 r = kvm_send_userspace_msi(kvm, &msi);
4620                 break;
4621         }
4622 #endif
4623 #ifdef __KVM_HAVE_IRQ_LINE
4624         case KVM_IRQ_LINE_STATUS:
4625         case KVM_IRQ_LINE: {
4626                 struct kvm_irq_level irq_event;
4627 
4628                 r = -EFAULT;
4629                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4630                         goto out;
4631 
4632                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4633                                         ioctl == KVM_IRQ_LINE_STATUS);
4634                 if (r)
4635                         goto out;
4636 
4637                 r = -EFAULT;
4638                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4639                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4640                                 goto out;
4641                 }
4642 
4643                 r = 0;
4644                 break;
4645         }
4646 #endif
4647 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4648         case KVM_SET_GSI_ROUTING: {
4649                 struct kvm_irq_routing routing;
4650                 struct kvm_irq_routing __user *urouting;
4651                 struct kvm_irq_routing_entry *entries = NULL;
4652 
4653                 r = -EFAULT;
4654                 if (copy_from_user(&routing, argp, sizeof(routing)))
4655                         goto out;
4656                 r = -EINVAL;
4657                 if (!kvm_arch_can_set_irq_routing(kvm))
4658                         goto out;
4659                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4660                         goto out;
4661                 if (routing.flags)
4662                         goto out;
4663                 if (routing.nr) {
4664                         urouting = argp;
4665                         entries = vmemdup_user(urouting->entries,
4666                                                array_size(sizeof(*entries),
4667                                                           routing.nr));
4668                         if (IS_ERR(entries)) {
4669                                 r = PTR_ERR(entries);
4670                                 goto out;
4671                         }
4672                 }
4673                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4674                                         routing.flags);
4675                 kvfree(entries);
4676                 break;
4677         }
4678 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4679         case KVM_CREATE_DEVICE: {
4680                 struct kvm_create_device cd;
4681 
4682                 r = -EFAULT;
4683                 if (copy_from_user(&cd, argp, sizeof(cd)))
4684                         goto out;
4685 
4686                 r = kvm_ioctl_create_device(kvm, &cd);
4687                 if (r)
4688                         goto out;
4689 
4690                 r = -EFAULT;
4691                 if (copy_to_user(argp, &cd, sizeof(cd)))
4692                         goto out;
4693 
4694                 r = 0;
4695                 break;
4696         }
4697         case KVM_CHECK_EXTENSION:
4698                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4699                 break;
4700         case KVM_RESET_DIRTY_RINGS:
4701                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4702                 break;
4703         case KVM_GET_STATS_FD:
4704                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4705                 break;
4706         default:
4707                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4708         }
4709 out:
4710         return r;
4711 }
4712 
4713 #ifdef CONFIG_KVM_COMPAT
4714 struct compat_kvm_dirty_log {
4715         __u32 slot;
4716         __u32 padding1;
4717         union {
4718                 compat_uptr_t dirty_bitmap; /* one bit per page */
4719                 __u64 padding2;
4720         };
4721 };
4722 
4723 struct compat_kvm_clear_dirty_log {
4724         __u32 slot;
4725         __u32 num_pages;
4726         __u64 first_page;
4727         union {
4728                 compat_uptr_t dirty_bitmap; /* one bit per page */
4729                 __u64 padding2;
4730         };
4731 };
4732 
4733 static long kvm_vm_compat_ioctl(struct file *filp,
4734                            unsigned int ioctl, unsigned long arg)
4735 {
4736         struct kvm *kvm = filp->private_data;
4737         int r;
4738 
4739         if (kvm->mm != current->mm || kvm->vm_dead)
4740                 return -EIO;
4741         switch (ioctl) {
4742 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4743         case KVM_CLEAR_DIRTY_LOG: {
4744                 struct compat_kvm_clear_dirty_log compat_log;
4745                 struct kvm_clear_dirty_log log;
4746 
4747                 if (copy_from_user(&compat_log, (void __user *)arg,
4748                                    sizeof(compat_log)))
4749                         return -EFAULT;
4750                 log.slot         = compat_log.slot;
4751                 log.num_pages    = compat_log.num_pages;
4752                 log.first_page   = compat_log.first_page;
4753                 log.padding2     = compat_log.padding2;
4754                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4755 
4756                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4757                 break;
4758         }
4759 #endif
4760         case KVM_GET_DIRTY_LOG: {
4761                 struct compat_kvm_dirty_log compat_log;
4762                 struct kvm_dirty_log log;
4763 
4764                 if (copy_from_user(&compat_log, (void __user *)arg,
4765                                    sizeof(compat_log)))
4766                         return -EFAULT;
4767                 log.slot         = compat_log.slot;
4768                 log.padding1     = compat_log.padding1;
4769                 log.padding2     = compat_log.padding2;
4770                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4771 
4772                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4773                 break;
4774         }
4775         default:
4776                 r = kvm_vm_ioctl(filp, ioctl, arg);
4777         }
4778         return r;
4779 }
4780 #endif
4781 
4782 static const struct file_operations kvm_vm_fops = {
4783         .release        = kvm_vm_release,
4784         .unlocked_ioctl = kvm_vm_ioctl,
4785         .llseek         = noop_llseek,
4786         KVM_COMPAT(kvm_vm_compat_ioctl),
4787 };
4788 
4789 bool file_is_kvm(struct file *file)
4790 {
4791         return file && file->f_op == &kvm_vm_fops;
4792 }
4793 EXPORT_SYMBOL_GPL(file_is_kvm);
4794 
4795 static int kvm_dev_ioctl_create_vm(unsigned long type)
4796 {
4797         int r;
4798         struct kvm *kvm;
4799         struct file *file;
4800 
4801         kvm = kvm_create_vm(type);
4802         if (IS_ERR(kvm))
4803                 return PTR_ERR(kvm);
4804 #ifdef CONFIG_KVM_MMIO
4805         r = kvm_coalesced_mmio_init(kvm);
4806         if (r < 0)
4807                 goto put_kvm;
4808 #endif
4809         r = get_unused_fd_flags(O_CLOEXEC);
4810         if (r < 0)
4811                 goto put_kvm;
4812 
4813         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4814                         "kvm-%d", task_pid_nr(current));
4815 
4816         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4817         if (IS_ERR(file)) {
4818                 put_unused_fd(r);
4819                 r = PTR_ERR(file);
4820                 goto put_kvm;
4821         }
4822 
4823         /*
4824          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4825          * already set, with ->release() being kvm_vm_release().  In error
4826          * cases it will be called by the final fput(file) and will take
4827          * care of doing kvm_put_kvm(kvm).
4828          */
4829         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4830                 put_unused_fd(r);
4831                 fput(file);
4832                 return -ENOMEM;
4833         }
4834         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4835 
4836         fd_install(r, file);
4837         return r;
4838 
4839 put_kvm:
4840         kvm_put_kvm(kvm);
4841         return r;
4842 }
4843 
4844 static long kvm_dev_ioctl(struct file *filp,
4845                           unsigned int ioctl, unsigned long arg)
4846 {
4847         long r = -EINVAL;
4848 
4849         switch (ioctl) {
4850         case KVM_GET_API_VERSION:
4851                 if (arg)
4852                         goto out;
4853                 r = KVM_API_VERSION;
4854                 break;
4855         case KVM_CREATE_VM:
4856                 r = kvm_dev_ioctl_create_vm(arg);
4857                 break;
4858         case KVM_CHECK_EXTENSION:
4859                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4860                 break;
4861         case KVM_GET_VCPU_MMAP_SIZE:
4862                 if (arg)
4863                         goto out;
4864                 r = PAGE_SIZE;     /* struct kvm_run */
4865 #ifdef CONFIG_X86
4866                 r += PAGE_SIZE;    /* pio data page */
4867 #endif
4868 #ifdef CONFIG_KVM_MMIO
4869                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4870 #endif
4871                 break;
4872         case KVM_TRACE_ENABLE:
4873         case KVM_TRACE_PAUSE:
4874         case KVM_TRACE_DISABLE:
4875                 r = -EOPNOTSUPP;
4876                 break;
4877         default:
4878                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4879         }
4880 out:
4881         return r;
4882 }
4883 
4884 static struct file_operations kvm_chardev_ops = {
4885         .unlocked_ioctl = kvm_dev_ioctl,
4886         .llseek         = noop_llseek,
4887         KVM_COMPAT(kvm_dev_ioctl),
4888 };
4889 
4890 static struct miscdevice kvm_dev = {
4891         KVM_MINOR,
4892         "kvm",
4893         &kvm_chardev_ops,
4894 };
4895 
4896 static void hardware_enable_nolock(void *junk)
4897 {
4898         int cpu = raw_smp_processor_id();
4899         int r;
4900 
4901         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4902                 return;
4903 
4904         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4905 
4906         r = kvm_arch_hardware_enable();
4907 
4908         if (r) {
4909                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4910                 atomic_inc(&hardware_enable_failed);
4911                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4912         }
4913 }
4914 
4915 static int kvm_starting_cpu(unsigned int cpu)
4916 {
4917         raw_spin_lock(&kvm_count_lock);
4918         if (kvm_usage_count)
4919                 hardware_enable_nolock(NULL);
4920         raw_spin_unlock(&kvm_count_lock);
4921         return 0;
4922 }
4923 
4924 static void hardware_disable_nolock(void *junk)
4925 {
4926         int cpu = raw_smp_processor_id();
4927 
4928         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4929                 return;
4930         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4931         kvm_arch_hardware_disable();
4932 }
4933 
4934 static int kvm_dying_cpu(unsigned int cpu)
4935 {
4936         raw_spin_lock(&kvm_count_lock);
4937         if (kvm_usage_count)
4938                 hardware_disable_nolock(NULL);
4939         raw_spin_unlock(&kvm_count_lock);
4940         return 0;
4941 }
4942 
4943 static void hardware_disable_all_nolock(void)
4944 {
4945         BUG_ON(!kvm_usage_count);
4946 
4947         kvm_usage_count--;
4948         if (!kvm_usage_count)
4949                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4950 }
4951 
4952 static void hardware_disable_all(void)
4953 {
4954         raw_spin_lock(&kvm_count_lock);
4955         hardware_disable_all_nolock();
4956         raw_spin_unlock(&kvm_count_lock);
4957 }
4958 
4959 static int hardware_enable_all(void)
4960 {
4961         int r = 0;
4962 
4963         raw_spin_lock(&kvm_count_lock);
4964 
4965         kvm_usage_count++;
4966         if (kvm_usage_count == 1) {
4967                 atomic_set(&hardware_enable_failed, 0);
4968                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4969 
4970                 if (atomic_read(&hardware_enable_failed)) {
4971                         hardware_disable_all_nolock();
4972                         r = -EBUSY;
4973                 }
4974         }
4975 
4976         raw_spin_unlock(&kvm_count_lock);
4977 
4978         return r;
4979 }
4980 
4981 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4982                       void *v)
4983 {
4984         /*
4985          * Some (well, at least mine) BIOSes hang on reboot if
4986          * in vmx root mode.
4987          *
4988          * And Intel TXT required VMX off for all cpu when system shutdown.
4989          */
4990         pr_info("kvm: exiting hardware virtualization\n");
4991         kvm_rebooting = true;
4992         on_each_cpu(hardware_disable_nolock, NULL, 1);
4993         return NOTIFY_OK;
4994 }
4995 
4996 static struct notifier_block kvm_reboot_notifier = {
4997         .notifier_call = kvm_reboot,
4998         .priority = 0,
4999 };
5000 
5001 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5002 {
5003         int i;
5004 
5005         for (i = 0; i < bus->dev_count; i++) {
5006                 struct kvm_io_device *pos = bus->range[i].dev;
5007 
5008                 kvm_iodevice_destructor(pos);
5009         }
5010         kfree(bus);
5011 }
5012 
5013 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5014                                  const struct kvm_io_range *r2)
5015 {
5016         gpa_t addr1 = r1->addr;
5017         gpa_t addr2 = r2->addr;
5018 
5019         if (addr1 < addr2)
5020                 return -1;
5021 
5022         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5023          * accept any overlapping write.  Any order is acceptable for
5024          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5025          * we process all of them.
5026          */
5027         if (r2->len) {
5028                 addr1 += r1->len;
5029                 addr2 += r2->len;
5030         }
5031 
5032         if (addr1 > addr2)
5033                 return 1;
5034 
5035         return 0;
5036 }
5037 
5038 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5039 {
5040         return kvm_io_bus_cmp(p1, p2);
5041 }
5042 
5043 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5044                              gpa_t addr, int len)
5045 {
5046         struct kvm_io_range *range, key;
5047         int off;
5048 
5049         key = (struct kvm_io_range) {
5050                 .addr = addr,
5051                 .len = len,
5052         };
5053 
5054         range = bsearch(&key, bus->range, bus->dev_count,
5055                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5056         if (range == NULL)
5057                 return -ENOENT;
5058 
5059         off = range - bus->range;
5060 
5061         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5062                 off--;
5063 
5064         return off;
5065 }
5066 
5067 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5068                               struct kvm_io_range *range, const void *val)
5069 {
5070         int idx;
5071 
5072         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5073         if (idx < 0)
5074                 return -EOPNOTSUPP;
5075 
5076         while (idx < bus->dev_count &&
5077                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5078                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5079                                         range->len, val))
5080                         return idx;
5081                 idx++;
5082         }
5083 
5084         return -EOPNOTSUPP;
5085 }
5086 
5087 /* kvm_io_bus_write - called under kvm->slots_lock */
5088 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5089                      int len, const void *val)
5090 {
5091         struct kvm_io_bus *bus;
5092         struct kvm_io_range range;
5093         int r;
5094 
5095         range = (struct kvm_io_range) {
5096                 .addr = addr,
5097                 .len = len,
5098         };
5099 
5100         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5101         if (!bus)
5102                 return -ENOMEM;
5103         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5104         return r < 0 ? r : 0;
5105 }
5106 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5107 
5108 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5109 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5110                             gpa_t addr, int len, const void *val, long cookie)
5111 {
5112         struct kvm_io_bus *bus;
5113         struct kvm_io_range range;
5114 
5115         range = (struct kvm_io_range) {
5116                 .addr = addr,
5117                 .len = len,
5118         };
5119 
5120         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5121         if (!bus)
5122                 return -ENOMEM;
5123 
5124         /* First try the device referenced by cookie. */
5125         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5126             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5127                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5128                                         val))
5129                         return cookie;
5130 
5131         /*
5132          * cookie contained garbage; fall back to search and return the
5133          * correct cookie value.
5134          */
5135         return __kvm_io_bus_write(vcpu, bus, &range, val);
5136 }
5137 
5138 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5139                              struct kvm_io_range *range, void *val)
5140 {
5141         int idx;
5142 
5143         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5144         if (idx < 0)
5145                 return -EOPNOTSUPP;
5146 
5147         while (idx < bus->dev_count &&
5148                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5149                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5150                                        range->len, val))
5151                         return idx;
5152                 idx++;
5153         }
5154 
5155         return -EOPNOTSUPP;
5156 }
5157 
5158 /* kvm_io_bus_read - called under kvm->slots_lock */
5159 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5160                     int len, void *val)
5161 {
5162         struct kvm_io_bus *bus;
5163         struct kvm_io_range range;
5164         int r;
5165 
5166         range = (struct kvm_io_range) {
5167                 .addr = addr,
5168                 .len = len,
5169         };
5170 
5171         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5172         if (!bus)
5173                 return -ENOMEM;
5174         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5175         return r < 0 ? r : 0;
5176 }
5177 
5178 /* Caller must hold slots_lock. */
5179 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5180                             int len, struct kvm_io_device *dev)
5181 {
5182         int i;
5183         struct kvm_io_bus *new_bus, *bus;
5184         struct kvm_io_range range;
5185 
5186         bus = kvm_get_bus(kvm, bus_idx);
5187         if (!bus)
5188                 return -ENOMEM;
5189 
5190         /* exclude ioeventfd which is limited by maximum fd */
5191         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5192                 return -ENOSPC;
5193 
5194         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5195                           GFP_KERNEL_ACCOUNT);
5196         if (!new_bus)
5197                 return -ENOMEM;
5198 
5199         range = (struct kvm_io_range) {
5200                 .addr = addr,
5201                 .len = len,
5202                 .dev = dev,
5203         };
5204 
5205         for (i = 0; i < bus->dev_count; i++)
5206                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5207                         break;
5208 
5209         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5210         new_bus->dev_count++;
5211         new_bus->range[i] = range;
5212         memcpy(new_bus->range + i + 1, bus->range + i,
5213                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5214         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5215         synchronize_srcu_expedited(&kvm->srcu);
5216         kfree(bus);
5217 
5218         return 0;
5219 }
5220 
5221 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5222                               struct kvm_io_device *dev)
5223 {
5224         int i, j;
5225         struct kvm_io_bus *new_bus, *bus;
5226 
5227         lockdep_assert_held(&kvm->slots_lock);
5228 
5229         bus = kvm_get_bus(kvm, bus_idx);
5230         if (!bus)
5231                 return 0;
5232 
5233         for (i = 0; i < bus->dev_count; i++) {
5234                 if (bus->range[i].dev == dev) {
5235                         break;
5236                 }
5237         }
5238 
5239         if (i == bus->dev_count)
5240                 return 0;
5241 
5242         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5243                           GFP_KERNEL_ACCOUNT);
5244         if (new_bus) {
5245                 memcpy(new_bus, bus, struct_size(bus, range, i));
5246                 new_bus->dev_count--;
5247                 memcpy(new_bus->range + i, bus->range + i + 1,
5248                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5249         }
5250 
5251         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5252         synchronize_srcu_expedited(&kvm->srcu);
5253 
5254         /* Destroy the old bus _after_ installing the (null) bus. */
5255         if (!new_bus) {
5256                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5257                 for (j = 0; j < bus->dev_count; j++) {
5258                         if (j == i)
5259                                 continue;
5260                         kvm_iodevice_destructor(bus->range[j].dev);
5261                 }
5262         }
5263 
5264         kfree(bus);
5265         return new_bus ? 0 : -ENOMEM;
5266 }
5267 
5268 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5269                                          gpa_t addr)
5270 {
5271         struct kvm_io_bus *bus;
5272         int dev_idx, srcu_idx;
5273         struct kvm_io_device *iodev = NULL;
5274 
5275         srcu_idx = srcu_read_lock(&kvm->srcu);
5276 
5277         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5278         if (!bus)
5279                 goto out_unlock;
5280 
5281         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5282         if (dev_idx < 0)
5283                 goto out_unlock;
5284 
5285         iodev = bus->range[dev_idx].dev;
5286 
5287 out_unlock:
5288         srcu_read_unlock(&kvm->srcu, srcu_idx);
5289 
5290         return iodev;
5291 }
5292 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5293 
5294 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5295                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5296                            const char *fmt)
5297 {
5298         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5299                                           inode->i_private;
5300 
5301         /*
5302          * The debugfs files are a reference to the kvm struct which
5303         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5304         * avoids the race between open and the removal of the debugfs directory.
5305          */
5306         if (!kvm_get_kvm_safe(stat_data->kvm))
5307                 return -ENOENT;
5308 
5309         if (simple_attr_open(inode, file, get,
5310                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5311                     ? set : NULL,
5312                     fmt)) {
5313                 kvm_put_kvm(stat_data->kvm);
5314                 return -ENOMEM;
5315         }
5316 
5317         return 0;
5318 }
5319 
5320 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5321 {
5322         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5323                                           inode->i_private;
5324 
5325         simple_attr_release(inode, file);
5326         kvm_put_kvm(stat_data->kvm);
5327 
5328         return 0;
5329 }
5330 
5331 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5332 {
5333         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5334 
5335         return 0;
5336 }
5337 
5338 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5339 {
5340         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5341 
5342         return 0;
5343 }
5344 
5345 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5346 {
5347         unsigned long i;
5348         struct kvm_vcpu *vcpu;
5349 
5350         *val = 0;
5351 
5352         kvm_for_each_vcpu(i, vcpu, kvm)
5353                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5354 
5355         return 0;
5356 }
5357 
5358 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5359 {
5360         unsigned long i;
5361         struct kvm_vcpu *vcpu;
5362 
5363         kvm_for_each_vcpu(i, vcpu, kvm)
5364                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5365 
5366         return 0;
5367 }
5368 
5369 static int kvm_stat_data_get(void *data, u64 *val)
5370 {
5371         int r = -EFAULT;
5372         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5373 
5374         switch (stat_data->kind) {
5375         case KVM_STAT_VM:
5376                 r = kvm_get_stat_per_vm(stat_data->kvm,
5377                                         stat_data->desc->desc.offset, val);
5378                 break;
5379         case KVM_STAT_VCPU:
5380                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5381                                           stat_data->desc->desc.offset, val);
5382                 break;
5383         }
5384 
5385         return r;
5386 }
5387 
5388 static int kvm_stat_data_clear(void *data, u64 val)
5389 {
5390         int r = -EFAULT;
5391         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5392 
5393         if (val)
5394                 return -EINVAL;
5395 
5396         switch (stat_data->kind) {
5397         case KVM_STAT_VM:
5398                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5399                                           stat_data->desc->desc.offset);
5400                 break;
5401         case KVM_STAT_VCPU:
5402                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5403                                             stat_data->desc->desc.offset);
5404                 break;
5405         }
5406 
5407         return r;
5408 }
5409 
5410 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5411 {
5412         __simple_attr_check_format("%llu\n", 0ull);
5413         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5414                                 kvm_stat_data_clear, "%llu\n");
5415 }
5416 
5417 static const struct file_operations stat_fops_per_vm = {
5418         .owner = THIS_MODULE,
5419         .open = kvm_stat_data_open,
5420         .release = kvm_debugfs_release,
5421         .read = simple_attr_read,
5422         .write = simple_attr_write,
5423         .llseek = no_llseek,
5424 };
5425 
5426 static int vm_stat_get(void *_offset, u64 *val)
5427 {
5428         unsigned offset = (long)_offset;
5429         struct kvm *kvm;
5430         u64 tmp_val;
5431 
5432         *val = 0;
5433         mutex_lock(&kvm_lock);
5434         list_for_each_entry(kvm, &vm_list, vm_list) {
5435                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5436                 *val += tmp_val;
5437         }
5438         mutex_unlock(&kvm_lock);
5439         return 0;
5440 }
5441 
5442 static int vm_stat_clear(void *_offset, u64 val)
5443 {
5444         unsigned offset = (long)_offset;
5445         struct kvm *kvm;
5446 
5447         if (val)
5448                 return -EINVAL;
5449 
5450         mutex_lock(&kvm_lock);
5451         list_for_each_entry(kvm, &vm_list, vm_list) {
5452                 kvm_clear_stat_per_vm(kvm, offset);
5453         }
5454         mutex_unlock(&kvm_lock);
5455 
5456         return 0;
5457 }
5458 
5459 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5460 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5461 
5462 static int vcpu_stat_get(void *_offset, u64 *val)
5463 {
5464         unsigned offset = (long)_offset;
5465         struct kvm *kvm;
5466         u64 tmp_val;
5467 
5468         *val = 0;
5469         mutex_lock(&kvm_lock);
5470         list_for_each_entry(kvm, &vm_list, vm_list) {
5471                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5472                 *val += tmp_val;
5473         }
5474         mutex_unlock(&kvm_lock);
5475         return 0;
5476 }
5477 
5478 static int vcpu_stat_clear(void *_offset, u64 val)
5479 {
5480         unsigned offset = (long)_offset;
5481         struct kvm *kvm;
5482 
5483         if (val)
5484                 return -EINVAL;
5485 
5486         mutex_lock(&kvm_lock);
5487         list_for_each_entry(kvm, &vm_list, vm_list) {
5488                 kvm_clear_stat_per_vcpu(kvm, offset);
5489         }
5490         mutex_unlock(&kvm_lock);
5491 
5492         return 0;
5493 }
5494 
5495 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5496                         "%llu\n");
5497 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5498 
5499 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5500 {
5501         struct kobj_uevent_env *env;
5502         unsigned long long created, active;
5503 
5504         if (!kvm_dev.this_device || !kvm)
5505                 return;
5506 
5507         mutex_lock(&kvm_lock);
5508         if (type == KVM_EVENT_CREATE_VM) {
5509                 kvm_createvm_count++;
5510                 kvm_active_vms++;
5511         } else if (type == KVM_EVENT_DESTROY_VM) {
5512                 kvm_active_vms--;
5513         }
5514         created = kvm_createvm_count;
5515         active = kvm_active_vms;
5516         mutex_unlock(&kvm_lock);
5517 
5518         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5519         if (!env)
5520                 return;
5521 
5522         add_uevent_var(env, "CREATED=%llu", created);
5523         add_uevent_var(env, "COUNT=%llu", active);
5524 
5525         if (type == KVM_EVENT_CREATE_VM) {
5526                 add_uevent_var(env, "EVENT=create");
5527                 kvm->userspace_pid = task_pid_nr(current);
5528         } else if (type == KVM_EVENT_DESTROY_VM) {
5529                 add_uevent_var(env, "EVENT=destroy");
5530         }
5531         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5532 
5533         if (!IS_ERR(kvm->debugfs_dentry)) {
5534                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5535 
5536                 if (p) {
5537                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5538                         if (!IS_ERR(tmp))
5539                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5540                         kfree(p);
5541                 }
5542         }
5543         /* no need for checks, since we are adding at most only 5 keys */
5544         env->envp[env->envp_idx++] = NULL;
5545         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5546         kfree(env);
5547 }
5548 
5549 static void kvm_init_debug(void)
5550 {
5551         const struct file_operations *fops;
5552         const struct _kvm_stats_desc *pdesc;
5553         int i;
5554 
5555         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5556 
5557         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5558                 pdesc = &kvm_vm_stats_desc[i];
5559                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5560                         fops = &vm_stat_fops;
5561                 else
5562                         fops = &vm_stat_readonly_fops;
5563                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5564                                 kvm_debugfs_dir,
5565                                 (void *)(long)pdesc->desc.offset, fops);
5566         }
5567 
5568         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5569                 pdesc = &kvm_vcpu_stats_desc[i];
5570                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5571                         fops = &vcpu_stat_fops;
5572                 else
5573                         fops = &vcpu_stat_readonly_fops;
5574                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5575                                 kvm_debugfs_dir,
5576                                 (void *)(long)pdesc->desc.offset, fops);
5577         }
5578 }
5579 
5580 static int kvm_suspend(void)
5581 {
5582         if (kvm_usage_count)
5583                 hardware_disable_nolock(NULL);
5584         return 0;
5585 }
5586 
5587 static void kvm_resume(void)
5588 {
5589         if (kvm_usage_count) {
5590                 lockdep_assert_not_held(&kvm_count_lock);
5591                 hardware_enable_nolock(NULL);
5592         }
5593 }
5594 
5595 static struct syscore_ops kvm_syscore_ops = {
5596         .suspend = kvm_suspend,
5597         .resume = kvm_resume,
5598 };
5599 
5600 static inline
5601 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5602 {
5603         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5604 }
5605 
5606 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5607 {
5608         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5609 
5610         WRITE_ONCE(vcpu->preempted, false);
5611         WRITE_ONCE(vcpu->ready, false);
5612 
5613         __this_cpu_write(kvm_running_vcpu, vcpu);
5614         kvm_arch_sched_in(vcpu, cpu);
5615         kvm_arch_vcpu_load(vcpu, cpu);
5616 }
5617 
5618 static void kvm_sched_out(struct preempt_notifier *pn,
5619                           struct task_struct *next)
5620 {
5621         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5622 
5623         if (current->on_rq) {
5624                 WRITE_ONCE(vcpu->preempted, true);
5625                 WRITE_ONCE(vcpu->ready, true);
5626         }
5627         kvm_arch_vcpu_put(vcpu);
5628         __this_cpu_write(kvm_running_vcpu, NULL);
5629 }
5630 
5631 /**
5632  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5633  *
5634  * We can disable preemption locally around accessing the per-CPU variable,
5635  * and use the resolved vcpu pointer after enabling preemption again,
5636  * because even if the current thread is migrated to another CPU, reading
5637  * the per-CPU value later will give us the same value as we update the
5638  * per-CPU variable in the preempt notifier handlers.
5639  */
5640 struct kvm_vcpu *kvm_get_running_vcpu(void)
5641 {
5642         struct kvm_vcpu *vcpu;
5643 
5644         preempt_disable();
5645         vcpu = __this_cpu_read(kvm_running_vcpu);
5646         preempt_enable();
5647 
5648         return vcpu;
5649 }
5650 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5651 
5652 /**
5653  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5654  */
5655 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5656 {
5657         return &kvm_running_vcpu;
5658 }
5659