~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/blackfin/mm/sram-alloc.c

Version: ~ [ linux-5.13-rc1 ] ~ [ linux-5.12.2 ] ~ [ linux-5.11.19 ] ~ [ linux-5.10.35 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.117 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.190 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.232 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.268 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.268 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * SRAM allocator for Blackfin on-chip memory
  3  *
  4  * Copyright 2004-2009 Analog Devices Inc.
  5  *
  6  * Licensed under the GPL-2 or later.
  7  */
  8 
  9 #include <linux/module.h>
 10 #include <linux/kernel.h>
 11 #include <linux/types.h>
 12 #include <linux/miscdevice.h>
 13 #include <linux/ioport.h>
 14 #include <linux/fcntl.h>
 15 #include <linux/init.h>
 16 #include <linux/poll.h>
 17 #include <linux/proc_fs.h>
 18 #include <linux/seq_file.h>
 19 #include <linux/spinlock.h>
 20 #include <linux/rtc.h>
 21 #include <linux/slab.h>
 22 #include <linux/mm_types.h>
 23 
 24 #include <asm/blackfin.h>
 25 #include <asm/mem_map.h>
 26 #include "blackfin_sram.h"
 27 
 28 /* the data structure for L1 scratchpad and DATA SRAM */
 29 struct sram_piece {
 30         void *paddr;
 31         int size;
 32         pid_t pid;
 33         struct sram_piece *next;
 34 };
 35 
 36 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
 37 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
 38 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
 39 
 40 #if L1_DATA_A_LENGTH != 0
 41 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
 42 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
 43 #endif
 44 
 45 #if L1_DATA_B_LENGTH != 0
 46 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
 47 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
 48 #endif
 49 
 50 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
 51 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
 52 #endif
 53 
 54 #if L1_CODE_LENGTH != 0
 55 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
 56 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
 57 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
 58 #endif
 59 
 60 #if L2_LENGTH != 0
 61 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
 62 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
 63 #endif
 64 
 65 static struct kmem_cache *sram_piece_cache;
 66 
 67 /* L1 Scratchpad SRAM initialization function */
 68 static void __init l1sram_init(void)
 69 {
 70         unsigned int cpu;
 71         unsigned long reserve;
 72 
 73 #ifdef CONFIG_SMP
 74         reserve = 0;
 75 #else
 76         reserve = sizeof(struct l1_scratch_task_info);
 77 #endif
 78 
 79         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 80                 per_cpu(free_l1_ssram_head, cpu).next =
 81                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 82                 if (!per_cpu(free_l1_ssram_head, cpu).next) {
 83                         printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
 84                         return;
 85                 }
 86 
 87                 per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
 88                 per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
 89                 per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
 90                 per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
 91 
 92                 per_cpu(used_l1_ssram_head, cpu).next = NULL;
 93 
 94                 /* mutex initialize */
 95                 spin_lock_init(&per_cpu(l1sram_lock, cpu));
 96                 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
 97                         L1_SCRATCH_LENGTH >> 10);
 98         }
 99 }
100 
101 static void __init l1_data_sram_init(void)
102 {
103 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
104         unsigned int cpu;
105 #endif
106 #if L1_DATA_A_LENGTH != 0
107         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
108                 per_cpu(free_l1_data_A_sram_head, cpu).next =
109                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
110                 if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
111                         printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
112                         return;
113                 }
114 
115                 per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
116                         (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
117                 per_cpu(free_l1_data_A_sram_head, cpu).next->size =
118                         L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
119                 per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
120                 per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
121 
122                 per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
123 
124                 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
125                         L1_DATA_A_LENGTH >> 10,
126                         per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
127         }
128 #endif
129 #if L1_DATA_B_LENGTH != 0
130         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
131                 per_cpu(free_l1_data_B_sram_head, cpu).next =
132                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
133                 if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
134                         printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
135                         return;
136                 }
137 
138                 per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
139                         (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
140                 per_cpu(free_l1_data_B_sram_head, cpu).next->size =
141                         L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
142                 per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
143                 per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
144 
145                 per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
146 
147                 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
148                         L1_DATA_B_LENGTH >> 10,
149                         per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
150                 /* mutex initialize */
151         }
152 #endif
153 
154 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
155         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
156                 spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
157 #endif
158 }
159 
160 static void __init l1_inst_sram_init(void)
161 {
162 #if L1_CODE_LENGTH != 0
163         unsigned int cpu;
164         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
165                 per_cpu(free_l1_inst_sram_head, cpu).next =
166                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
167                 if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
168                         printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
169                         return;
170                 }
171 
172                 per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
173                         (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
174                 per_cpu(free_l1_inst_sram_head, cpu).next->size =
175                         L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
176                 per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
177                 per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
178 
179                 per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
180 
181                 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
182                         L1_CODE_LENGTH >> 10,
183                         per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
184 
185                 /* mutex initialize */
186                 spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
187         }
188 #endif
189 }
190 
191 #ifdef __ADSPBF60x__
192 static irqreturn_t l2_ecc_err(int irq, void *dev_id)
193 {
194         int status;
195 
196         printk(KERN_ERR "L2 ecc error happened\n");
197         status = bfin_read32(L2CTL0_STAT);
198         if (status & 0x1)
199                 printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n",
200                         bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0));
201         if (status & 0x2)
202                 printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n",
203                         bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1));
204 
205         status = status >> 8;
206         if (status)
207                 printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n",
208                         status, bfin_read32(L2CTL0_ERRADDR0 + status));
209 
210         panic("L2 Ecc error");
211         return IRQ_HANDLED;
212 }
213 #endif
214 
215 static void __init l2_sram_init(void)
216 {
217 #if L2_LENGTH != 0
218 
219 #ifdef __ADSPBF60x__
220         int ret;
221 
222         ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err",
223                         NULL);
224         if (unlikely(ret < 0)) {
225                 printk(KERN_INFO "Fail to request l2 ecc error interrupt");
226                 return;
227         }
228 #endif
229 
230         free_l2_sram_head.next =
231                 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
232         if (!free_l2_sram_head.next) {
233                 printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
234                 return;
235         }
236 
237         free_l2_sram_head.next->paddr =
238                 (void *)L2_START + (_ebss_l2 - _stext_l2);
239         free_l2_sram_head.next->size =
240                 L2_LENGTH - (_ebss_l2 - _stext_l2);
241         free_l2_sram_head.next->pid = 0;
242         free_l2_sram_head.next->next = NULL;
243 
244         used_l2_sram_head.next = NULL;
245 
246         printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
247                 L2_LENGTH >> 10,
248                 free_l2_sram_head.next->size >> 10);
249 
250         /* mutex initialize */
251         spin_lock_init(&l2_sram_lock);
252 #endif
253 }
254 
255 static int __init bfin_sram_init(void)
256 {
257         sram_piece_cache = kmem_cache_create("sram_piece_cache",
258                                 sizeof(struct sram_piece),
259                                 0, SLAB_PANIC, NULL);
260 
261         l1sram_init();
262         l1_data_sram_init();
263         l1_inst_sram_init();
264         l2_sram_init();
265 
266         return 0;
267 }
268 pure_initcall(bfin_sram_init);
269 
270 /* SRAM allocate function */
271 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
272                 struct sram_piece *pused_head)
273 {
274         struct sram_piece *pslot, *plast, *pavail;
275 
276         if (size <= 0 || !pfree_head || !pused_head)
277                 return NULL;
278 
279         /* Align the size */
280         size = (size + 3) & ~3;
281 
282         pslot = pfree_head->next;
283         plast = pfree_head;
284 
285         /* search an available piece slot */
286         while (pslot != NULL && size > pslot->size) {
287                 plast = pslot;
288                 pslot = pslot->next;
289         }
290 
291         if (!pslot)
292                 return NULL;
293 
294         if (pslot->size == size) {
295                 plast->next = pslot->next;
296                 pavail = pslot;
297         } else {
298                 /* use atomic so our L1 allocator can be used atomically */
299                 pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
300 
301                 if (!pavail)
302                         return NULL;
303 
304                 pavail->paddr = pslot->paddr;
305                 pavail->size = size;
306                 pslot->paddr += size;
307                 pslot->size -= size;
308         }
309 
310         pavail->pid = current->pid;
311 
312         pslot = pused_head->next;
313         plast = pused_head;
314 
315         /* insert new piece into used piece list !!! */
316         while (pslot != NULL && pavail->paddr < pslot->paddr) {
317                 plast = pslot;
318                 pslot = pslot->next;
319         }
320 
321         pavail->next = pslot;
322         plast->next = pavail;
323 
324         return pavail->paddr;
325 }
326 
327 /* Allocate the largest available block.  */
328 static void *_sram_alloc_max(struct sram_piece *pfree_head,
329                                 struct sram_piece *pused_head,
330                                 unsigned long *psize)
331 {
332         struct sram_piece *pslot, *pmax;
333 
334         if (!pfree_head || !pused_head)
335                 return NULL;
336 
337         pmax = pslot = pfree_head->next;
338 
339         /* search an available piece slot */
340         while (pslot != NULL) {
341                 if (pslot->size > pmax->size)
342                         pmax = pslot;
343                 pslot = pslot->next;
344         }
345 
346         if (!pmax)
347                 return NULL;
348 
349         *psize = pmax->size;
350 
351         return _sram_alloc(*psize, pfree_head, pused_head);
352 }
353 
354 /* SRAM free function */
355 static int _sram_free(const void *addr,
356                         struct sram_piece *pfree_head,
357                         struct sram_piece *pused_head)
358 {
359         struct sram_piece *pslot, *plast, *pavail;
360 
361         if (!pfree_head || !pused_head)
362                 return -1;
363 
364         /* search the relevant memory slot */
365         pslot = pused_head->next;
366         plast = pused_head;
367 
368         /* search an available piece slot */
369         while (pslot != NULL && pslot->paddr != addr) {
370                 plast = pslot;
371                 pslot = pslot->next;
372         }
373 
374         if (!pslot)
375                 return -1;
376 
377         plast->next = pslot->next;
378         pavail = pslot;
379         pavail->pid = 0;
380 
381         /* insert free pieces back to the free list */
382         pslot = pfree_head->next;
383         plast = pfree_head;
384 
385         while (pslot != NULL && addr > pslot->paddr) {
386                 plast = pslot;
387                 pslot = pslot->next;
388         }
389 
390         if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
391                 plast->size += pavail->size;
392                 kmem_cache_free(sram_piece_cache, pavail);
393         } else {
394                 pavail->next = plast->next;
395                 plast->next = pavail;
396                 plast = pavail;
397         }
398 
399         if (pslot && plast->paddr + plast->size == pslot->paddr) {
400                 plast->size += pslot->size;
401                 plast->next = pslot->next;
402                 kmem_cache_free(sram_piece_cache, pslot);
403         }
404 
405         return 0;
406 }
407 
408 int sram_free(const void *addr)
409 {
410 
411 #if L1_CODE_LENGTH != 0
412         if (addr >= (void *)get_l1_code_start()
413                  && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
414                 return l1_inst_sram_free(addr);
415         else
416 #endif
417 #if L1_DATA_A_LENGTH != 0
418         if (addr >= (void *)get_l1_data_a_start()
419                  && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
420                 return l1_data_A_sram_free(addr);
421         else
422 #endif
423 #if L1_DATA_B_LENGTH != 0
424         if (addr >= (void *)get_l1_data_b_start()
425                  && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
426                 return l1_data_B_sram_free(addr);
427         else
428 #endif
429 #if L2_LENGTH != 0
430         if (addr >= (void *)L2_START
431                  && addr < (void *)(L2_START + L2_LENGTH))
432                 return l2_sram_free(addr);
433         else
434 #endif
435                 return -1;
436 }
437 EXPORT_SYMBOL(sram_free);
438 
439 void *l1_data_A_sram_alloc(size_t size)
440 {
441 #if L1_DATA_A_LENGTH != 0
442         unsigned long flags;
443         void *addr;
444         unsigned int cpu;
445 
446         cpu = smp_processor_id();
447         /* add mutex operation */
448         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
449 
450         addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
451                         &per_cpu(used_l1_data_A_sram_head, cpu));
452 
453         /* add mutex operation */
454         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
455 
456         pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
457                  (long unsigned int)addr, size);
458 
459         return addr;
460 #else
461         return NULL;
462 #endif
463 }
464 EXPORT_SYMBOL(l1_data_A_sram_alloc);
465 
466 int l1_data_A_sram_free(const void *addr)
467 {
468 #if L1_DATA_A_LENGTH != 0
469         unsigned long flags;
470         int ret;
471         unsigned int cpu;
472 
473         cpu = smp_processor_id();
474         /* add mutex operation */
475         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
476 
477         ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
478                         &per_cpu(used_l1_data_A_sram_head, cpu));
479 
480         /* add mutex operation */
481         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
482 
483         return ret;
484 #else
485         return -1;
486 #endif
487 }
488 EXPORT_SYMBOL(l1_data_A_sram_free);
489 
490 void *l1_data_B_sram_alloc(size_t size)
491 {
492 #if L1_DATA_B_LENGTH != 0
493         unsigned long flags;
494         void *addr;
495         unsigned int cpu;
496 
497         cpu = smp_processor_id();
498         /* add mutex operation */
499         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
500 
501         addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
502                         &per_cpu(used_l1_data_B_sram_head, cpu));
503 
504         /* add mutex operation */
505         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
506 
507         pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
508                  (long unsigned int)addr, size);
509 
510         return addr;
511 #else
512         return NULL;
513 #endif
514 }
515 EXPORT_SYMBOL(l1_data_B_sram_alloc);
516 
517 int l1_data_B_sram_free(const void *addr)
518 {
519 #if L1_DATA_B_LENGTH != 0
520         unsigned long flags;
521         int ret;
522         unsigned int cpu;
523 
524         cpu = smp_processor_id();
525         /* add mutex operation */
526         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
527 
528         ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
529                         &per_cpu(used_l1_data_B_sram_head, cpu));
530 
531         /* add mutex operation */
532         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
533 
534         return ret;
535 #else
536         return -1;
537 #endif
538 }
539 EXPORT_SYMBOL(l1_data_B_sram_free);
540 
541 void *l1_data_sram_alloc(size_t size)
542 {
543         void *addr = l1_data_A_sram_alloc(size);
544 
545         if (!addr)
546                 addr = l1_data_B_sram_alloc(size);
547 
548         return addr;
549 }
550 EXPORT_SYMBOL(l1_data_sram_alloc);
551 
552 void *l1_data_sram_zalloc(size_t size)
553 {
554         void *addr = l1_data_sram_alloc(size);
555 
556         if (addr)
557                 memset(addr, 0x00, size);
558 
559         return addr;
560 }
561 EXPORT_SYMBOL(l1_data_sram_zalloc);
562 
563 int l1_data_sram_free(const void *addr)
564 {
565         int ret;
566         ret = l1_data_A_sram_free(addr);
567         if (ret == -1)
568                 ret = l1_data_B_sram_free(addr);
569         return ret;
570 }
571 EXPORT_SYMBOL(l1_data_sram_free);
572 
573 void *l1_inst_sram_alloc(size_t size)
574 {
575 #if L1_CODE_LENGTH != 0
576         unsigned long flags;
577         void *addr;
578         unsigned int cpu;
579 
580         cpu = smp_processor_id();
581         /* add mutex operation */
582         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
583 
584         addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
585                         &per_cpu(used_l1_inst_sram_head, cpu));
586 
587         /* add mutex operation */
588         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
589 
590         pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
591                  (long unsigned int)addr, size);
592 
593         return addr;
594 #else
595         return NULL;
596 #endif
597 }
598 EXPORT_SYMBOL(l1_inst_sram_alloc);
599 
600 int l1_inst_sram_free(const void *addr)
601 {
602 #if L1_CODE_LENGTH != 0
603         unsigned long flags;
604         int ret;
605         unsigned int cpu;
606 
607         cpu = smp_processor_id();
608         /* add mutex operation */
609         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
610 
611         ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
612                         &per_cpu(used_l1_inst_sram_head, cpu));
613 
614         /* add mutex operation */
615         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
616 
617         return ret;
618 #else
619         return -1;
620 #endif
621 }
622 EXPORT_SYMBOL(l1_inst_sram_free);
623 
624 /* L1 Scratchpad memory allocate function */
625 void *l1sram_alloc(size_t size)
626 {
627         unsigned long flags;
628         void *addr;
629         unsigned int cpu;
630 
631         cpu = smp_processor_id();
632         /* add mutex operation */
633         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
634 
635         addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
636                         &per_cpu(used_l1_ssram_head, cpu));
637 
638         /* add mutex operation */
639         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
640 
641         return addr;
642 }
643 
644 /* L1 Scratchpad memory allocate function */
645 void *l1sram_alloc_max(size_t *psize)
646 {
647         unsigned long flags;
648         void *addr;
649         unsigned int cpu;
650 
651         cpu = smp_processor_id();
652         /* add mutex operation */
653         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
654 
655         addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
656                         &per_cpu(used_l1_ssram_head, cpu), psize);
657 
658         /* add mutex operation */
659         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
660 
661         return addr;
662 }
663 
664 /* L1 Scratchpad memory free function */
665 int l1sram_free(const void *addr)
666 {
667         unsigned long flags;
668         int ret;
669         unsigned int cpu;
670 
671         cpu = smp_processor_id();
672         /* add mutex operation */
673         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
674 
675         ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
676                         &per_cpu(used_l1_ssram_head, cpu));
677 
678         /* add mutex operation */
679         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
680 
681         return ret;
682 }
683 
684 void *l2_sram_alloc(size_t size)
685 {
686 #if L2_LENGTH != 0
687         unsigned long flags;
688         void *addr;
689 
690         /* add mutex operation */
691         spin_lock_irqsave(&l2_sram_lock, flags);
692 
693         addr = _sram_alloc(size, &free_l2_sram_head,
694                         &used_l2_sram_head);
695 
696         /* add mutex operation */
697         spin_unlock_irqrestore(&l2_sram_lock, flags);
698 
699         pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
700                  (long unsigned int)addr, size);
701 
702         return addr;
703 #else
704         return NULL;
705 #endif
706 }
707 EXPORT_SYMBOL(l2_sram_alloc);
708 
709 void *l2_sram_zalloc(size_t size)
710 {
711         void *addr = l2_sram_alloc(size);
712 
713         if (addr)
714                 memset(addr, 0x00, size);
715 
716         return addr;
717 }
718 EXPORT_SYMBOL(l2_sram_zalloc);
719 
720 int l2_sram_free(const void *addr)
721 {
722 #if L2_LENGTH != 0
723         unsigned long flags;
724         int ret;
725 
726         /* add mutex operation */
727         spin_lock_irqsave(&l2_sram_lock, flags);
728 
729         ret = _sram_free(addr, &free_l2_sram_head,
730                         &used_l2_sram_head);
731 
732         /* add mutex operation */
733         spin_unlock_irqrestore(&l2_sram_lock, flags);
734 
735         return ret;
736 #else
737         return -1;
738 #endif
739 }
740 EXPORT_SYMBOL(l2_sram_free);
741 
742 int sram_free_with_lsl(const void *addr)
743 {
744         struct sram_list_struct *lsl, **tmp;
745         struct mm_struct *mm = current->mm;
746         int ret = -1;
747 
748         for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
749                 if ((*tmp)->addr == addr) {
750                         lsl = *tmp;
751                         ret = sram_free(addr);
752                         *tmp = lsl->next;
753                         kfree(lsl);
754                         break;
755                 }
756 
757         return ret;
758 }
759 EXPORT_SYMBOL(sram_free_with_lsl);
760 
761 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
762  * tracked.  These are designed for userspace so that when a process exits,
763  * we can safely reap their resources.
764  */
765 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
766 {
767         void *addr = NULL;
768         struct sram_list_struct *lsl = NULL;
769         struct mm_struct *mm = current->mm;
770 
771         lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
772         if (!lsl)
773                 return NULL;
774 
775         if (flags & L1_INST_SRAM)
776                 addr = l1_inst_sram_alloc(size);
777 
778         if (addr == NULL && (flags & L1_DATA_A_SRAM))
779                 addr = l1_data_A_sram_alloc(size);
780 
781         if (addr == NULL && (flags & L1_DATA_B_SRAM))
782                 addr = l1_data_B_sram_alloc(size);
783 
784         if (addr == NULL && (flags & L2_SRAM))
785                 addr = l2_sram_alloc(size);
786 
787         if (addr == NULL) {
788                 kfree(lsl);
789                 return NULL;
790         }
791         lsl->addr = addr;
792         lsl->length = size;
793         lsl->next = mm->context.sram_list;
794         mm->context.sram_list = lsl;
795         return addr;
796 }
797 EXPORT_SYMBOL(sram_alloc_with_lsl);
798 
799 #ifdef CONFIG_PROC_FS
800 /* Once we get a real allocator, we'll throw all of this away.
801  * Until then, we need some sort of visibility into the L1 alloc.
802  */
803 /* Need to keep line of output the same.  Currently, that is 44 bytes
804  * (including newline).
805  */
806 static int _sram_proc_show(struct seq_file *m, const char *desc,
807                 struct sram_piece *pfree_head,
808                 struct sram_piece *pused_head)
809 {
810         struct sram_piece *pslot;
811 
812         if (!pfree_head || !pused_head)
813                 return -1;
814 
815         seq_printf(m, "--- SRAM %-14s Size   PID State     \n", desc);
816 
817         /* search the relevant memory slot */
818         pslot = pused_head->next;
819 
820         while (pslot != NULL) {
821                 seq_printf(m, "%p-%p %10i %5i %-10s\n",
822                         pslot->paddr, pslot->paddr + pslot->size,
823                         pslot->size, pslot->pid, "ALLOCATED");
824 
825                 pslot = pslot->next;
826         }
827 
828         pslot = pfree_head->next;
829 
830         while (pslot != NULL) {
831                 seq_printf(m, "%p-%p %10i %5i %-10s\n",
832                         pslot->paddr, pslot->paddr + pslot->size,
833                         pslot->size, pslot->pid, "FREE");
834 
835                 pslot = pslot->next;
836         }
837 
838         return 0;
839 }
840 static int sram_proc_show(struct seq_file *m, void *v)
841 {
842         unsigned int cpu;
843 
844         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
845                 if (_sram_proc_show(m, "Scratchpad",
846                         &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
847                         goto not_done;
848 #if L1_DATA_A_LENGTH != 0
849                 if (_sram_proc_show(m, "L1 Data A",
850                         &per_cpu(free_l1_data_A_sram_head, cpu),
851                         &per_cpu(used_l1_data_A_sram_head, cpu)))
852                         goto not_done;
853 #endif
854 #if L1_DATA_B_LENGTH != 0
855                 if (_sram_proc_show(m, "L1 Data B",
856                         &per_cpu(free_l1_data_B_sram_head, cpu),
857                         &per_cpu(used_l1_data_B_sram_head, cpu)))
858                         goto not_done;
859 #endif
860 #if L1_CODE_LENGTH != 0
861                 if (_sram_proc_show(m, "L1 Instruction",
862                         &per_cpu(free_l1_inst_sram_head, cpu),
863                         &per_cpu(used_l1_inst_sram_head, cpu)))
864                         goto not_done;
865 #endif
866         }
867 #if L2_LENGTH != 0
868         if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
869                 goto not_done;
870 #endif
871  not_done:
872         return 0;
873 }
874 
875 static int sram_proc_open(struct inode *inode, struct file *file)
876 {
877         return single_open(file, sram_proc_show, NULL);
878 }
879 
880 static const struct file_operations sram_proc_ops = {
881         .open           = sram_proc_open,
882         .read           = seq_read,
883         .llseek         = seq_lseek,
884         .release        = single_release,
885 };
886 
887 static int __init sram_proc_init(void)
888 {
889         struct proc_dir_entry *ptr;
890 
891         ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
892         if (!ptr) {
893                 printk(KERN_WARNING "unable to create /proc/sram\n");
894                 return -1;
895         }
896         return 0;
897 }
898 late_initcall(sram_proc_init);
899 #endif
900 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp