~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/sparc/mm/init_64.c

Version: ~ [ linux-5.13-rc5 ] ~ [ linux-5.12.9 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.42 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.124 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.193 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.235 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.271 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.271 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  *  arch/sparc64/mm/init.c
  3  *
  4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6  */
  7  
  8 #include <linux/module.h>
  9 #include <linux/kernel.h>
 10 #include <linux/sched.h>
 11 #include <linux/string.h>
 12 #include <linux/init.h>
 13 #include <linux/bootmem.h>
 14 #include <linux/mm.h>
 15 #include <linux/hugetlb.h>
 16 #include <linux/initrd.h>
 17 #include <linux/swap.h>
 18 #include <linux/pagemap.h>
 19 #include <linux/poison.h>
 20 #include <linux/fs.h>
 21 #include <linux/seq_file.h>
 22 #include <linux/kprobes.h>
 23 #include <linux/cache.h>
 24 #include <linux/sort.h>
 25 #include <linux/ioport.h>
 26 #include <linux/percpu.h>
 27 #include <linux/memblock.h>
 28 #include <linux/mmzone.h>
 29 #include <linux/gfp.h>
 30 
 31 #include <asm/head.h>
 32 #include <asm/page.h>
 33 #include <asm/pgalloc.h>
 34 #include <asm/pgtable.h>
 35 #include <asm/oplib.h>
 36 #include <asm/iommu.h>
 37 #include <asm/io.h>
 38 #include <asm/uaccess.h>
 39 #include <asm/mmu_context.h>
 40 #include <asm/tlbflush.h>
 41 #include <asm/dma.h>
 42 #include <asm/starfire.h>
 43 #include <asm/tlb.h>
 44 #include <asm/spitfire.h>
 45 #include <asm/sections.h>
 46 #include <asm/tsb.h>
 47 #include <asm/hypervisor.h>
 48 #include <asm/prom.h>
 49 #include <asm/mdesc.h>
 50 #include <asm/cpudata.h>
 51 #include <asm/setup.h>
 52 #include <asm/irq.h>
 53 
 54 #include "init_64.h"
 55 
 56 unsigned long kern_linear_pte_xor[4] __read_mostly;
 57 static unsigned long page_cache4v_flag;
 58 
 59 /* A bitmap, two bits for every 256MB of physical memory.  These two
 60  * bits determine what page size we use for kernel linear
 61  * translations.  They form an index into kern_linear_pte_xor[].  The
 62  * value in the indexed slot is XOR'd with the TLB miss virtual
 63  * address to form the resulting TTE.  The mapping is:
 64  *
 65  *      0       ==>     4MB
 66  *      1       ==>     256MB
 67  *      2       ==>     2GB
 68  *      3       ==>     16GB
 69  *
 70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
 71  * support 2GB pages, and hopefully future cpus will support the 16GB
 72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
 73  * if these larger page sizes are not supported by the cpu.
 74  *
 75  * It would be nice to determine this from the machine description
 76  * 'cpu' properties, but we need to have this table setup before the
 77  * MDESC is initialized.
 78  */
 79 
 80 #ifndef CONFIG_DEBUG_PAGEALLOC
 81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
 82  * Space is allocated for this right after the trap table in
 83  * arch/sparc64/kernel/head.S
 84  */
 85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
 86 #endif
 87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 88 
 89 static unsigned long cpu_pgsz_mask;
 90 
 91 #define MAX_BANKS       1024
 92 
 93 static struct linux_prom64_registers pavail[MAX_BANKS];
 94 static int pavail_ents;
 95 
 96 static int cmp_p64(const void *a, const void *b)
 97 {
 98         const struct linux_prom64_registers *x = a, *y = b;
 99 
100         if (x->phys_addr > y->phys_addr)
101                 return 1;
102         if (x->phys_addr < y->phys_addr)
103                 return -1;
104         return 0;
105 }
106 
107 static void __init read_obp_memory(const char *property,
108                                    struct linux_prom64_registers *regs,
109                                    int *num_ents)
110 {
111         phandle node = prom_finddevice("/memory");
112         int prop_size = prom_getproplen(node, property);
113         int ents, ret, i;
114 
115         ents = prop_size / sizeof(struct linux_prom64_registers);
116         if (ents > MAX_BANKS) {
117                 prom_printf("The machine has more %s property entries than "
118                             "this kernel can support (%d).\n",
119                             property, MAX_BANKS);
120                 prom_halt();
121         }
122 
123         ret = prom_getproperty(node, property, (char *) regs, prop_size);
124         if (ret == -1) {
125                 prom_printf("Couldn't get %s property from /memory.\n",
126                                 property);
127                 prom_halt();
128         }
129 
130         /* Sanitize what we got from the firmware, by page aligning
131          * everything.
132          */
133         for (i = 0; i < ents; i++) {
134                 unsigned long base, size;
135 
136                 base = regs[i].phys_addr;
137                 size = regs[i].reg_size;
138 
139                 size &= PAGE_MASK;
140                 if (base & ~PAGE_MASK) {
141                         unsigned long new_base = PAGE_ALIGN(base);
142 
143                         size -= new_base - base;
144                         if ((long) size < 0L)
145                                 size = 0UL;
146                         base = new_base;
147                 }
148                 if (size == 0UL) {
149                         /* If it is empty, simply get rid of it.
150                          * This simplifies the logic of the other
151                          * functions that process these arrays.
152                          */
153                         memmove(&regs[i], &regs[i + 1],
154                                 (ents - i - 1) * sizeof(regs[0]));
155                         i--;
156                         ents--;
157                         continue;
158                 }
159                 regs[i].phys_addr = base;
160                 regs[i].reg_size = size;
161         }
162 
163         *num_ents = ents;
164 
165         sort(regs, ents, sizeof(struct linux_prom64_registers),
166              cmp_p64, NULL);
167 }
168 
169 /* Kernel physical address base and size in bytes.  */
170 unsigned long kern_base __read_mostly;
171 unsigned long kern_size __read_mostly;
172 
173 /* Initial ramdisk setup */
174 extern unsigned long sparc_ramdisk_image64;
175 extern unsigned int sparc_ramdisk_image;
176 extern unsigned int sparc_ramdisk_size;
177 
178 struct page *mem_map_zero __read_mostly;
179 EXPORT_SYMBOL(mem_map_zero);
180 
181 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
182 
183 unsigned long sparc64_kern_pri_context __read_mostly;
184 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
185 unsigned long sparc64_kern_sec_context __read_mostly;
186 
187 int num_kernel_image_mappings;
188 
189 #ifdef CONFIG_DEBUG_DCFLUSH
190 atomic_t dcpage_flushes = ATOMIC_INIT(0);
191 #ifdef CONFIG_SMP
192 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
193 #endif
194 #endif
195 
196 inline void flush_dcache_page_impl(struct page *page)
197 {
198         BUG_ON(tlb_type == hypervisor);
199 #ifdef CONFIG_DEBUG_DCFLUSH
200         atomic_inc(&dcpage_flushes);
201 #endif
202 
203 #ifdef DCACHE_ALIASING_POSSIBLE
204         __flush_dcache_page(page_address(page),
205                             ((tlb_type == spitfire) &&
206                              page_mapping(page) != NULL));
207 #else
208         if (page_mapping(page) != NULL &&
209             tlb_type == spitfire)
210                 __flush_icache_page(__pa(page_address(page)));
211 #endif
212 }
213 
214 #define PG_dcache_dirty         PG_arch_1
215 #define PG_dcache_cpu_shift     32UL
216 #define PG_dcache_cpu_mask      \
217         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
218 
219 #define dcache_dirty_cpu(page) \
220         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
221 
222 static inline void set_dcache_dirty(struct page *page, int this_cpu)
223 {
224         unsigned long mask = this_cpu;
225         unsigned long non_cpu_bits;
226 
227         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
228         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
229 
230         __asm__ __volatile__("1:\n\t"
231                              "ldx       [%2], %%g7\n\t"
232                              "and       %%g7, %1, %%g1\n\t"
233                              "or        %%g1, %0, %%g1\n\t"
234                              "casx      [%2], %%g7, %%g1\n\t"
235                              "cmp       %%g7, %%g1\n\t"
236                              "bne,pn    %%xcc, 1b\n\t"
237                              " nop"
238                              : /* no outputs */
239                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
240                              : "g1", "g7");
241 }
242 
243 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
244 {
245         unsigned long mask = (1UL << PG_dcache_dirty);
246 
247         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
248                              "1:\n\t"
249                              "ldx       [%2], %%g7\n\t"
250                              "srlx      %%g7, %4, %%g1\n\t"
251                              "and       %%g1, %3, %%g1\n\t"
252                              "cmp       %%g1, %0\n\t"
253                              "bne,pn    %%icc, 2f\n\t"
254                              " andn     %%g7, %1, %%g1\n\t"
255                              "casx      [%2], %%g7, %%g1\n\t"
256                              "cmp       %%g7, %%g1\n\t"
257                              "bne,pn    %%xcc, 1b\n\t"
258                              " nop\n"
259                              "2:"
260                              : /* no outputs */
261                              : "r" (cpu), "r" (mask), "r" (&page->flags),
262                                "i" (PG_dcache_cpu_mask),
263                                "i" (PG_dcache_cpu_shift)
264                              : "g1", "g7");
265 }
266 
267 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
268 {
269         unsigned long tsb_addr = (unsigned long) ent;
270 
271         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
272                 tsb_addr = __pa(tsb_addr);
273 
274         __tsb_insert(tsb_addr, tag, pte);
275 }
276 
277 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
278 
279 static void flush_dcache(unsigned long pfn)
280 {
281         struct page *page;
282 
283         page = pfn_to_page(pfn);
284         if (page) {
285                 unsigned long pg_flags;
286 
287                 pg_flags = page->flags;
288                 if (pg_flags & (1UL << PG_dcache_dirty)) {
289                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
290                                    PG_dcache_cpu_mask);
291                         int this_cpu = get_cpu();
292 
293                         /* This is just to optimize away some function calls
294                          * in the SMP case.
295                          */
296                         if (cpu == this_cpu)
297                                 flush_dcache_page_impl(page);
298                         else
299                                 smp_flush_dcache_page_impl(page, cpu);
300 
301                         clear_dcache_dirty_cpu(page, cpu);
302 
303                         put_cpu();
304                 }
305         }
306 }
307 
308 /* mm->context.lock must be held */
309 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
310                                     unsigned long tsb_hash_shift, unsigned long address,
311                                     unsigned long tte)
312 {
313         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
314         unsigned long tag;
315 
316         if (unlikely(!tsb))
317                 return;
318 
319         tsb += ((address >> tsb_hash_shift) &
320                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
321         tag = (address >> 22UL);
322         tsb_insert(tsb, tag, tte);
323 }
324 
325 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
326 static inline bool is_hugetlb_pte(pte_t pte)
327 {
328         if ((tlb_type == hypervisor &&
329              (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
330             (tlb_type != hypervisor &&
331              (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
332                 return true;
333         return false;
334 }
335 #endif
336 
337 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
338 {
339         struct mm_struct *mm;
340         unsigned long flags;
341         pte_t pte = *ptep;
342 
343         if (tlb_type != hypervisor) {
344                 unsigned long pfn = pte_pfn(pte);
345 
346                 if (pfn_valid(pfn))
347                         flush_dcache(pfn);
348         }
349 
350         mm = vma->vm_mm;
351 
352         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
353         if (!pte_accessible(mm, pte))
354                 return;
355 
356         spin_lock_irqsave(&mm->context.lock, flags);
357 
358 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
359         if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
360                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
361                                         address, pte_val(pte));
362         else
363 #endif
364                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
365                                         address, pte_val(pte));
366 
367         spin_unlock_irqrestore(&mm->context.lock, flags);
368 }
369 
370 void flush_dcache_page(struct page *page)
371 {
372         struct address_space *mapping;
373         int this_cpu;
374 
375         if (tlb_type == hypervisor)
376                 return;
377 
378         /* Do not bother with the expensive D-cache flush if it
379          * is merely the zero page.  The 'bigcore' testcase in GDB
380          * causes this case to run millions of times.
381          */
382         if (page == ZERO_PAGE(0))
383                 return;
384 
385         this_cpu = get_cpu();
386 
387         mapping = page_mapping(page);
388         if (mapping && !mapping_mapped(mapping)) {
389                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
390                 if (dirty) {
391                         int dirty_cpu = dcache_dirty_cpu(page);
392 
393                         if (dirty_cpu == this_cpu)
394                                 goto out;
395                         smp_flush_dcache_page_impl(page, dirty_cpu);
396                 }
397                 set_dcache_dirty(page, this_cpu);
398         } else {
399                 /* We could delay the flush for the !page_mapping
400                  * case too.  But that case is for exec env/arg
401                  * pages and those are %99 certainly going to get
402                  * faulted into the tlb (and thus flushed) anyways.
403                  */
404                 flush_dcache_page_impl(page);
405         }
406 
407 out:
408         put_cpu();
409 }
410 EXPORT_SYMBOL(flush_dcache_page);
411 
412 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
413 {
414         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
415         if (tlb_type == spitfire) {
416                 unsigned long kaddr;
417 
418                 /* This code only runs on Spitfire cpus so this is
419                  * why we can assume _PAGE_PADDR_4U.
420                  */
421                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
422                         unsigned long paddr, mask = _PAGE_PADDR_4U;
423 
424                         if (kaddr >= PAGE_OFFSET)
425                                 paddr = kaddr & mask;
426                         else {
427                                 pgd_t *pgdp = pgd_offset_k(kaddr);
428                                 pud_t *pudp = pud_offset(pgdp, kaddr);
429                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
430                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
431 
432                                 paddr = pte_val(*ptep) & mask;
433                         }
434                         __flush_icache_page(paddr);
435                 }
436         }
437 }
438 EXPORT_SYMBOL(flush_icache_range);
439 
440 void mmu_info(struct seq_file *m)
441 {
442         static const char *pgsz_strings[] = {
443                 "8K", "64K", "512K", "4MB", "32MB",
444                 "256MB", "2GB", "16GB",
445         };
446         int i, printed;
447 
448         if (tlb_type == cheetah)
449                 seq_printf(m, "MMU Type\t: Cheetah\n");
450         else if (tlb_type == cheetah_plus)
451                 seq_printf(m, "MMU Type\t: Cheetah+\n");
452         else if (tlb_type == spitfire)
453                 seq_printf(m, "MMU Type\t: Spitfire\n");
454         else if (tlb_type == hypervisor)
455                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
456         else
457                 seq_printf(m, "MMU Type\t: ???\n");
458 
459         seq_printf(m, "MMU PGSZs\t: ");
460         printed = 0;
461         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
462                 if (cpu_pgsz_mask & (1UL << i)) {
463                         seq_printf(m, "%s%s",
464                                    printed ? "," : "", pgsz_strings[i]);
465                         printed++;
466                 }
467         }
468         seq_putc(m, '\n');
469 
470 #ifdef CONFIG_DEBUG_DCFLUSH
471         seq_printf(m, "DCPageFlushes\t: %d\n",
472                    atomic_read(&dcpage_flushes));
473 #ifdef CONFIG_SMP
474         seq_printf(m, "DCPageFlushesXC\t: %d\n",
475                    atomic_read(&dcpage_flushes_xcall));
476 #endif /* CONFIG_SMP */
477 #endif /* CONFIG_DEBUG_DCFLUSH */
478 }
479 
480 struct linux_prom_translation prom_trans[512] __read_mostly;
481 unsigned int prom_trans_ents __read_mostly;
482 
483 unsigned long kern_locked_tte_data;
484 
485 /* The obp translations are saved based on 8k pagesize, since obp can
486  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
487  * HI_OBP_ADDRESS range are handled in ktlb.S.
488  */
489 static inline int in_obp_range(unsigned long vaddr)
490 {
491         return (vaddr >= LOW_OBP_ADDRESS &&
492                 vaddr < HI_OBP_ADDRESS);
493 }
494 
495 static int cmp_ptrans(const void *a, const void *b)
496 {
497         const struct linux_prom_translation *x = a, *y = b;
498 
499         if (x->virt > y->virt)
500                 return 1;
501         if (x->virt < y->virt)
502                 return -1;
503         return 0;
504 }
505 
506 /* Read OBP translations property into 'prom_trans[]'.  */
507 static void __init read_obp_translations(void)
508 {
509         int n, node, ents, first, last, i;
510 
511         node = prom_finddevice("/virtual-memory");
512         n = prom_getproplen(node, "translations");
513         if (unlikely(n == 0 || n == -1)) {
514                 prom_printf("prom_mappings: Couldn't get size.\n");
515                 prom_halt();
516         }
517         if (unlikely(n > sizeof(prom_trans))) {
518                 prom_printf("prom_mappings: Size %d is too big.\n", n);
519                 prom_halt();
520         }
521 
522         if ((n = prom_getproperty(node, "translations",
523                                   (char *)&prom_trans[0],
524                                   sizeof(prom_trans))) == -1) {
525                 prom_printf("prom_mappings: Couldn't get property.\n");
526                 prom_halt();
527         }
528 
529         n = n / sizeof(struct linux_prom_translation);
530 
531         ents = n;
532 
533         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
534              cmp_ptrans, NULL);
535 
536         /* Now kick out all the non-OBP entries.  */
537         for (i = 0; i < ents; i++) {
538                 if (in_obp_range(prom_trans[i].virt))
539                         break;
540         }
541         first = i;
542         for (; i < ents; i++) {
543                 if (!in_obp_range(prom_trans[i].virt))
544                         break;
545         }
546         last = i;
547 
548         for (i = 0; i < (last - first); i++) {
549                 struct linux_prom_translation *src = &prom_trans[i + first];
550                 struct linux_prom_translation *dest = &prom_trans[i];
551 
552                 *dest = *src;
553         }
554         for (; i < ents; i++) {
555                 struct linux_prom_translation *dest = &prom_trans[i];
556                 dest->virt = dest->size = dest->data = 0x0UL;
557         }
558 
559         prom_trans_ents = last - first;
560 
561         if (tlb_type == spitfire) {
562                 /* Clear diag TTE bits. */
563                 for (i = 0; i < prom_trans_ents; i++)
564                         prom_trans[i].data &= ~0x0003fe0000000000UL;
565         }
566 
567         /* Force execute bit on.  */
568         for (i = 0; i < prom_trans_ents; i++)
569                 prom_trans[i].data |= (tlb_type == hypervisor ?
570                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
571 }
572 
573 static void __init hypervisor_tlb_lock(unsigned long vaddr,
574                                        unsigned long pte,
575                                        unsigned long mmu)
576 {
577         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
578 
579         if (ret != 0) {
580                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
581                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
582                 prom_halt();
583         }
584 }
585 
586 static unsigned long kern_large_tte(unsigned long paddr);
587 
588 static void __init remap_kernel(void)
589 {
590         unsigned long phys_page, tte_vaddr, tte_data;
591         int i, tlb_ent = sparc64_highest_locked_tlbent();
592 
593         tte_vaddr = (unsigned long) KERNBASE;
594         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
595         tte_data = kern_large_tte(phys_page);
596 
597         kern_locked_tte_data = tte_data;
598 
599         /* Now lock us into the TLBs via Hypervisor or OBP. */
600         if (tlb_type == hypervisor) {
601                 for (i = 0; i < num_kernel_image_mappings; i++) {
602                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
603                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
604                         tte_vaddr += 0x400000;
605                         tte_data += 0x400000;
606                 }
607         } else {
608                 for (i = 0; i < num_kernel_image_mappings; i++) {
609                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
610                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
611                         tte_vaddr += 0x400000;
612                         tte_data += 0x400000;
613                 }
614                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
615         }
616         if (tlb_type == cheetah_plus) {
617                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
618                                             CTX_CHEETAH_PLUS_NUC);
619                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
620                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
621         }
622 }
623 
624 
625 static void __init inherit_prom_mappings(void)
626 {
627         /* Now fixup OBP's idea about where we really are mapped. */
628         printk("Remapping the kernel... ");
629         remap_kernel();
630         printk("done.\n");
631 }
632 
633 void prom_world(int enter)
634 {
635         if (!enter)
636                 set_fs(get_fs());
637 
638         __asm__ __volatile__("flushw");
639 }
640 
641 void __flush_dcache_range(unsigned long start, unsigned long end)
642 {
643         unsigned long va;
644 
645         if (tlb_type == spitfire) {
646                 int n = 0;
647 
648                 for (va = start; va < end; va += 32) {
649                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
650                         if (++n >= 512)
651                                 break;
652                 }
653         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
654                 start = __pa(start);
655                 end = __pa(end);
656                 for (va = start; va < end; va += 32)
657                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
658                                              "membar #Sync"
659                                              : /* no outputs */
660                                              : "r" (va),
661                                                "i" (ASI_DCACHE_INVALIDATE));
662         }
663 }
664 EXPORT_SYMBOL(__flush_dcache_range);
665 
666 /* get_new_mmu_context() uses "cache + 1".  */
667 DEFINE_SPINLOCK(ctx_alloc_lock);
668 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
669 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
670 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
671 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
672 
673 /* Caller does TLB context flushing on local CPU if necessary.
674  * The caller also ensures that CTX_VALID(mm->context) is false.
675  *
676  * We must be careful about boundary cases so that we never
677  * let the user have CTX 0 (nucleus) or we ever use a CTX
678  * version of zero (and thus NO_CONTEXT would not be caught
679  * by version mis-match tests in mmu_context.h).
680  *
681  * Always invoked with interrupts disabled.
682  */
683 void get_new_mmu_context(struct mm_struct *mm)
684 {
685         unsigned long ctx, new_ctx;
686         unsigned long orig_pgsz_bits;
687         int new_version;
688 
689         spin_lock(&ctx_alloc_lock);
690         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
691         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
692         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
693         new_version = 0;
694         if (new_ctx >= (1 << CTX_NR_BITS)) {
695                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
696                 if (new_ctx >= ctx) {
697                         int i;
698                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
699                                 CTX_FIRST_VERSION;
700                         if (new_ctx == 1)
701                                 new_ctx = CTX_FIRST_VERSION;
702 
703                         /* Don't call memset, for 16 entries that's just
704                          * plain silly...
705                          */
706                         mmu_context_bmap[0] = 3;
707                         mmu_context_bmap[1] = 0;
708                         mmu_context_bmap[2] = 0;
709                         mmu_context_bmap[3] = 0;
710                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
711                                 mmu_context_bmap[i + 0] = 0;
712                                 mmu_context_bmap[i + 1] = 0;
713                                 mmu_context_bmap[i + 2] = 0;
714                                 mmu_context_bmap[i + 3] = 0;
715                         }
716                         new_version = 1;
717                         goto out;
718                 }
719         }
720         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
721         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
722 out:
723         tlb_context_cache = new_ctx;
724         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
725         spin_unlock(&ctx_alloc_lock);
726 
727         if (unlikely(new_version))
728                 smp_new_mmu_context_version();
729 }
730 
731 static int numa_enabled = 1;
732 static int numa_debug;
733 
734 static int __init early_numa(char *p)
735 {
736         if (!p)
737                 return 0;
738 
739         if (strstr(p, "off"))
740                 numa_enabled = 0;
741 
742         if (strstr(p, "debug"))
743                 numa_debug = 1;
744 
745         return 0;
746 }
747 early_param("numa", early_numa);
748 
749 #define numadbg(f, a...) \
750 do {    if (numa_debug) \
751                 printk(KERN_INFO f, ## a); \
752 } while (0)
753 
754 static void __init find_ramdisk(unsigned long phys_base)
755 {
756 #ifdef CONFIG_BLK_DEV_INITRD
757         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
758                 unsigned long ramdisk_image;
759 
760                 /* Older versions of the bootloader only supported a
761                  * 32-bit physical address for the ramdisk image
762                  * location, stored at sparc_ramdisk_image.  Newer
763                  * SILO versions set sparc_ramdisk_image to zero and
764                  * provide a full 64-bit physical address at
765                  * sparc_ramdisk_image64.
766                  */
767                 ramdisk_image = sparc_ramdisk_image;
768                 if (!ramdisk_image)
769                         ramdisk_image = sparc_ramdisk_image64;
770 
771                 /* Another bootloader quirk.  The bootloader normalizes
772                  * the physical address to KERNBASE, so we have to
773                  * factor that back out and add in the lowest valid
774                  * physical page address to get the true physical address.
775                  */
776                 ramdisk_image -= KERNBASE;
777                 ramdisk_image += phys_base;
778 
779                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
780                         ramdisk_image, sparc_ramdisk_size);
781 
782                 initrd_start = ramdisk_image;
783                 initrd_end = ramdisk_image + sparc_ramdisk_size;
784 
785                 memblock_reserve(initrd_start, sparc_ramdisk_size);
786 
787                 initrd_start += PAGE_OFFSET;
788                 initrd_end += PAGE_OFFSET;
789         }
790 #endif
791 }
792 
793 struct node_mem_mask {
794         unsigned long mask;
795         unsigned long val;
796 };
797 static struct node_mem_mask node_masks[MAX_NUMNODES];
798 static int num_node_masks;
799 
800 #ifdef CONFIG_NEED_MULTIPLE_NODES
801 
802 int numa_cpu_lookup_table[NR_CPUS];
803 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
804 
805 struct mdesc_mblock {
806         u64     base;
807         u64     size;
808         u64     offset; /* RA-to-PA */
809 };
810 static struct mdesc_mblock *mblocks;
811 static int num_mblocks;
812 
813 static unsigned long ra_to_pa(unsigned long addr)
814 {
815         int i;
816 
817         for (i = 0; i < num_mblocks; i++) {
818                 struct mdesc_mblock *m = &mblocks[i];
819 
820                 if (addr >= m->base &&
821                     addr < (m->base + m->size)) {
822                         addr += m->offset;
823                         break;
824                 }
825         }
826         return addr;
827 }
828 
829 static int find_node(unsigned long addr)
830 {
831         int i;
832 
833         addr = ra_to_pa(addr);
834         for (i = 0; i < num_node_masks; i++) {
835                 struct node_mem_mask *p = &node_masks[i];
836 
837                 if ((addr & p->mask) == p->val)
838                         return i;
839         }
840         /* The following condition has been observed on LDOM guests.*/
841         WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
842                 " rule. Some physical memory will be owned by node 0.");
843         return 0;
844 }
845 
846 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
847 {
848         *nid = find_node(start);
849         start += PAGE_SIZE;
850         while (start < end) {
851                 int n = find_node(start);
852 
853                 if (n != *nid)
854                         break;
855                 start += PAGE_SIZE;
856         }
857 
858         if (start > end)
859                 start = end;
860 
861         return start;
862 }
863 #endif
864 
865 /* This must be invoked after performing all of the necessary
866  * memblock_set_node() calls for 'nid'.  We need to be able to get
867  * correct data from get_pfn_range_for_nid().
868  */
869 static void __init allocate_node_data(int nid)
870 {
871         struct pglist_data *p;
872         unsigned long start_pfn, end_pfn;
873 #ifdef CONFIG_NEED_MULTIPLE_NODES
874         unsigned long paddr;
875 
876         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
877         if (!paddr) {
878                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
879                 prom_halt();
880         }
881         NODE_DATA(nid) = __va(paddr);
882         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
883 
884         NODE_DATA(nid)->node_id = nid;
885 #endif
886 
887         p = NODE_DATA(nid);
888 
889         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
890         p->node_start_pfn = start_pfn;
891         p->node_spanned_pages = end_pfn - start_pfn;
892 }
893 
894 static void init_node_masks_nonnuma(void)
895 {
896 #ifdef CONFIG_NEED_MULTIPLE_NODES
897         int i;
898 #endif
899 
900         numadbg("Initializing tables for non-numa.\n");
901 
902         node_masks[0].mask = node_masks[0].val = 0;
903         num_node_masks = 1;
904 
905 #ifdef CONFIG_NEED_MULTIPLE_NODES
906         for (i = 0; i < NR_CPUS; i++)
907                 numa_cpu_lookup_table[i] = 0;
908 
909         cpumask_setall(&numa_cpumask_lookup_table[0]);
910 #endif
911 }
912 
913 #ifdef CONFIG_NEED_MULTIPLE_NODES
914 struct pglist_data *node_data[MAX_NUMNODES];
915 
916 EXPORT_SYMBOL(numa_cpu_lookup_table);
917 EXPORT_SYMBOL(numa_cpumask_lookup_table);
918 EXPORT_SYMBOL(node_data);
919 
920 struct mdesc_mlgroup {
921         u64     node;
922         u64     latency;
923         u64     match;
924         u64     mask;
925 };
926 static struct mdesc_mlgroup *mlgroups;
927 static int num_mlgroups;
928 
929 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
930                                    u32 cfg_handle)
931 {
932         u64 arc;
933 
934         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
935                 u64 target = mdesc_arc_target(md, arc);
936                 const u64 *val;
937 
938                 val = mdesc_get_property(md, target,
939                                          "cfg-handle", NULL);
940                 if (val && *val == cfg_handle)
941                         return 0;
942         }
943         return -ENODEV;
944 }
945 
946 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
947                                     u32 cfg_handle)
948 {
949         u64 arc, candidate, best_latency = ~(u64)0;
950 
951         candidate = MDESC_NODE_NULL;
952         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
953                 u64 target = mdesc_arc_target(md, arc);
954                 const char *name = mdesc_node_name(md, target);
955                 const u64 *val;
956 
957                 if (strcmp(name, "pio-latency-group"))
958                         continue;
959 
960                 val = mdesc_get_property(md, target, "latency", NULL);
961                 if (!val)
962                         continue;
963 
964                 if (*val < best_latency) {
965                         candidate = target;
966                         best_latency = *val;
967                 }
968         }
969 
970         if (candidate == MDESC_NODE_NULL)
971                 return -ENODEV;
972 
973         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
974 }
975 
976 int of_node_to_nid(struct device_node *dp)
977 {
978         const struct linux_prom64_registers *regs;
979         struct mdesc_handle *md;
980         u32 cfg_handle;
981         int count, nid;
982         u64 grp;
983 
984         /* This is the right thing to do on currently supported
985          * SUN4U NUMA platforms as well, as the PCI controller does
986          * not sit behind any particular memory controller.
987          */
988         if (!mlgroups)
989                 return -1;
990 
991         regs = of_get_property(dp, "reg", NULL);
992         if (!regs)
993                 return -1;
994 
995         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
996 
997         md = mdesc_grab();
998 
999         count = 0;
1000         nid = -1;
1001         mdesc_for_each_node_by_name(md, grp, "group") {
1002                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1003                         nid = count;
1004                         break;
1005                 }
1006                 count++;
1007         }
1008 
1009         mdesc_release(md);
1010 
1011         return nid;
1012 }
1013 
1014 static void __init add_node_ranges(void)
1015 {
1016         struct memblock_region *reg;
1017 
1018         for_each_memblock(memory, reg) {
1019                 unsigned long size = reg->size;
1020                 unsigned long start, end;
1021 
1022                 start = reg->base;
1023                 end = start + size;
1024                 while (start < end) {
1025                         unsigned long this_end;
1026                         int nid;
1027 
1028                         this_end = memblock_nid_range(start, end, &nid);
1029 
1030                         numadbg("Setting memblock NUMA node nid[%d] "
1031                                 "start[%lx] end[%lx]\n",
1032                                 nid, start, this_end);
1033 
1034                         memblock_set_node(start, this_end - start,
1035                                           &memblock.memory, nid);
1036                         start = this_end;
1037                 }
1038         }
1039 }
1040 
1041 static int __init grab_mlgroups(struct mdesc_handle *md)
1042 {
1043         unsigned long paddr;
1044         int count = 0;
1045         u64 node;
1046 
1047         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1048                 count++;
1049         if (!count)
1050                 return -ENOENT;
1051 
1052         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1053                           SMP_CACHE_BYTES);
1054         if (!paddr)
1055                 return -ENOMEM;
1056 
1057         mlgroups = __va(paddr);
1058         num_mlgroups = count;
1059 
1060         count = 0;
1061         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1062                 struct mdesc_mlgroup *m = &mlgroups[count++];
1063                 const u64 *val;
1064 
1065                 m->node = node;
1066 
1067                 val = mdesc_get_property(md, node, "latency", NULL);
1068                 m->latency = *val;
1069                 val = mdesc_get_property(md, node, "address-match", NULL);
1070                 m->match = *val;
1071                 val = mdesc_get_property(md, node, "address-mask", NULL);
1072                 m->mask = *val;
1073 
1074                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1075                         "match[%llx] mask[%llx]\n",
1076                         count - 1, m->node, m->latency, m->match, m->mask);
1077         }
1078 
1079         return 0;
1080 }
1081 
1082 static int __init grab_mblocks(struct mdesc_handle *md)
1083 {
1084         unsigned long paddr;
1085         int count = 0;
1086         u64 node;
1087 
1088         mdesc_for_each_node_by_name(md, node, "mblock")
1089                 count++;
1090         if (!count)
1091                 return -ENOENT;
1092 
1093         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1094                           SMP_CACHE_BYTES);
1095         if (!paddr)
1096                 return -ENOMEM;
1097 
1098         mblocks = __va(paddr);
1099         num_mblocks = count;
1100 
1101         count = 0;
1102         mdesc_for_each_node_by_name(md, node, "mblock") {
1103                 struct mdesc_mblock *m = &mblocks[count++];
1104                 const u64 *val;
1105 
1106                 val = mdesc_get_property(md, node, "base", NULL);
1107                 m->base = *val;
1108                 val = mdesc_get_property(md, node, "size", NULL);
1109                 m->size = *val;
1110                 val = mdesc_get_property(md, node,
1111                                          "address-congruence-offset", NULL);
1112 
1113                 /* The address-congruence-offset property is optional.
1114                  * Explicity zero it be identifty this.
1115                  */
1116                 if (val)
1117                         m->offset = *val;
1118                 else
1119                         m->offset = 0UL;
1120 
1121                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1122                         count - 1, m->base, m->size, m->offset);
1123         }
1124 
1125         return 0;
1126 }
1127 
1128 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1129                                                u64 grp, cpumask_t *mask)
1130 {
1131         u64 arc;
1132 
1133         cpumask_clear(mask);
1134 
1135         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1136                 u64 target = mdesc_arc_target(md, arc);
1137                 const char *name = mdesc_node_name(md, target);
1138                 const u64 *id;
1139 
1140                 if (strcmp(name, "cpu"))
1141                         continue;
1142                 id = mdesc_get_property(md, target, "id", NULL);
1143                 if (*id < nr_cpu_ids)
1144                         cpumask_set_cpu(*id, mask);
1145         }
1146 }
1147 
1148 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1149 {
1150         int i;
1151 
1152         for (i = 0; i < num_mlgroups; i++) {
1153                 struct mdesc_mlgroup *m = &mlgroups[i];
1154                 if (m->node == node)
1155                         return m;
1156         }
1157         return NULL;
1158 }
1159 
1160 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1161                                       int index)
1162 {
1163         struct mdesc_mlgroup *candidate = NULL;
1164         u64 arc, best_latency = ~(u64)0;
1165         struct node_mem_mask *n;
1166 
1167         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1168                 u64 target = mdesc_arc_target(md, arc);
1169                 struct mdesc_mlgroup *m = find_mlgroup(target);
1170                 if (!m)
1171                         continue;
1172                 if (m->latency < best_latency) {
1173                         candidate = m;
1174                         best_latency = m->latency;
1175                 }
1176         }
1177         if (!candidate)
1178                 return -ENOENT;
1179 
1180         if (num_node_masks != index) {
1181                 printk(KERN_ERR "Inconsistent NUMA state, "
1182                        "index[%d] != num_node_masks[%d]\n",
1183                        index, num_node_masks);
1184                 return -EINVAL;
1185         }
1186 
1187         n = &node_masks[num_node_masks++];
1188 
1189         n->mask = candidate->mask;
1190         n->val = candidate->match;
1191 
1192         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1193                 index, n->mask, n->val, candidate->latency);
1194 
1195         return 0;
1196 }
1197 
1198 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1199                                          int index)
1200 {
1201         cpumask_t mask;
1202         int cpu;
1203 
1204         numa_parse_mdesc_group_cpus(md, grp, &mask);
1205 
1206         for_each_cpu(cpu, &mask)
1207                 numa_cpu_lookup_table[cpu] = index;
1208         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1209 
1210         if (numa_debug) {
1211                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1212                 for_each_cpu(cpu, &mask)
1213                         printk("%d ", cpu);
1214                 printk("]\n");
1215         }
1216 
1217         return numa_attach_mlgroup(md, grp, index);
1218 }
1219 
1220 static int __init numa_parse_mdesc(void)
1221 {
1222         struct mdesc_handle *md = mdesc_grab();
1223         int i, err, count;
1224         u64 node;
1225 
1226         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1227         if (node == MDESC_NODE_NULL) {
1228                 mdesc_release(md);
1229                 return -ENOENT;
1230         }
1231 
1232         err = grab_mblocks(md);
1233         if (err < 0)
1234                 goto out;
1235 
1236         err = grab_mlgroups(md);
1237         if (err < 0)
1238                 goto out;
1239 
1240         count = 0;
1241         mdesc_for_each_node_by_name(md, node, "group") {
1242                 err = numa_parse_mdesc_group(md, node, count);
1243                 if (err < 0)
1244                         break;
1245                 count++;
1246         }
1247 
1248         add_node_ranges();
1249 
1250         for (i = 0; i < num_node_masks; i++) {
1251                 allocate_node_data(i);
1252                 node_set_online(i);
1253         }
1254 
1255         err = 0;
1256 out:
1257         mdesc_release(md);
1258         return err;
1259 }
1260 
1261 static int __init numa_parse_jbus(void)
1262 {
1263         unsigned long cpu, index;
1264 
1265         /* NUMA node id is encoded in bits 36 and higher, and there is
1266          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1267          */
1268         index = 0;
1269         for_each_present_cpu(cpu) {
1270                 numa_cpu_lookup_table[cpu] = index;
1271                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1272                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1273                 node_masks[index].val = cpu << 36UL;
1274 
1275                 index++;
1276         }
1277         num_node_masks = index;
1278 
1279         add_node_ranges();
1280 
1281         for (index = 0; index < num_node_masks; index++) {
1282                 allocate_node_data(index);
1283                 node_set_online(index);
1284         }
1285 
1286         return 0;
1287 }
1288 
1289 static int __init numa_parse_sun4u(void)
1290 {
1291         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1292                 unsigned long ver;
1293 
1294                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1295                 if ((ver >> 32UL) == __JALAPENO_ID ||
1296                     (ver >> 32UL) == __SERRANO_ID)
1297                         return numa_parse_jbus();
1298         }
1299         return -1;
1300 }
1301 
1302 static int __init bootmem_init_numa(void)
1303 {
1304         int err = -1;
1305 
1306         numadbg("bootmem_init_numa()\n");
1307 
1308         if (numa_enabled) {
1309                 if (tlb_type == hypervisor)
1310                         err = numa_parse_mdesc();
1311                 else
1312                         err = numa_parse_sun4u();
1313         }
1314         return err;
1315 }
1316 
1317 #else
1318 
1319 static int bootmem_init_numa(void)
1320 {
1321         return -1;
1322 }
1323 
1324 #endif
1325 
1326 static void __init bootmem_init_nonnuma(void)
1327 {
1328         unsigned long top_of_ram = memblock_end_of_DRAM();
1329         unsigned long total_ram = memblock_phys_mem_size();
1330 
1331         numadbg("bootmem_init_nonnuma()\n");
1332 
1333         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1334                top_of_ram, total_ram);
1335         printk(KERN_INFO "Memory hole size: %ldMB\n",
1336                (top_of_ram - total_ram) >> 20);
1337 
1338         init_node_masks_nonnuma();
1339         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1340         allocate_node_data(0);
1341         node_set_online(0);
1342 }
1343 
1344 static unsigned long __init bootmem_init(unsigned long phys_base)
1345 {
1346         unsigned long end_pfn;
1347 
1348         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1349         max_pfn = max_low_pfn = end_pfn;
1350         min_low_pfn = (phys_base >> PAGE_SHIFT);
1351 
1352         if (bootmem_init_numa() < 0)
1353                 bootmem_init_nonnuma();
1354 
1355         /* Dump memblock with node info. */
1356         memblock_dump_all();
1357 
1358         /* XXX cpu notifier XXX */
1359 
1360         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1361         sparse_init();
1362 
1363         return end_pfn;
1364 }
1365 
1366 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1367 static int pall_ents __initdata;
1368 
1369 static unsigned long max_phys_bits = 40;
1370 
1371 bool kern_addr_valid(unsigned long addr)
1372 {
1373         pgd_t *pgd;
1374         pud_t *pud;
1375         pmd_t *pmd;
1376         pte_t *pte;
1377 
1378         if ((long)addr < 0L) {
1379                 unsigned long pa = __pa(addr);
1380 
1381                 if ((addr >> max_phys_bits) != 0UL)
1382                         return false;
1383 
1384                 return pfn_valid(pa >> PAGE_SHIFT);
1385         }
1386 
1387         if (addr >= (unsigned long) KERNBASE &&
1388             addr < (unsigned long)&_end)
1389                 return true;
1390 
1391         pgd = pgd_offset_k(addr);
1392         if (pgd_none(*pgd))
1393                 return 0;
1394 
1395         pud = pud_offset(pgd, addr);
1396         if (pud_none(*pud))
1397                 return 0;
1398 
1399         if (pud_large(*pud))
1400                 return pfn_valid(pud_pfn(*pud));
1401 
1402         pmd = pmd_offset(pud, addr);
1403         if (pmd_none(*pmd))
1404                 return 0;
1405 
1406         if (pmd_large(*pmd))
1407                 return pfn_valid(pmd_pfn(*pmd));
1408 
1409         pte = pte_offset_kernel(pmd, addr);
1410         if (pte_none(*pte))
1411                 return 0;
1412 
1413         return pfn_valid(pte_pfn(*pte));
1414 }
1415 EXPORT_SYMBOL(kern_addr_valid);
1416 
1417 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1418                                               unsigned long vend,
1419                                               pud_t *pud)
1420 {
1421         const unsigned long mask16gb = (1UL << 34) - 1UL;
1422         u64 pte_val = vstart;
1423 
1424         /* Each PUD is 8GB */
1425         if ((vstart & mask16gb) ||
1426             (vend - vstart <= mask16gb)) {
1427                 pte_val ^= kern_linear_pte_xor[2];
1428                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1429 
1430                 return vstart + PUD_SIZE;
1431         }
1432 
1433         pte_val ^= kern_linear_pte_xor[3];
1434         pte_val |= _PAGE_PUD_HUGE;
1435 
1436         vend = vstart + mask16gb + 1UL;
1437         while (vstart < vend) {
1438                 pud_val(*pud) = pte_val;
1439 
1440                 pte_val += PUD_SIZE;
1441                 vstart += PUD_SIZE;
1442                 pud++;
1443         }
1444         return vstart;
1445 }
1446 
1447 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1448                                    bool guard)
1449 {
1450         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1451                 return true;
1452 
1453         return false;
1454 }
1455 
1456 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1457                                               unsigned long vend,
1458                                               pmd_t *pmd)
1459 {
1460         const unsigned long mask256mb = (1UL << 28) - 1UL;
1461         const unsigned long mask2gb = (1UL << 31) - 1UL;
1462         u64 pte_val = vstart;
1463 
1464         /* Each PMD is 8MB */
1465         if ((vstart & mask256mb) ||
1466             (vend - vstart <= mask256mb)) {
1467                 pte_val ^= kern_linear_pte_xor[0];
1468                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1469 
1470                 return vstart + PMD_SIZE;
1471         }
1472 
1473         if ((vstart & mask2gb) ||
1474             (vend - vstart <= mask2gb)) {
1475                 pte_val ^= kern_linear_pte_xor[1];
1476                 pte_val |= _PAGE_PMD_HUGE;
1477                 vend = vstart + mask256mb + 1UL;
1478         } else {
1479                 pte_val ^= kern_linear_pte_xor[2];
1480                 pte_val |= _PAGE_PMD_HUGE;
1481                 vend = vstart + mask2gb + 1UL;
1482         }
1483 
1484         while (vstart < vend) {
1485                 pmd_val(*pmd) = pte_val;
1486 
1487                 pte_val += PMD_SIZE;
1488                 vstart += PMD_SIZE;
1489                 pmd++;
1490         }
1491 
1492         return vstart;
1493 }
1494 
1495 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1496                                    bool guard)
1497 {
1498         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1499                 return true;
1500 
1501         return false;
1502 }
1503 
1504 static unsigned long __ref kernel_map_range(unsigned long pstart,
1505                                             unsigned long pend, pgprot_t prot,
1506                                             bool use_huge)
1507 {
1508         unsigned long vstart = PAGE_OFFSET + pstart;
1509         unsigned long vend = PAGE_OFFSET + pend;
1510         unsigned long alloc_bytes = 0UL;
1511 
1512         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1513                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1514                             vstart, vend);
1515                 prom_halt();
1516         }
1517 
1518         while (vstart < vend) {
1519                 unsigned long this_end, paddr = __pa(vstart);
1520                 pgd_t *pgd = pgd_offset_k(vstart);
1521                 pud_t *pud;
1522                 pmd_t *pmd;
1523                 pte_t *pte;
1524 
1525                 if (pgd_none(*pgd)) {
1526                         pud_t *new;
1527 
1528                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1529                         alloc_bytes += PAGE_SIZE;
1530                         pgd_populate(&init_mm, pgd, new);
1531                 }
1532                 pud = pud_offset(pgd, vstart);
1533                 if (pud_none(*pud)) {
1534                         pmd_t *new;
1535 
1536                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1537                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1538                                 continue;
1539                         }
1540                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1541                         alloc_bytes += PAGE_SIZE;
1542                         pud_populate(&init_mm, pud, new);
1543                 }
1544 
1545                 pmd = pmd_offset(pud, vstart);
1546                 if (pmd_none(*pmd)) {
1547                         pte_t *new;
1548 
1549                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1550                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1551                                 continue;
1552                         }
1553                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1554                         alloc_bytes += PAGE_SIZE;
1555                         pmd_populate_kernel(&init_mm, pmd, new);
1556                 }
1557 
1558                 pte = pte_offset_kernel(pmd, vstart);
1559                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1560                 if (this_end > vend)
1561                         this_end = vend;
1562 
1563                 while (vstart < this_end) {
1564                         pte_val(*pte) = (paddr | pgprot_val(prot));
1565 
1566                         vstart += PAGE_SIZE;
1567                         paddr += PAGE_SIZE;
1568                         pte++;
1569                 }
1570         }
1571 
1572         return alloc_bytes;
1573 }
1574 
1575 static void __init flush_all_kernel_tsbs(void)
1576 {
1577         int i;
1578 
1579         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1580                 struct tsb *ent = &swapper_tsb[i];
1581 
1582                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1583         }
1584 #ifndef CONFIG_DEBUG_PAGEALLOC
1585         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1586                 struct tsb *ent = &swapper_4m_tsb[i];
1587 
1588                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1589         }
1590 #endif
1591 }
1592 
1593 extern unsigned int kvmap_linear_patch[1];
1594 
1595 static void __init kernel_physical_mapping_init(void)
1596 {
1597         unsigned long i, mem_alloced = 0UL;
1598         bool use_huge = true;
1599 
1600 #ifdef CONFIG_DEBUG_PAGEALLOC
1601         use_huge = false;
1602 #endif
1603         for (i = 0; i < pall_ents; i++) {
1604                 unsigned long phys_start, phys_end;
1605 
1606                 phys_start = pall[i].phys_addr;
1607                 phys_end = phys_start + pall[i].reg_size;
1608 
1609                 mem_alloced += kernel_map_range(phys_start, phys_end,
1610                                                 PAGE_KERNEL, use_huge);
1611         }
1612 
1613         printk("Allocated %ld bytes for kernel page tables.\n",
1614                mem_alloced);
1615 
1616         kvmap_linear_patch[0] = 0x01000000; /* nop */
1617         flushi(&kvmap_linear_patch[0]);
1618 
1619         flush_all_kernel_tsbs();
1620 
1621         __flush_tlb_all();
1622 }
1623 
1624 #ifdef CONFIG_DEBUG_PAGEALLOC
1625 void __kernel_map_pages(struct page *page, int numpages, int enable)
1626 {
1627         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1628         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1629 
1630         kernel_map_range(phys_start, phys_end,
1631                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1632 
1633         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1634                                PAGE_OFFSET + phys_end);
1635 
1636         /* we should perform an IPI and flush all tlbs,
1637          * but that can deadlock->flush only current cpu.
1638          */
1639         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1640                                  PAGE_OFFSET + phys_end);
1641 }
1642 #endif
1643 
1644 unsigned long __init find_ecache_flush_span(unsigned long size)
1645 {
1646         int i;
1647 
1648         for (i = 0; i < pavail_ents; i++) {
1649                 if (pavail[i].reg_size >= size)
1650                         return pavail[i].phys_addr;
1651         }
1652 
1653         return ~0UL;
1654 }
1655 
1656 unsigned long PAGE_OFFSET;
1657 EXPORT_SYMBOL(PAGE_OFFSET);
1658 
1659 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1660 EXPORT_SYMBOL(VMALLOC_END);
1661 
1662 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1663 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1664 
1665 static void __init setup_page_offset(void)
1666 {
1667         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1668                 /* Cheetah/Panther support a full 64-bit virtual
1669                  * address, so we can use all that our page tables
1670                  * support.
1671                  */
1672                 sparc64_va_hole_top =    0xfff0000000000000UL;
1673                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1674 
1675                 max_phys_bits = 42;
1676         } else if (tlb_type == hypervisor) {
1677                 switch (sun4v_chip_type) {
1678                 case SUN4V_CHIP_NIAGARA1:
1679                 case SUN4V_CHIP_NIAGARA2:
1680                         /* T1 and T2 support 48-bit virtual addresses.  */
1681                         sparc64_va_hole_top =    0xffff800000000000UL;
1682                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1683 
1684                         max_phys_bits = 39;
1685                         break;
1686                 case SUN4V_CHIP_NIAGARA3:
1687                         /* T3 supports 48-bit virtual addresses.  */
1688                         sparc64_va_hole_top =    0xffff800000000000UL;
1689                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1690 
1691                         max_phys_bits = 43;
1692                         break;
1693                 case SUN4V_CHIP_NIAGARA4:
1694                 case SUN4V_CHIP_NIAGARA5:
1695                 case SUN4V_CHIP_SPARC64X:
1696                 case SUN4V_CHIP_SPARC_M6:
1697                         /* T4 and later support 52-bit virtual addresses.  */
1698                         sparc64_va_hole_top =    0xfff8000000000000UL;
1699                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1700                         max_phys_bits = 47;
1701                         break;
1702                 case SUN4V_CHIP_SPARC_M7:
1703                 default:
1704                         /* M7 and later support 52-bit virtual addresses.  */
1705                         sparc64_va_hole_top =    0xfff8000000000000UL;
1706                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1707                         max_phys_bits = 49;
1708                         break;
1709                 }
1710         }
1711 
1712         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1713                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1714                             max_phys_bits);
1715                 prom_halt();
1716         }
1717 
1718         PAGE_OFFSET = sparc64_va_hole_top;
1719         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1720                        (sparc64_va_hole_bottom >> 2));
1721 
1722         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1723                 PAGE_OFFSET, max_phys_bits);
1724         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1725                 VMALLOC_START, VMALLOC_END);
1726         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1727                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1728 }
1729 
1730 static void __init tsb_phys_patch(void)
1731 {
1732         struct tsb_ldquad_phys_patch_entry *pquad;
1733         struct tsb_phys_patch_entry *p;
1734 
1735         pquad = &__tsb_ldquad_phys_patch;
1736         while (pquad < &__tsb_ldquad_phys_patch_end) {
1737                 unsigned long addr = pquad->addr;
1738 
1739                 if (tlb_type == hypervisor)
1740                         *(unsigned int *) addr = pquad->sun4v_insn;
1741                 else
1742                         *(unsigned int *) addr = pquad->sun4u_insn;
1743                 wmb();
1744                 __asm__ __volatile__("flush     %0"
1745                                      : /* no outputs */
1746                                      : "r" (addr));
1747 
1748                 pquad++;
1749         }
1750 
1751         p = &__tsb_phys_patch;
1752         while (p < &__tsb_phys_patch_end) {
1753                 unsigned long addr = p->addr;
1754 
1755                 *(unsigned int *) addr = p->insn;
1756                 wmb();
1757                 __asm__ __volatile__("flush     %0"
1758                                      : /* no outputs */
1759                                      : "r" (addr));
1760 
1761                 p++;
1762         }
1763 }
1764 
1765 /* Don't mark as init, we give this to the Hypervisor.  */
1766 #ifndef CONFIG_DEBUG_PAGEALLOC
1767 #define NUM_KTSB_DESCR  2
1768 #else
1769 #define NUM_KTSB_DESCR  1
1770 #endif
1771 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1772 
1773 /* The swapper TSBs are loaded with a base sequence of:
1774  *
1775  *      sethi   %uhi(SYMBOL), REG1
1776  *      sethi   %hi(SYMBOL), REG2
1777  *      or      REG1, %ulo(SYMBOL), REG1
1778  *      or      REG2, %lo(SYMBOL), REG2
1779  *      sllx    REG1, 32, REG1
1780  *      or      REG1, REG2, REG1
1781  *
1782  * When we use physical addressing for the TSB accesses, we patch the
1783  * first four instructions in the above sequence.
1784  */
1785 
1786 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1787 {
1788         unsigned long high_bits, low_bits;
1789 
1790         high_bits = (pa >> 32) & 0xffffffff;
1791         low_bits = (pa >> 0) & 0xffffffff;
1792 
1793         while (start < end) {
1794                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1795 
1796                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1797                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1798 
1799                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1800                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1801 
1802                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1803                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
1804 
1805                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1806                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
1807 
1808                 start++;
1809         }
1810 }
1811 
1812 static void ktsb_phys_patch(void)
1813 {
1814         extern unsigned int __swapper_tsb_phys_patch;
1815         extern unsigned int __swapper_tsb_phys_patch_end;
1816         unsigned long ktsb_pa;
1817 
1818         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1819         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1820                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1821 #ifndef CONFIG_DEBUG_PAGEALLOC
1822         {
1823         extern unsigned int __swapper_4m_tsb_phys_patch;
1824         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1825         ktsb_pa = (kern_base +
1826                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1827         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1828                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1829         }
1830 #endif
1831 }
1832 
1833 static void __init sun4v_ktsb_init(void)
1834 {
1835         unsigned long ktsb_pa;
1836 
1837         /* First KTSB for PAGE_SIZE mappings.  */
1838         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1839 
1840         switch (PAGE_SIZE) {
1841         case 8 * 1024:
1842         default:
1843                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1844                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1845                 break;
1846 
1847         case 64 * 1024:
1848                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1849                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1850                 break;
1851 
1852         case 512 * 1024:
1853                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1854                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1855                 break;
1856 
1857         case 4 * 1024 * 1024:
1858                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1859                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1860                 break;
1861         }
1862 
1863         ktsb_descr[0].assoc = 1;
1864         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1865         ktsb_descr[0].ctx_idx = 0;
1866         ktsb_descr[0].tsb_base = ktsb_pa;
1867         ktsb_descr[0].resv = 0;
1868 
1869 #ifndef CONFIG_DEBUG_PAGEALLOC
1870         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1871         ktsb_pa = (kern_base +
1872                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1873 
1874         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1875         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1876                                     HV_PGSZ_MASK_256MB |
1877                                     HV_PGSZ_MASK_2GB |
1878                                     HV_PGSZ_MASK_16GB) &
1879                                    cpu_pgsz_mask);
1880         ktsb_descr[1].assoc = 1;
1881         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1882         ktsb_descr[1].ctx_idx = 0;
1883         ktsb_descr[1].tsb_base = ktsb_pa;
1884         ktsb_descr[1].resv = 0;
1885 #endif
1886 }
1887 
1888 void sun4v_ktsb_register(void)
1889 {
1890         unsigned long pa, ret;
1891 
1892         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1893 
1894         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1895         if (ret != 0) {
1896                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1897                             "errors with %lx\n", pa, ret);
1898                 prom_halt();
1899         }
1900 }
1901 
1902 static void __init sun4u_linear_pte_xor_finalize(void)
1903 {
1904 #ifndef CONFIG_DEBUG_PAGEALLOC
1905         /* This is where we would add Panther support for
1906          * 32MB and 256MB pages.
1907          */
1908 #endif
1909 }
1910 
1911 static void __init sun4v_linear_pte_xor_finalize(void)
1912 {
1913         unsigned long pagecv_flag;
1914 
1915         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
1916          * enables MCD error. Do not set bit 9 on M7 processor.
1917          */
1918         switch (sun4v_chip_type) {
1919         case SUN4V_CHIP_SPARC_M7:
1920                 pagecv_flag = 0x00;
1921                 break;
1922         default:
1923                 pagecv_flag = _PAGE_CV_4V;
1924                 break;
1925         }
1926 #ifndef CONFIG_DEBUG_PAGEALLOC
1927         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1928                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1929                         PAGE_OFFSET;
1930                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
1931                                            _PAGE_P_4V | _PAGE_W_4V);
1932         } else {
1933                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1934         }
1935 
1936         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1937                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1938                         PAGE_OFFSET;
1939                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
1940                                            _PAGE_P_4V | _PAGE_W_4V);
1941         } else {
1942                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1943         }
1944 
1945         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1946                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1947                         PAGE_OFFSET;
1948                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
1949                                            _PAGE_P_4V | _PAGE_W_4V);
1950         } else {
1951                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1952         }
1953 #endif
1954 }
1955 
1956 /* paging_init() sets up the page tables */
1957 
1958 static unsigned long last_valid_pfn;
1959 
1960 static void sun4u_pgprot_init(void);
1961 static void sun4v_pgprot_init(void);
1962 
1963 static phys_addr_t __init available_memory(void)
1964 {
1965         phys_addr_t available = 0ULL;
1966         phys_addr_t pa_start, pa_end;
1967         u64 i;
1968 
1969         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
1970                                 &pa_end, NULL)
1971                 available = available + (pa_end  - pa_start);
1972 
1973         return available;
1974 }
1975 
1976 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1977 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1978 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1979 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1980 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1981 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1982 
1983 /* We need to exclude reserved regions. This exclusion will include
1984  * vmlinux and initrd. To be more precise the initrd size could be used to
1985  * compute a new lower limit because it is freed later during initialization.
1986  */
1987 static void __init reduce_memory(phys_addr_t limit_ram)
1988 {
1989         phys_addr_t avail_ram = available_memory();
1990         phys_addr_t pa_start, pa_end;
1991         u64 i;
1992 
1993         if (limit_ram >= avail_ram)
1994                 return;
1995 
1996         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
1997                                 &pa_end, NULL) {
1998                 phys_addr_t region_size = pa_end - pa_start;
1999                 phys_addr_t clip_start = pa_start;
2000 
2001                 avail_ram = avail_ram - region_size;
2002                 /* Are we consuming too much? */
2003                 if (avail_ram < limit_ram) {
2004                         phys_addr_t give_back = limit_ram - avail_ram;
2005 
2006                         region_size = region_size - give_back;
2007                         clip_start = clip_start + give_back;
2008                 }
2009 
2010                 memblock_remove(clip_start, region_size);
2011 
2012                 if (avail_ram <= limit_ram)
2013                         break;
2014                 i = 0UL;
2015         }
2016 }
2017 
2018 void __init paging_init(void)
2019 {
2020         unsigned long end_pfn, shift, phys_base;
2021         unsigned long real_end, i;
2022         int node;
2023 
2024         setup_page_offset();
2025 
2026         /* These build time checkes make sure that the dcache_dirty_cpu()
2027          * page->flags usage will work.
2028          *
2029          * When a page gets marked as dcache-dirty, we store the
2030          * cpu number starting at bit 32 in the page->flags.  Also,
2031          * functions like clear_dcache_dirty_cpu use the cpu mask
2032          * in 13-bit signed-immediate instruction fields.
2033          */
2034 
2035         /*
2036          * Page flags must not reach into upper 32 bits that are used
2037          * for the cpu number
2038          */
2039         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2040 
2041         /*
2042          * The bit fields placed in the high range must not reach below
2043          * the 32 bit boundary. Otherwise we cannot place the cpu field
2044          * at the 32 bit boundary.
2045          */
2046         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2047                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2048 
2049         BUILD_BUG_ON(NR_CPUS > 4096);
2050 
2051         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2052         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2053 
2054         /* Invalidate both kernel TSBs.  */
2055         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2056 #ifndef CONFIG_DEBUG_PAGEALLOC
2057         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2058 #endif
2059 
2060         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2061          * bit on M7 processor. This is a conflicting usage of the same
2062          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2063          * Detection error on all pages and this will lead to problems
2064          * later. Kernel does not run with MCD enabled and hence rest
2065          * of the required steps to fully configure memory corruption
2066          * detection are not taken. We need to ensure TTE.mcde is not
2067          * set on M7 processor. Compute the value of cacheability
2068          * flag for use later taking this into consideration.
2069          */
2070         switch (sun4v_chip_type) {
2071         case SUN4V_CHIP_SPARC_M7:
2072                 page_cache4v_flag = _PAGE_CP_4V;
2073                 break;
2074         default:
2075                 page_cache4v_flag = _PAGE_CACHE_4V;
2076                 break;
2077         }
2078 
2079         if (tlb_type == hypervisor)
2080                 sun4v_pgprot_init();
2081         else
2082                 sun4u_pgprot_init();
2083 
2084         if (tlb_type == cheetah_plus ||
2085             tlb_type == hypervisor) {
2086                 tsb_phys_patch();
2087                 ktsb_phys_patch();
2088         }
2089 
2090         if (tlb_type == hypervisor)
2091                 sun4v_patch_tlb_handlers();
2092 
2093         /* Find available physical memory...
2094          *
2095          * Read it twice in order to work around a bug in openfirmware.
2096          * The call to grab this table itself can cause openfirmware to
2097          * allocate memory, which in turn can take away some space from
2098          * the list of available memory.  Reading it twice makes sure
2099          * we really do get the final value.
2100          */
2101         read_obp_translations();
2102         read_obp_memory("reg", &pall[0], &pall_ents);
2103         read_obp_memory("available", &pavail[0], &pavail_ents);
2104         read_obp_memory("available", &pavail[0], &pavail_ents);
2105 
2106         phys_base = 0xffffffffffffffffUL;
2107         for (i = 0; i < pavail_ents; i++) {
2108                 phys_base = min(phys_base, pavail[i].phys_addr);
2109                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2110         }
2111 
2112         memblock_reserve(kern_base, kern_size);
2113 
2114         find_ramdisk(phys_base);
2115 
2116         if (cmdline_memory_size)
2117                 reduce_memory(cmdline_memory_size);
2118 
2119         memblock_allow_resize();
2120         memblock_dump_all();
2121 
2122         set_bit(0, mmu_context_bmap);
2123 
2124         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2125 
2126         real_end = (unsigned long)_end;
2127         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2128         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2129                num_kernel_image_mappings);
2130 
2131         /* Set kernel pgd to upper alias so physical page computations
2132          * work.
2133          */
2134         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2135         
2136         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2137 
2138         inherit_prom_mappings();
2139         
2140         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2141         setup_tba();
2142 
2143         __flush_tlb_all();
2144 
2145         prom_build_devicetree();
2146         of_populate_present_mask();
2147 #ifndef CONFIG_SMP
2148         of_fill_in_cpu_data();
2149 #endif
2150 
2151         if (tlb_type == hypervisor) {
2152                 sun4v_mdesc_init();
2153                 mdesc_populate_present_mask(cpu_all_mask);
2154 #ifndef CONFIG_SMP
2155                 mdesc_fill_in_cpu_data(cpu_all_mask);
2156 #endif
2157                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2158 
2159                 sun4v_linear_pte_xor_finalize();
2160 
2161                 sun4v_ktsb_init();
2162                 sun4v_ktsb_register();
2163         } else {
2164                 unsigned long impl, ver;
2165 
2166                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2167                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2168 
2169                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2170                 impl = ((ver >> 32) & 0xffff);
2171                 if (impl == PANTHER_IMPL)
2172                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2173                                           HV_PGSZ_MASK_256MB);
2174 
2175                 sun4u_linear_pte_xor_finalize();
2176         }
2177 
2178         /* Flush the TLBs and the 4M TSB so that the updated linear
2179          * pte XOR settings are realized for all mappings.
2180          */
2181         __flush_tlb_all();
2182 #ifndef CONFIG_DEBUG_PAGEALLOC
2183         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2184 #endif
2185         __flush_tlb_all();
2186 
2187         /* Setup bootmem... */
2188         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2189 
2190         /* Once the OF device tree and MDESC have been setup, we know
2191          * the list of possible cpus.  Therefore we can allocate the
2192          * IRQ stacks.
2193          */
2194         for_each_possible_cpu(i) {
2195                 node = cpu_to_node(i);
2196 
2197                 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2198                                                         THREAD_SIZE,
2199                                                         THREAD_SIZE, 0);
2200                 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2201                                                         THREAD_SIZE,
2202                                                         THREAD_SIZE, 0);
2203         }
2204 
2205         kernel_physical_mapping_init();
2206 
2207         {
2208                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2209 
2210                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2211 
2212                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2213 
2214                 free_area_init_nodes(max_zone_pfns);
2215         }
2216 
2217         printk("Booting Linux...\n");
2218 }
2219 
2220 int page_in_phys_avail(unsigned long paddr)
2221 {
2222         int i;
2223 
2224         paddr &= PAGE_MASK;
2225 
2226         for (i = 0; i < pavail_ents; i++) {
2227                 unsigned long start, end;
2228 
2229                 start = pavail[i].phys_addr;
2230                 end = start + pavail[i].reg_size;
2231 
2232                 if (paddr >= start && paddr < end)
2233                         return 1;
2234         }
2235         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2236                 return 1;
2237 #ifdef CONFIG_BLK_DEV_INITRD
2238         if (paddr >= __pa(initrd_start) &&
2239             paddr < __pa(PAGE_ALIGN(initrd_end)))
2240                 return 1;
2241 #endif
2242 
2243         return 0;
2244 }
2245 
2246 static void __init register_page_bootmem_info(void)
2247 {
2248 #ifdef CONFIG_NEED_MULTIPLE_NODES
2249         int i;
2250 
2251         for_each_online_node(i)
2252                 if (NODE_DATA(i)->node_spanned_pages)
2253                         register_page_bootmem_info_node(NODE_DATA(i));
2254 #endif
2255 }
2256 void __init mem_init(void)
2257 {
2258         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2259 
2260         register_page_bootmem_info();
2261         free_all_bootmem();
2262 
2263         /*
2264          * Set up the zero page, mark it reserved, so that page count
2265          * is not manipulated when freeing the page from user ptes.
2266          */
2267         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2268         if (mem_map_zero == NULL) {
2269                 prom_printf("paging_init: Cannot alloc zero page.\n");
2270                 prom_halt();
2271         }
2272         mark_page_reserved(mem_map_zero);
2273 
2274         mem_init_print_info(NULL);
2275 
2276         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2277                 cheetah_ecache_flush_init();
2278 }
2279 
2280 void free_initmem(void)
2281 {
2282         unsigned long addr, initend;
2283         int do_free = 1;
2284 
2285         /* If the physical memory maps were trimmed by kernel command
2286          * line options, don't even try freeing this initmem stuff up.
2287          * The kernel image could have been in the trimmed out region
2288          * and if so the freeing below will free invalid page structs.
2289          */
2290         if (cmdline_memory_size)
2291                 do_free = 0;
2292 
2293         /*
2294          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2295          */
2296         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2297         initend = (unsigned long)(__init_end) & PAGE_MASK;
2298         for (; addr < initend; addr += PAGE_SIZE) {
2299                 unsigned long page;
2300 
2301                 page = (addr +
2302                         ((unsigned long) __va(kern_base)) -
2303                         ((unsigned long) KERNBASE));
2304                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2305 
2306                 if (do_free)
2307                         free_reserved_page(virt_to_page(page));
2308         }
2309 }
2310 
2311 #ifdef CONFIG_BLK_DEV_INITRD
2312 void free_initrd_mem(unsigned long start, unsigned long end)
2313 {
2314         free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2315                            "initrd");
2316 }
2317 #endif
2318 
2319 pgprot_t PAGE_KERNEL __read_mostly;
2320 EXPORT_SYMBOL(PAGE_KERNEL);
2321 
2322 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2323 pgprot_t PAGE_COPY __read_mostly;
2324 
2325 pgprot_t PAGE_SHARED __read_mostly;
2326 EXPORT_SYMBOL(PAGE_SHARED);
2327 
2328 unsigned long pg_iobits __read_mostly;
2329 
2330 unsigned long _PAGE_IE __read_mostly;
2331 EXPORT_SYMBOL(_PAGE_IE);
2332 
2333 unsigned long _PAGE_E __read_mostly;
2334 EXPORT_SYMBOL(_PAGE_E);
2335 
2336 unsigned long _PAGE_CACHE __read_mostly;
2337 EXPORT_SYMBOL(_PAGE_CACHE);
2338 
2339 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2340 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2341                                int node)
2342 {
2343         unsigned long pte_base;
2344 
2345         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2346                     _PAGE_CP_4U | _PAGE_CV_4U |
2347                     _PAGE_P_4U | _PAGE_W_4U);
2348         if (tlb_type == hypervisor)
2349                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2350                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2351 
2352         pte_base |= _PAGE_PMD_HUGE;
2353 
2354         vstart = vstart & PMD_MASK;
2355         vend = ALIGN(vend, PMD_SIZE);
2356         for (; vstart < vend; vstart += PMD_SIZE) {
2357                 pgd_t *pgd = pgd_offset_k(vstart);
2358                 unsigned long pte;
2359                 pud_t *pud;
2360                 pmd_t *pmd;
2361 
2362                 if (pgd_none(*pgd)) {
2363                         pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2364 
2365                         if (!new)
2366                                 return -ENOMEM;
2367                         pgd_populate(&init_mm, pgd, new);
2368                 }
2369 
2370                 pud = pud_offset(pgd, vstart);
2371                 if (pud_none(*pud)) {
2372                         pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2373 
2374                         if (!new)
2375                                 return -ENOMEM;
2376                         pud_populate(&init_mm, pud, new);
2377                 }
2378 
2379                 pmd = pmd_offset(pud, vstart);
2380 
2381                 pte = pmd_val(*pmd);
2382                 if (!(pte & _PAGE_VALID)) {
2383                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2384 
2385                         if (!block)
2386                                 return -ENOMEM;
2387 
2388                         pmd_val(*pmd) = pte_base | __pa(block);
2389                 }
2390         }
2391 
2392         return 0;
2393 }
2394 
2395 void vmemmap_free(unsigned long start, unsigned long end)
2396 {
2397 }
2398 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2399 
2400 static void prot_init_common(unsigned long page_none,
2401                              unsigned long page_shared,
2402                              unsigned long page_copy,
2403                              unsigned long page_readonly,
2404                              unsigned long page_exec_bit)
2405 {
2406         PAGE_COPY = __pgprot(page_copy);
2407         PAGE_SHARED = __pgprot(page_shared);
2408 
2409         protection_map[0x0] = __pgprot(page_none);
2410         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2411         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2412         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2413         protection_map[0x4] = __pgprot(page_readonly);
2414         protection_map[0x5] = __pgprot(page_readonly);
2415         protection_map[0x6] = __pgprot(page_copy);
2416         protection_map[0x7] = __pgprot(page_copy);
2417         protection_map[0x8] = __pgprot(page_none);
2418         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2419         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2420         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2421         protection_map[0xc] = __pgprot(page_readonly);
2422         protection_map[0xd] = __pgprot(page_readonly);
2423         protection_map[0xe] = __pgprot(page_shared);
2424         protection_map[0xf] = __pgprot(page_shared);
2425 }
2426 
2427 static void __init sun4u_pgprot_init(void)
2428 {
2429         unsigned long page_none, page_shared, page_copy, page_readonly;
2430         unsigned long page_exec_bit;
2431         int i;
2432 
2433         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2434                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2435                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2436                                 _PAGE_EXEC_4U);
2437         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2438                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2439                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2440                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2441 
2442         _PAGE_IE = _PAGE_IE_4U;
2443         _PAGE_E = _PAGE_E_4U;
2444         _PAGE_CACHE = _PAGE_CACHE_4U;
2445 
2446         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2447                      __ACCESS_BITS_4U | _PAGE_E_4U);
2448 
2449 #ifdef CONFIG_DEBUG_PAGEALLOC
2450         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2451 #else
2452         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2453                 PAGE_OFFSET;
2454 #endif
2455         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2456                                    _PAGE_P_4U | _PAGE_W_4U);
2457 
2458         for (i = 1; i < 4; i++)
2459                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2460 
2461         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2462                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2463                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2464 
2465 
2466         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2467         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2468                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2469         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2470                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2471         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2472                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2473 
2474         page_exec_bit = _PAGE_EXEC_4U;
2475 
2476         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2477                          page_exec_bit);
2478 }
2479 
2480 static void __init sun4v_pgprot_init(void)
2481 {
2482         unsigned long page_none, page_shared, page_copy, page_readonly;
2483         unsigned long page_exec_bit;
2484         int i;
2485 
2486         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2487                                 page_cache4v_flag | _PAGE_P_4V |
2488                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2489                                 _PAGE_EXEC_4V);
2490         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2491 
2492         _PAGE_IE = _PAGE_IE_4V;
2493         _PAGE_E = _PAGE_E_4V;
2494         _PAGE_CACHE = page_cache4v_flag;
2495 
2496 #ifdef CONFIG_DEBUG_PAGEALLOC
2497         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2498 #else
2499         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2500                 PAGE_OFFSET;
2501 #endif
2502         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2503                                    _PAGE_W_4V);
2504 
2505         for (i = 1; i < 4; i++)
2506                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2507 
2508         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2509                      __ACCESS_BITS_4V | _PAGE_E_4V);
2510 
2511         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2512                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2513                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2514                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2515 
2516         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2517         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2518                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2519         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2520                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2521         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2522                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2523 
2524         page_exec_bit = _PAGE_EXEC_4V;
2525 
2526         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2527                          page_exec_bit);
2528 }
2529 
2530 unsigned long pte_sz_bits(unsigned long sz)
2531 {
2532         if (tlb_type == hypervisor) {
2533                 switch (sz) {
2534                 case 8 * 1024:
2535                 default:
2536                         return _PAGE_SZ8K_4V;
2537                 case 64 * 1024:
2538                         return _PAGE_SZ64K_4V;
2539                 case 512 * 1024:
2540                         return _PAGE_SZ512K_4V;
2541                 case 4 * 1024 * 1024:
2542                         return _PAGE_SZ4MB_4V;
2543                 }
2544         } else {
2545                 switch (sz) {
2546                 case 8 * 1024:
2547                 default:
2548                         return _PAGE_SZ8K_4U;
2549                 case 64 * 1024:
2550                         return _PAGE_SZ64K_4U;
2551                 case 512 * 1024:
2552                         return _PAGE_SZ512K_4U;
2553                 case 4 * 1024 * 1024:
2554                         return _PAGE_SZ4MB_4U;
2555                 }
2556         }
2557 }
2558 
2559 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2560 {
2561         pte_t pte;
2562 
2563         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2564         pte_val(pte) |= (((unsigned long)space) << 32);
2565         pte_val(pte) |= pte_sz_bits(page_size);
2566 
2567         return pte;
2568 }
2569 
2570 static unsigned long kern_large_tte(unsigned long paddr)
2571 {
2572         unsigned long val;
2573 
2574         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2575                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2576                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2577         if (tlb_type == hypervisor)
2578                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2579                        page_cache4v_flag | _PAGE_P_4V |
2580                        _PAGE_EXEC_4V | _PAGE_W_4V);
2581 
2582         return val | paddr;
2583 }
2584 
2585 /* If not locked, zap it. */
2586 void __flush_tlb_all(void)
2587 {
2588         unsigned long pstate;
2589         int i;
2590 
2591         __asm__ __volatile__("flushw\n\t"
2592                              "rdpr      %%pstate, %0\n\t"
2593                              "wrpr      %0, %1, %%pstate"
2594                              : "=r" (pstate)
2595                              : "i" (PSTATE_IE));
2596         if (tlb_type == hypervisor) {
2597                 sun4v_mmu_demap_all();
2598         } else if (tlb_type == spitfire) {
2599                 for (i = 0; i < 64; i++) {
2600                         /* Spitfire Errata #32 workaround */
2601                         /* NOTE: Always runs on spitfire, so no
2602                          *       cheetah+ page size encodings.
2603                          */
2604                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2605                                              "flush     %%g6"
2606                                              : /* No outputs */
2607                                              : "r" (0),
2608                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2609 
2610                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2611                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2612                                                      "membar #Sync"
2613                                                      : /* no outputs */
2614                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2615                                 spitfire_put_dtlb_data(i, 0x0UL);
2616                         }
2617 
2618                         /* Spitfire Errata #32 workaround */
2619                         /* NOTE: Always runs on spitfire, so no
2620                          *       cheetah+ page size encodings.
2621                          */
2622                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2623                                              "flush     %%g6"
2624                                              : /* No outputs */
2625                                              : "r" (0),
2626                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2627 
2628                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2629                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2630                                                      "membar #Sync"
2631                                                      : /* no outputs */
2632                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2633                                 spitfire_put_itlb_data(i, 0x0UL);
2634                         }
2635                 }
2636         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2637                 cheetah_flush_dtlb_all();
2638                 cheetah_flush_itlb_all();
2639         }
2640         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2641                              : : "r" (pstate));
2642 }
2643 
2644 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2645                             unsigned long address)
2646 {
2647         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2648                                        __GFP_REPEAT | __GFP_ZERO);
2649         pte_t *pte = NULL;
2650 
2651         if (page)
2652                 pte = (pte_t *) page_address(page);
2653 
2654         return pte;
2655 }
2656 
2657 pgtable_t pte_alloc_one(struct mm_struct *mm,
2658                         unsigned long address)
2659 {
2660         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2661                                        __GFP_REPEAT | __GFP_ZERO);
2662         if (!page)
2663                 return NULL;
2664         if (!pgtable_page_ctor(page)) {
2665                 free_hot_cold_page(page, 0);
2666                 return NULL;
2667         }
2668         return (pte_t *) page_address(page);
2669 }
2670 
2671 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2672 {
2673         free_page((unsigned long)pte);
2674 }
2675 
2676 static void __pte_free(pgtable_t pte)
2677 {
2678         struct page *page = virt_to_page(pte);
2679 
2680         pgtable_page_dtor(page);
2681         __free_page(page);
2682 }
2683 
2684 void pte_free(struct mm_struct *mm, pgtable_t pte)
2685 {
2686         __pte_free(pte);
2687 }
2688 
2689 void pgtable_free(void *table, bool is_page)
2690 {
2691         if (is_page)
2692                 __pte_free(table);
2693         else
2694                 kmem_cache_free(pgtable_cache, table);
2695 }
2696 
2697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2698 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2699                           pmd_t *pmd)
2700 {
2701         unsigned long pte, flags;
2702         struct mm_struct *mm;
2703         pmd_t entry = *pmd;
2704 
2705         if (!pmd_large(entry) || !pmd_young(entry))
2706                 return;
2707 
2708         pte = pmd_val(entry);
2709 
2710         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2711         if (!(pte & _PAGE_VALID))
2712                 return;
2713 
2714         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2715         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2716 
2717         mm = vma->vm_mm;
2718 
2719         spin_lock_irqsave(&mm->context.lock, flags);
2720 
2721         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2722                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2723                                         addr, pte);
2724 
2725         spin_unlock_irqrestore(&mm->context.lock, flags);
2726 }
2727 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2728 
2729 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2730 static void context_reload(void *__data)
2731 {
2732         struct mm_struct *mm = __data;
2733 
2734         if (mm == current->mm)
2735                 load_secondary_context(mm);
2736 }
2737 
2738 void hugetlb_setup(struct pt_regs *regs)
2739 {
2740         struct mm_struct *mm = current->mm;
2741         struct tsb_config *tp;
2742 
2743         if (faulthandler_disabled() || !mm) {
2744                 const struct exception_table_entry *entry;
2745 
2746                 entry = search_exception_tables(regs->tpc);
2747                 if (entry) {
2748                         regs->tpc = entry->fixup;
2749                         regs->tnpc = regs->tpc + 4;
2750                         return;
2751                 }
2752                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2753                 die_if_kernel("HugeTSB in atomic", regs);
2754         }
2755 
2756         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2757         if (likely(tp->tsb == NULL))
2758                 tsb_grow(mm, MM_TSB_HUGE, 0);
2759 
2760         tsb_context_switch(mm);
2761         smp_tsb_sync(mm);
2762 
2763         /* On UltraSPARC-III+ and later, configure the second half of
2764          * the Data-TLB for huge pages.
2765          */
2766         if (tlb_type == cheetah_plus) {
2767                 unsigned long ctx;
2768 
2769                 spin_lock(&ctx_alloc_lock);
2770                 ctx = mm->context.sparc64_ctx_val;
2771                 ctx &= ~CTX_PGSZ_MASK;
2772                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2773                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2774 
2775                 if (ctx != mm->context.sparc64_ctx_val) {
2776                         /* When changing the page size fields, we
2777                          * must perform a context flush so that no
2778                          * stale entries match.  This flush must
2779                          * occur with the original context register
2780                          * settings.
2781                          */
2782                         do_flush_tlb_mm(mm);
2783 
2784                         /* Reload the context register of all processors
2785                          * also executing in this address space.
2786                          */
2787                         mm->context.sparc64_ctx_val = ctx;
2788                         on_each_cpu(context_reload, mm, 0);
2789                 }
2790                 spin_unlock(&ctx_alloc_lock);
2791         }
2792 }
2793 #endif
2794 
2795 static struct resource code_resource = {
2796         .name   = "Kernel code",
2797         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2798 };
2799 
2800 static struct resource data_resource = {
2801         .name   = "Kernel data",
2802         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2803 };
2804 
2805 static struct resource bss_resource = {
2806         .name   = "Kernel bss",
2807         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2808 };
2809 
2810 static inline resource_size_t compute_kern_paddr(void *addr)
2811 {
2812         return (resource_size_t) (addr - KERNBASE + kern_base);
2813 }
2814 
2815 static void __init kernel_lds_init(void)
2816 {
2817         code_resource.start = compute_kern_paddr(_text);
2818         code_resource.end   = compute_kern_paddr(_etext - 1);
2819         data_resource.start = compute_kern_paddr(_etext);
2820         data_resource.end   = compute_kern_paddr(_edata - 1);
2821         bss_resource.start  = compute_kern_paddr(__bss_start);
2822         bss_resource.end    = compute_kern_paddr(_end - 1);
2823 }
2824 
2825 static int __init report_memory(void)
2826 {
2827         int i;
2828         struct resource *res;
2829 
2830         kernel_lds_init();
2831 
2832         for (i = 0; i < pavail_ents; i++) {
2833                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2834 
2835                 if (!res) {
2836                         pr_warn("Failed to allocate source.\n");
2837                         break;
2838                 }
2839 
2840                 res->name = "System RAM";
2841                 res->start = pavail[i].phys_addr;
2842                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2843                 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
2844 
2845                 if (insert_resource(&iomem_resource, res) < 0) {
2846                         pr_warn("Resource insertion failed.\n");
2847                         break;
2848                 }
2849 
2850                 insert_resource(res, &code_resource);
2851                 insert_resource(res, &data_resource);
2852                 insert_resource(res, &bss_resource);
2853         }
2854 
2855         return 0;
2856 }
2857 arch_initcall(report_memory);
2858 
2859 #ifdef CONFIG_SMP
2860 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
2861 #else
2862 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
2863 #endif
2864 
2865 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2866 {
2867         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2868                 if (start < LOW_OBP_ADDRESS) {
2869                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2870                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2871                 }
2872                 if (end > HI_OBP_ADDRESS) {
2873                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2874                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2875                 }
2876         } else {
2877                 flush_tsb_kernel_range(start, end);
2878                 do_flush_tlb_kernel_range(start, end);
2879         }
2880 }
2881 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp