~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/f2fs.h

Version: ~ [ linux-5.13-rc5 ] ~ [ linux-5.12.9 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.42 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.124 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.193 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.235 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.271 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.271 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * fs/f2fs/f2fs.h
  4  *
  5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6  *             http://www.samsung.com/
  7  */
  8 #ifndef _LINUX_F2FS_H
  9 #define _LINUX_F2FS_H
 10 
 11 #include <linux/uio.h>
 12 #include <linux/types.h>
 13 #include <linux/page-flags.h>
 14 #include <linux/buffer_head.h>
 15 #include <linux/slab.h>
 16 #include <linux/crc32.h>
 17 #include <linux/magic.h>
 18 #include <linux/kobject.h>
 19 #include <linux/sched.h>
 20 #include <linux/cred.h>
 21 #include <linux/vmalloc.h>
 22 #include <linux/bio.h>
 23 #include <linux/blkdev.h>
 24 #include <linux/quotaops.h>
 25 #include <crypto/hash.h>
 26 
 27 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
 28 #include <linux/fscrypt.h>
 29 
 30 #ifdef CONFIG_F2FS_CHECK_FS
 31 #define f2fs_bug_on(sbi, condition)     BUG_ON(condition)
 32 #else
 33 #define f2fs_bug_on(sbi, condition)                                     \
 34         do {                                                            \
 35                 if (unlikely(condition)) {                              \
 36                         WARN_ON(1);                                     \
 37                         set_sbi_flag(sbi, SBI_NEED_FSCK);               \
 38                 }                                                       \
 39         } while (0)
 40 #endif
 41 
 42 enum {
 43         FAULT_KMALLOC,
 44         FAULT_KVMALLOC,
 45         FAULT_PAGE_ALLOC,
 46         FAULT_PAGE_GET,
 47         FAULT_ALLOC_BIO,
 48         FAULT_ALLOC_NID,
 49         FAULT_ORPHAN,
 50         FAULT_BLOCK,
 51         FAULT_DIR_DEPTH,
 52         FAULT_EVICT_INODE,
 53         FAULT_TRUNCATE,
 54         FAULT_READ_IO,
 55         FAULT_CHECKPOINT,
 56         FAULT_DISCARD,
 57         FAULT_WRITE_IO,
 58         FAULT_MAX,
 59 };
 60 
 61 #ifdef CONFIG_F2FS_FAULT_INJECTION
 62 #define F2FS_ALL_FAULT_TYPE             ((1 << FAULT_MAX) - 1)
 63 
 64 struct f2fs_fault_info {
 65         atomic_t inject_ops;
 66         unsigned int inject_rate;
 67         unsigned int inject_type;
 68 };
 69 
 70 extern const char *f2fs_fault_name[FAULT_MAX];
 71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
 72 #endif
 73 
 74 /*
 75  * For mount options
 76  */
 77 #define F2FS_MOUNT_BG_GC                0x00000001
 78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
 79 #define F2FS_MOUNT_DISCARD              0x00000004
 80 #define F2FS_MOUNT_NOHEAP               0x00000008
 81 #define F2FS_MOUNT_XATTR_USER           0x00000010
 82 #define F2FS_MOUNT_POSIX_ACL            0x00000020
 83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
 84 #define F2FS_MOUNT_INLINE_XATTR         0x00000080
 85 #define F2FS_MOUNT_INLINE_DATA          0x00000100
 86 #define F2FS_MOUNT_INLINE_DENTRY        0x00000200
 87 #define F2FS_MOUNT_FLUSH_MERGE          0x00000400
 88 #define F2FS_MOUNT_NOBARRIER            0x00000800
 89 #define F2FS_MOUNT_FASTBOOT             0x00001000
 90 #define F2FS_MOUNT_EXTENT_CACHE         0x00002000
 91 #define F2FS_MOUNT_FORCE_FG_GC          0x00004000
 92 #define F2FS_MOUNT_DATA_FLUSH           0x00008000
 93 #define F2FS_MOUNT_FAULT_INJECTION      0x00010000
 94 #define F2FS_MOUNT_ADAPTIVE             0x00020000
 95 #define F2FS_MOUNT_LFS                  0x00040000
 96 #define F2FS_MOUNT_USRQUOTA             0x00080000
 97 #define F2FS_MOUNT_GRPQUOTA             0x00100000
 98 #define F2FS_MOUNT_PRJQUOTA             0x00200000
 99 #define F2FS_MOUNT_QUOTA                0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE    0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT         0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT   0x02000000
103 
104 #define F2FS_OPTION(sbi)        ((sbi)->mount_opt)
105 #define clear_opt(sbi, option)  (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)    (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)   (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b) (typecheck(unsigned long long, a) &&            \
110                 typecheck(unsigned long long, b) &&                     \
111                 ((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;    /*
114                          * should not change u32, since it is the on-disk block
115                          * address format, __le32.
116                          */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120         unsigned int opt;
121         int write_io_size_bits;         /* Write IO size bits */
122         block_t root_reserved_blocks;   /* root reserved blocks */
123         kuid_t s_resuid;                /* reserved blocks for uid */
124         kgid_t s_resgid;                /* reserved blocks for gid */
125         int active_logs;                /* # of active logs */
126         int inline_xattr_size;          /* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128         struct f2fs_fault_info fault_info;      /* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131         /* Names of quota files with journalled quota */
132         char *s_qf_names[MAXQUOTAS];
133         int s_jquota_fmt;                       /* Format of quota to use */
134 #endif
135         /* For which write hints are passed down to block layer */
136         int whint_mode;
137         int alloc_mode;                 /* segment allocation policy */
138         int fsync_mode;                 /* fsync policy */
139         bool test_dummy_encryption;     /* test dummy encryption */
140 };
141 
142 #define F2FS_FEATURE_ENCRYPT            0x0001
143 #define F2FS_FEATURE_BLKZONED           0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE       0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR         0x0008
146 #define F2FS_FEATURE_PRJQUOTA           0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM       0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR      0x0040
149 #define F2FS_FEATURE_QUOTA_INO          0x0080
150 #define F2FS_FEATURE_INODE_CRTIME       0x0100
151 #define F2FS_FEATURE_LOST_FOUND         0x0200
152 #define F2FS_FEATURE_VERITY             0x0400  /* reserved */
153 #define F2FS_FEATURE_SB_CHKSUM          0x0800
154 
155 #define __F2FS_HAS_FEATURE(raw_super, mask)                             \
156         ((raw_super->feature & cpu_to_le32(mask)) != 0)
157 #define F2FS_HAS_FEATURE(sbi, mask)     __F2FS_HAS_FEATURE(sbi->raw_super, mask)
158 #define F2FS_SET_FEATURE(sbi, mask)                                     \
159         (sbi->raw_super->feature |= cpu_to_le32(mask))
160 #define F2FS_CLEAR_FEATURE(sbi, mask)                                   \
161         (sbi->raw_super->feature &= ~cpu_to_le32(mask))
162 
163 /*
164  * Default values for user and/or group using reserved blocks
165  */
166 #define F2FS_DEF_RESUID         0
167 #define F2FS_DEF_RESGID         0
168 
169 /*
170  * For checkpoint manager
171  */
172 enum {
173         NAT_BITMAP,
174         SIT_BITMAP
175 };
176 
177 #define CP_UMOUNT       0x00000001
178 #define CP_FASTBOOT     0x00000002
179 #define CP_SYNC         0x00000004
180 #define CP_RECOVERY     0x00000008
181 #define CP_DISCARD      0x00000010
182 #define CP_TRIMMED      0x00000020
183 #define CP_PAUSE        0x00000040
184 
185 #define MAX_DISCARD_BLOCKS(sbi)         BLKS_PER_SEC(sbi)
186 #define DEF_MAX_DISCARD_REQUEST         8       /* issue 8 discards per round */
187 #define DEF_MIN_DISCARD_ISSUE_TIME      50      /* 50 ms, if exists */
188 #define DEF_MID_DISCARD_ISSUE_TIME      500     /* 500 ms, if device busy */
189 #define DEF_MAX_DISCARD_ISSUE_TIME      60000   /* 60 s, if no candidates */
190 #define DEF_DISCARD_URGENT_UTIL         80      /* do more discard over 80% */
191 #define DEF_CP_INTERVAL                 60      /* 60 secs */
192 #define DEF_IDLE_INTERVAL               5       /* 5 secs */
193 #define DEF_DISABLE_INTERVAL            5       /* 5 secs */
194 
195 struct cp_control {
196         int reason;
197         __u64 trim_start;
198         __u64 trim_end;
199         __u64 trim_minlen;
200 };
201 
202 /*
203  * indicate meta/data type
204  */
205 enum {
206         META_CP,
207         META_NAT,
208         META_SIT,
209         META_SSA,
210         META_MAX,
211         META_POR,
212         DATA_GENERIC,
213         META_GENERIC,
214 };
215 
216 /* for the list of ino */
217 enum {
218         ORPHAN_INO,             /* for orphan ino list */
219         APPEND_INO,             /* for append ino list */
220         UPDATE_INO,             /* for update ino list */
221         TRANS_DIR_INO,          /* for trasactions dir ino list */
222         FLUSH_INO,              /* for multiple device flushing */
223         MAX_INO_ENTRY,          /* max. list */
224 };
225 
226 struct ino_entry {
227         struct list_head list;          /* list head */
228         nid_t ino;                      /* inode number */
229         unsigned int dirty_device;      /* dirty device bitmap */
230 };
231 
232 /* for the list of inodes to be GCed */
233 struct inode_entry {
234         struct list_head list;  /* list head */
235         struct inode *inode;    /* vfs inode pointer */
236 };
237 
238 struct fsync_node_entry {
239         struct list_head list;  /* list head */
240         struct page *page;      /* warm node page pointer */
241         unsigned int seq_id;    /* sequence id */
242 };
243 
244 /* for the bitmap indicate blocks to be discarded */
245 struct discard_entry {
246         struct list_head list;  /* list head */
247         block_t start_blkaddr;  /* start blockaddr of current segment */
248         unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
249 };
250 
251 /* default discard granularity of inner discard thread, unit: block count */
252 #define DEFAULT_DISCARD_GRANULARITY             16
253 
254 /* max discard pend list number */
255 #define MAX_PLIST_NUM           512
256 #define plist_idx(blk_num)      ((blk_num) >= MAX_PLIST_NUM ?           \
257                                         (MAX_PLIST_NUM - 1) : (blk_num - 1))
258 
259 enum {
260         D_PREP,                 /* initial */
261         D_PARTIAL,              /* partially submitted */
262         D_SUBMIT,               /* all submitted */
263         D_DONE,                 /* finished */
264 };
265 
266 struct discard_info {
267         block_t lstart;                 /* logical start address */
268         block_t len;                    /* length */
269         block_t start;                  /* actual start address in dev */
270 };
271 
272 struct discard_cmd {
273         struct rb_node rb_node;         /* rb node located in rb-tree */
274         union {
275                 struct {
276                         block_t lstart; /* logical start address */
277                         block_t len;    /* length */
278                         block_t start;  /* actual start address in dev */
279                 };
280                 struct discard_info di; /* discard info */
281 
282         };
283         struct list_head list;          /* command list */
284         struct completion wait;         /* compleation */
285         struct block_device *bdev;      /* bdev */
286         unsigned short ref;             /* reference count */
287         unsigned char state;            /* state */
288         unsigned char queued;           /* queued discard */
289         int error;                      /* bio error */
290         spinlock_t lock;                /* for state/bio_ref updating */
291         unsigned short bio_ref;         /* bio reference count */
292 };
293 
294 enum {
295         DPOLICY_BG,
296         DPOLICY_FORCE,
297         DPOLICY_FSTRIM,
298         DPOLICY_UMOUNT,
299         MAX_DPOLICY,
300 };
301 
302 struct discard_policy {
303         int type;                       /* type of discard */
304         unsigned int min_interval;      /* used for candidates exist */
305         unsigned int mid_interval;      /* used for device busy */
306         unsigned int max_interval;      /* used for candidates not exist */
307         unsigned int max_requests;      /* # of discards issued per round */
308         unsigned int io_aware_gran;     /* minimum granularity discard not be aware of I/O */
309         bool io_aware;                  /* issue discard in idle time */
310         bool sync;                      /* submit discard with REQ_SYNC flag */
311         bool ordered;                   /* issue discard by lba order */
312         unsigned int granularity;       /* discard granularity */
313 };
314 
315 struct discard_cmd_control {
316         struct task_struct *f2fs_issue_discard; /* discard thread */
317         struct list_head entry_list;            /* 4KB discard entry list */
318         struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
319         struct list_head wait_list;             /* store on-flushing entries */
320         struct list_head fstrim_list;           /* in-flight discard from fstrim */
321         wait_queue_head_t discard_wait_queue;   /* waiting queue for wake-up */
322         unsigned int discard_wake;              /* to wake up discard thread */
323         struct mutex cmd_lock;
324         unsigned int nr_discards;               /* # of discards in the list */
325         unsigned int max_discards;              /* max. discards to be issued */
326         unsigned int discard_granularity;       /* discard granularity */
327         unsigned int undiscard_blks;            /* # of undiscard blocks */
328         unsigned int next_pos;                  /* next discard position */
329         atomic_t issued_discard;                /* # of issued discard */
330         atomic_t queued_discard;                /* # of queued discard */
331         atomic_t discard_cmd_cnt;               /* # of cached cmd count */
332         struct rb_root_cached root;             /* root of discard rb-tree */
333         bool rbtree_check;                      /* config for consistence check */
334 };
335 
336 /* for the list of fsync inodes, used only during recovery */
337 struct fsync_inode_entry {
338         struct list_head list;  /* list head */
339         struct inode *inode;    /* vfs inode pointer */
340         block_t blkaddr;        /* block address locating the last fsync */
341         block_t last_dentry;    /* block address locating the last dentry */
342 };
343 
344 #define nats_in_cursum(jnl)             (le16_to_cpu((jnl)->n_nats))
345 #define sits_in_cursum(jnl)             (le16_to_cpu((jnl)->n_sits))
346 
347 #define nat_in_journal(jnl, i)          ((jnl)->nat_j.entries[i].ne)
348 #define nid_in_journal(jnl, i)          ((jnl)->nat_j.entries[i].nid)
349 #define sit_in_journal(jnl, i)          ((jnl)->sit_j.entries[i].se)
350 #define segno_in_journal(jnl, i)        ((jnl)->sit_j.entries[i].segno)
351 
352 #define MAX_NAT_JENTRIES(jnl)   (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
353 #define MAX_SIT_JENTRIES(jnl)   (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
354 
355 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
356 {
357         int before = nats_in_cursum(journal);
358 
359         journal->n_nats = cpu_to_le16(before + i);
360         return before;
361 }
362 
363 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
364 {
365         int before = sits_in_cursum(journal);
366 
367         journal->n_sits = cpu_to_le16(before + i);
368         return before;
369 }
370 
371 static inline bool __has_cursum_space(struct f2fs_journal *journal,
372                                                         int size, int type)
373 {
374         if (type == NAT_JOURNAL)
375                 return size <= MAX_NAT_JENTRIES(journal);
376         return size <= MAX_SIT_JENTRIES(journal);
377 }
378 
379 /*
380  * ioctl commands
381  */
382 #define F2FS_IOC_GETFLAGS               FS_IOC_GETFLAGS
383 #define F2FS_IOC_SETFLAGS               FS_IOC_SETFLAGS
384 #define F2FS_IOC_GETVERSION             FS_IOC_GETVERSION
385 
386 #define F2FS_IOCTL_MAGIC                0xf5
387 #define F2FS_IOC_START_ATOMIC_WRITE     _IO(F2FS_IOCTL_MAGIC, 1)
388 #define F2FS_IOC_COMMIT_ATOMIC_WRITE    _IO(F2FS_IOCTL_MAGIC, 2)
389 #define F2FS_IOC_START_VOLATILE_WRITE   _IO(F2FS_IOCTL_MAGIC, 3)
390 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
391 #define F2FS_IOC_ABORT_VOLATILE_WRITE   _IO(F2FS_IOCTL_MAGIC, 5)
392 #define F2FS_IOC_GARBAGE_COLLECT        _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
393 #define F2FS_IOC_WRITE_CHECKPOINT       _IO(F2FS_IOCTL_MAGIC, 7)
394 #define F2FS_IOC_DEFRAGMENT             _IOWR(F2FS_IOCTL_MAGIC, 8,      \
395                                                 struct f2fs_defragment)
396 #define F2FS_IOC_MOVE_RANGE             _IOWR(F2FS_IOCTL_MAGIC, 9,      \
397                                                 struct f2fs_move_range)
398 #define F2FS_IOC_FLUSH_DEVICE           _IOW(F2FS_IOCTL_MAGIC, 10,      \
399                                                 struct f2fs_flush_device)
400 #define F2FS_IOC_GARBAGE_COLLECT_RANGE  _IOW(F2FS_IOCTL_MAGIC, 11,      \
401                                                 struct f2fs_gc_range)
402 #define F2FS_IOC_GET_FEATURES           _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
403 #define F2FS_IOC_SET_PIN_FILE           _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
404 #define F2FS_IOC_GET_PIN_FILE           _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
405 #define F2FS_IOC_PRECACHE_EXTENTS       _IO(F2FS_IOCTL_MAGIC, 15)
406 
407 #define F2FS_IOC_SET_ENCRYPTION_POLICY  FS_IOC_SET_ENCRYPTION_POLICY
408 #define F2FS_IOC_GET_ENCRYPTION_POLICY  FS_IOC_GET_ENCRYPTION_POLICY
409 #define F2FS_IOC_GET_ENCRYPTION_PWSALT  FS_IOC_GET_ENCRYPTION_PWSALT
410 
411 /*
412  * should be same as XFS_IOC_GOINGDOWN.
413  * Flags for going down operation used by FS_IOC_GOINGDOWN
414  */
415 #define F2FS_IOC_SHUTDOWN       _IOR('X', 125, __u32)   /* Shutdown */
416 #define F2FS_GOING_DOWN_FULLSYNC        0x0     /* going down with full sync */
417 #define F2FS_GOING_DOWN_METASYNC        0x1     /* going down with metadata */
418 #define F2FS_GOING_DOWN_NOSYNC          0x2     /* going down */
419 #define F2FS_GOING_DOWN_METAFLUSH       0x3     /* going down with meta flush */
420 #define F2FS_GOING_DOWN_NEED_FSCK       0x4     /* going down to trigger fsck */
421 
422 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
423 /*
424  * ioctl commands in 32 bit emulation
425  */
426 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
427 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
428 #define F2FS_IOC32_GETVERSION           FS_IOC32_GETVERSION
429 #endif
430 
431 #define F2FS_IOC_FSGETXATTR             FS_IOC_FSGETXATTR
432 #define F2FS_IOC_FSSETXATTR             FS_IOC_FSSETXATTR
433 
434 struct f2fs_gc_range {
435         u32 sync;
436         u64 start;
437         u64 len;
438 };
439 
440 struct f2fs_defragment {
441         u64 start;
442         u64 len;
443 };
444 
445 struct f2fs_move_range {
446         u32 dst_fd;             /* destination fd */
447         u64 pos_in;             /* start position in src_fd */
448         u64 pos_out;            /* start position in dst_fd */
449         u64 len;                /* size to move */
450 };
451 
452 struct f2fs_flush_device {
453         u32 dev_num;            /* device number to flush */
454         u32 segments;           /* # of segments to flush */
455 };
456 
457 /* for inline stuff */
458 #define DEF_INLINE_RESERVED_SIZE        1
459 static inline int get_extra_isize(struct inode *inode);
460 static inline int get_inline_xattr_addrs(struct inode *inode);
461 #define MAX_INLINE_DATA(inode)  (sizeof(__le32) *                       \
462                                 (CUR_ADDRS_PER_INODE(inode) -           \
463                                 get_inline_xattr_addrs(inode) - \
464                                 DEF_INLINE_RESERVED_SIZE))
465 
466 /* for inline dir */
467 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
468                                 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
469                                 BITS_PER_BYTE + 1))
470 #define INLINE_DENTRY_BITMAP_SIZE(inode)        ((NR_INLINE_DENTRY(inode) + \
471                                         BITS_PER_BYTE - 1) / BITS_PER_BYTE)
472 #define INLINE_RESERVED_SIZE(inode)     (MAX_INLINE_DATA(inode) - \
473                                 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
474                                 NR_INLINE_DENTRY(inode) + \
475                                 INLINE_DENTRY_BITMAP_SIZE(inode)))
476 
477 /*
478  * For INODE and NODE manager
479  */
480 /* for directory operations */
481 struct f2fs_dentry_ptr {
482         struct inode *inode;
483         void *bitmap;
484         struct f2fs_dir_entry *dentry;
485         __u8 (*filename)[F2FS_SLOT_LEN];
486         int max;
487         int nr_bitmap;
488 };
489 
490 static inline void make_dentry_ptr_block(struct inode *inode,
491                 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
492 {
493         d->inode = inode;
494         d->max = NR_DENTRY_IN_BLOCK;
495         d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
496         d->bitmap = t->dentry_bitmap;
497         d->dentry = t->dentry;
498         d->filename = t->filename;
499 }
500 
501 static inline void make_dentry_ptr_inline(struct inode *inode,
502                                         struct f2fs_dentry_ptr *d, void *t)
503 {
504         int entry_cnt = NR_INLINE_DENTRY(inode);
505         int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
506         int reserved_size = INLINE_RESERVED_SIZE(inode);
507 
508         d->inode = inode;
509         d->max = entry_cnt;
510         d->nr_bitmap = bitmap_size;
511         d->bitmap = t;
512         d->dentry = t + bitmap_size + reserved_size;
513         d->filename = t + bitmap_size + reserved_size +
514                                         SIZE_OF_DIR_ENTRY * entry_cnt;
515 }
516 
517 /*
518  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
519  * as its node offset to distinguish from index node blocks.
520  * But some bits are used to mark the node block.
521  */
522 #define XATTR_NODE_OFFSET       ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
523                                 >> OFFSET_BIT_SHIFT)
524 enum {
525         ALLOC_NODE,                     /* allocate a new node page if needed */
526         LOOKUP_NODE,                    /* look up a node without readahead */
527         LOOKUP_NODE_RA,                 /*
528                                          * look up a node with readahead called
529                                          * by get_data_block.
530                                          */
531 };
532 
533 #define DEFAULT_RETRY_IO_COUNT  8       /* maximum retry read IO count */
534 
535 /* maximum retry quota flush count */
536 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT         8
537 
538 #define F2FS_LINK_MAX   0xffffffff      /* maximum link count per file */
539 
540 #define MAX_DIR_RA_PAGES        4       /* maximum ra pages of dir */
541 
542 /* for in-memory extent cache entry */
543 #define F2FS_MIN_EXTENT_LEN     64      /* minimum extent length */
544 
545 /* number of extent info in extent cache we try to shrink */
546 #define EXTENT_CACHE_SHRINK_NUMBER      128
547 
548 struct rb_entry {
549         struct rb_node rb_node;         /* rb node located in rb-tree */
550         unsigned int ofs;               /* start offset of the entry */
551         unsigned int len;               /* length of the entry */
552 };
553 
554 struct extent_info {
555         unsigned int fofs;              /* start offset in a file */
556         unsigned int len;               /* length of the extent */
557         u32 blk;                        /* start block address of the extent */
558 };
559 
560 struct extent_node {
561         struct rb_node rb_node;         /* rb node located in rb-tree */
562         struct extent_info ei;          /* extent info */
563         struct list_head list;          /* node in global extent list of sbi */
564         struct extent_tree *et;         /* extent tree pointer */
565 };
566 
567 struct extent_tree {
568         nid_t ino;                      /* inode number */
569         struct rb_root_cached root;     /* root of extent info rb-tree */
570         struct extent_node *cached_en;  /* recently accessed extent node */
571         struct extent_info largest;     /* largested extent info */
572         struct list_head list;          /* to be used by sbi->zombie_list */
573         rwlock_t lock;                  /* protect extent info rb-tree */
574         atomic_t node_cnt;              /* # of extent node in rb-tree*/
575         bool largest_updated;           /* largest extent updated */
576 };
577 
578 /*
579  * This structure is taken from ext4_map_blocks.
580  *
581  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
582  */
583 #define F2FS_MAP_NEW            (1 << BH_New)
584 #define F2FS_MAP_MAPPED         (1 << BH_Mapped)
585 #define F2FS_MAP_UNWRITTEN      (1 << BH_Unwritten)
586 #define F2FS_MAP_FLAGS          (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
587                                 F2FS_MAP_UNWRITTEN)
588 
589 struct f2fs_map_blocks {
590         block_t m_pblk;
591         block_t m_lblk;
592         unsigned int m_len;
593         unsigned int m_flags;
594         pgoff_t *m_next_pgofs;          /* point next possible non-hole pgofs */
595         pgoff_t *m_next_extent;         /* point to next possible extent */
596         int m_seg_type;
597         bool m_may_create;              /* indicate it is from write path */
598 };
599 
600 /* for flag in get_data_block */
601 enum {
602         F2FS_GET_BLOCK_DEFAULT,
603         F2FS_GET_BLOCK_FIEMAP,
604         F2FS_GET_BLOCK_BMAP,
605         F2FS_GET_BLOCK_DIO,
606         F2FS_GET_BLOCK_PRE_DIO,
607         F2FS_GET_BLOCK_PRE_AIO,
608         F2FS_GET_BLOCK_PRECACHE,
609 };
610 
611 /*
612  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
613  */
614 #define FADVISE_COLD_BIT        0x01
615 #define FADVISE_LOST_PINO_BIT   0x02
616 #define FADVISE_ENCRYPT_BIT     0x04
617 #define FADVISE_ENC_NAME_BIT    0x08
618 #define FADVISE_KEEP_SIZE_BIT   0x10
619 #define FADVISE_HOT_BIT         0x20
620 #define FADVISE_VERITY_BIT      0x40    /* reserved */
621 
622 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
623 
624 #define file_is_cold(inode)     is_file(inode, FADVISE_COLD_BIT)
625 #define file_wrong_pino(inode)  is_file(inode, FADVISE_LOST_PINO_BIT)
626 #define file_set_cold(inode)    set_file(inode, FADVISE_COLD_BIT)
627 #define file_lost_pino(inode)   set_file(inode, FADVISE_LOST_PINO_BIT)
628 #define file_clear_cold(inode)  clear_file(inode, FADVISE_COLD_BIT)
629 #define file_got_pino(inode)    clear_file(inode, FADVISE_LOST_PINO_BIT)
630 #define file_is_encrypt(inode)  is_file(inode, FADVISE_ENCRYPT_BIT)
631 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
632 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
633 #define file_enc_name(inode)    is_file(inode, FADVISE_ENC_NAME_BIT)
634 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
635 #define file_keep_isize(inode)  is_file(inode, FADVISE_KEEP_SIZE_BIT)
636 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
637 #define file_is_hot(inode)      is_file(inode, FADVISE_HOT_BIT)
638 #define file_set_hot(inode)     set_file(inode, FADVISE_HOT_BIT)
639 #define file_clear_hot(inode)   clear_file(inode, FADVISE_HOT_BIT)
640 
641 #define DEF_DIR_LEVEL           0
642 
643 enum {
644         GC_FAILURE_PIN,
645         GC_FAILURE_ATOMIC,
646         MAX_GC_FAILURE
647 };
648 
649 struct f2fs_inode_info {
650         struct inode vfs_inode;         /* serve a vfs inode */
651         unsigned long i_flags;          /* keep an inode flags for ioctl */
652         unsigned char i_advise;         /* use to give file attribute hints */
653         unsigned char i_dir_level;      /* use for dentry level for large dir */
654         unsigned int i_current_depth;   /* only for directory depth */
655         /* for gc failure statistic */
656         unsigned int i_gc_failures[MAX_GC_FAILURE];
657         unsigned int i_pino;            /* parent inode number */
658         umode_t i_acl_mode;             /* keep file acl mode temporarily */
659 
660         /* Use below internally in f2fs*/
661         unsigned long flags;            /* use to pass per-file flags */
662         struct rw_semaphore i_sem;      /* protect fi info */
663         atomic_t dirty_pages;           /* # of dirty pages */
664         f2fs_hash_t chash;              /* hash value of given file name */
665         unsigned int clevel;            /* maximum level of given file name */
666         struct task_struct *task;       /* lookup and create consistency */
667         struct task_struct *cp_task;    /* separate cp/wb IO stats*/
668         nid_t i_xattr_nid;              /* node id that contains xattrs */
669         loff_t  last_disk_size;         /* lastly written file size */
670 
671 #ifdef CONFIG_QUOTA
672         struct dquot *i_dquot[MAXQUOTAS];
673 
674         /* quota space reservation, managed internally by quota code */
675         qsize_t i_reserved_quota;
676 #endif
677         struct list_head dirty_list;    /* dirty list for dirs and files */
678         struct list_head gdirty_list;   /* linked in global dirty list */
679         struct list_head inmem_ilist;   /* list for inmem inodes */
680         struct list_head inmem_pages;   /* inmemory pages managed by f2fs */
681         struct task_struct *inmem_task; /* store inmemory task */
682         struct mutex inmem_lock;        /* lock for inmemory pages */
683         struct extent_tree *extent_tree;        /* cached extent_tree entry */
684 
685         /* avoid racing between foreground op and gc */
686         struct rw_semaphore i_gc_rwsem[2];
687         struct rw_semaphore i_mmap_sem;
688         struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
689 
690         int i_extra_isize;              /* size of extra space located in i_addr */
691         kprojid_t i_projid;             /* id for project quota */
692         int i_inline_xattr_size;        /* inline xattr size */
693         struct timespec64 i_crtime;     /* inode creation time */
694         struct timespec64 i_disk_time[4];/* inode disk times */
695 };
696 
697 static inline void get_extent_info(struct extent_info *ext,
698                                         struct f2fs_extent *i_ext)
699 {
700         ext->fofs = le32_to_cpu(i_ext->fofs);
701         ext->blk = le32_to_cpu(i_ext->blk);
702         ext->len = le32_to_cpu(i_ext->len);
703 }
704 
705 static inline void set_raw_extent(struct extent_info *ext,
706                                         struct f2fs_extent *i_ext)
707 {
708         i_ext->fofs = cpu_to_le32(ext->fofs);
709         i_ext->blk = cpu_to_le32(ext->blk);
710         i_ext->len = cpu_to_le32(ext->len);
711 }
712 
713 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
714                                                 u32 blk, unsigned int len)
715 {
716         ei->fofs = fofs;
717         ei->blk = blk;
718         ei->len = len;
719 }
720 
721 static inline bool __is_discard_mergeable(struct discard_info *back,
722                         struct discard_info *front, unsigned int max_len)
723 {
724         return (back->lstart + back->len == front->lstart) &&
725                 (back->len + front->len <= max_len);
726 }
727 
728 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
729                         struct discard_info *back, unsigned int max_len)
730 {
731         return __is_discard_mergeable(back, cur, max_len);
732 }
733 
734 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
735                         struct discard_info *front, unsigned int max_len)
736 {
737         return __is_discard_mergeable(cur, front, max_len);
738 }
739 
740 static inline bool __is_extent_mergeable(struct extent_info *back,
741                                                 struct extent_info *front)
742 {
743         return (back->fofs + back->len == front->fofs &&
744                         back->blk + back->len == front->blk);
745 }
746 
747 static inline bool __is_back_mergeable(struct extent_info *cur,
748                                                 struct extent_info *back)
749 {
750         return __is_extent_mergeable(back, cur);
751 }
752 
753 static inline bool __is_front_mergeable(struct extent_info *cur,
754                                                 struct extent_info *front)
755 {
756         return __is_extent_mergeable(cur, front);
757 }
758 
759 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
760 static inline void __try_update_largest_extent(struct extent_tree *et,
761                                                 struct extent_node *en)
762 {
763         if (en->ei.len > et->largest.len) {
764                 et->largest = en->ei;
765                 et->largest_updated = true;
766         }
767 }
768 
769 /*
770  * For free nid management
771  */
772 enum nid_state {
773         FREE_NID,               /* newly added to free nid list */
774         PREALLOC_NID,           /* it is preallocated */
775         MAX_NID_STATE,
776 };
777 
778 struct f2fs_nm_info {
779         block_t nat_blkaddr;            /* base disk address of NAT */
780         nid_t max_nid;                  /* maximum possible node ids */
781         nid_t available_nids;           /* # of available node ids */
782         nid_t next_scan_nid;            /* the next nid to be scanned */
783         unsigned int ram_thresh;        /* control the memory footprint */
784         unsigned int ra_nid_pages;      /* # of nid pages to be readaheaded */
785         unsigned int dirty_nats_ratio;  /* control dirty nats ratio threshold */
786 
787         /* NAT cache management */
788         struct radix_tree_root nat_root;/* root of the nat entry cache */
789         struct radix_tree_root nat_set_root;/* root of the nat set cache */
790         struct rw_semaphore nat_tree_lock;      /* protect nat_tree_lock */
791         struct list_head nat_entries;   /* cached nat entry list (clean) */
792         spinlock_t nat_list_lock;       /* protect clean nat entry list */
793         unsigned int nat_cnt;           /* the # of cached nat entries */
794         unsigned int dirty_nat_cnt;     /* total num of nat entries in set */
795         unsigned int nat_blocks;        /* # of nat blocks */
796 
797         /* free node ids management */
798         struct radix_tree_root free_nid_root;/* root of the free_nid cache */
799         struct list_head free_nid_list;         /* list for free nids excluding preallocated nids */
800         unsigned int nid_cnt[MAX_NID_STATE];    /* the number of free node id */
801         spinlock_t nid_list_lock;       /* protect nid lists ops */
802         struct mutex build_lock;        /* lock for build free nids */
803         unsigned char **free_nid_bitmap;
804         unsigned char *nat_block_bitmap;
805         unsigned short *free_nid_count; /* free nid count of NAT block */
806 
807         /* for checkpoint */
808         char *nat_bitmap;               /* NAT bitmap pointer */
809 
810         unsigned int nat_bits_blocks;   /* # of nat bits blocks */
811         unsigned char *nat_bits;        /* NAT bits blocks */
812         unsigned char *full_nat_bits;   /* full NAT pages */
813         unsigned char *empty_nat_bits;  /* empty NAT pages */
814 #ifdef CONFIG_F2FS_CHECK_FS
815         char *nat_bitmap_mir;           /* NAT bitmap mirror */
816 #endif
817         int bitmap_size;                /* bitmap size */
818 };
819 
820 /*
821  * this structure is used as one of function parameters.
822  * all the information are dedicated to a given direct node block determined
823  * by the data offset in a file.
824  */
825 struct dnode_of_data {
826         struct inode *inode;            /* vfs inode pointer */
827         struct page *inode_page;        /* its inode page, NULL is possible */
828         struct page *node_page;         /* cached direct node page */
829         nid_t nid;                      /* node id of the direct node block */
830         unsigned int ofs_in_node;       /* data offset in the node page */
831         bool inode_page_locked;         /* inode page is locked or not */
832         bool node_changed;              /* is node block changed */
833         char cur_level;                 /* level of hole node page */
834         char max_level;                 /* level of current page located */
835         block_t data_blkaddr;           /* block address of the node block */
836 };
837 
838 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
839                 struct page *ipage, struct page *npage, nid_t nid)
840 {
841         memset(dn, 0, sizeof(*dn));
842         dn->inode = inode;
843         dn->inode_page = ipage;
844         dn->node_page = npage;
845         dn->nid = nid;
846 }
847 
848 /*
849  * For SIT manager
850  *
851  * By default, there are 6 active log areas across the whole main area.
852  * When considering hot and cold data separation to reduce cleaning overhead,
853  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
854  * respectively.
855  * In the current design, you should not change the numbers intentionally.
856  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
857  * logs individually according to the underlying devices. (default: 6)
858  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
859  * data and 8 for node logs.
860  */
861 #define NR_CURSEG_DATA_TYPE     (3)
862 #define NR_CURSEG_NODE_TYPE     (3)
863 #define NR_CURSEG_TYPE  (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
864 
865 enum {
866         CURSEG_HOT_DATA = 0,    /* directory entry blocks */
867         CURSEG_WARM_DATA,       /* data blocks */
868         CURSEG_COLD_DATA,       /* multimedia or GCed data blocks */
869         CURSEG_HOT_NODE,        /* direct node blocks of directory files */
870         CURSEG_WARM_NODE,       /* direct node blocks of normal files */
871         CURSEG_COLD_NODE,       /* indirect node blocks */
872         NO_CHECK_TYPE,
873 };
874 
875 struct flush_cmd {
876         struct completion wait;
877         struct llist_node llnode;
878         nid_t ino;
879         int ret;
880 };
881 
882 struct flush_cmd_control {
883         struct task_struct *f2fs_issue_flush;   /* flush thread */
884         wait_queue_head_t flush_wait_queue;     /* waiting queue for wake-up */
885         atomic_t issued_flush;                  /* # of issued flushes */
886         atomic_t queued_flush;                  /* # of queued flushes */
887         struct llist_head issue_list;           /* list for command issue */
888         struct llist_node *dispatch_list;       /* list for command dispatch */
889 };
890 
891 struct f2fs_sm_info {
892         struct sit_info *sit_info;              /* whole segment information */
893         struct free_segmap_info *free_info;     /* free segment information */
894         struct dirty_seglist_info *dirty_info;  /* dirty segment information */
895         struct curseg_info *curseg_array;       /* active segment information */
896 
897         struct rw_semaphore curseg_lock;        /* for preventing curseg change */
898 
899         block_t seg0_blkaddr;           /* block address of 0'th segment */
900         block_t main_blkaddr;           /* start block address of main area */
901         block_t ssa_blkaddr;            /* start block address of SSA area */
902 
903         unsigned int segment_count;     /* total # of segments */
904         unsigned int main_segments;     /* # of segments in main area */
905         unsigned int reserved_segments; /* # of reserved segments */
906         unsigned int ovp_segments;      /* # of overprovision segments */
907 
908         /* a threshold to reclaim prefree segments */
909         unsigned int rec_prefree_segments;
910 
911         /* for batched trimming */
912         unsigned int trim_sections;             /* # of sections to trim */
913 
914         struct list_head sit_entry_set; /* sit entry set list */
915 
916         unsigned int ipu_policy;        /* in-place-update policy */
917         unsigned int min_ipu_util;      /* in-place-update threshold */
918         unsigned int min_fsync_blocks;  /* threshold for fsync */
919         unsigned int min_seq_blocks;    /* threshold for sequential blocks */
920         unsigned int min_hot_blocks;    /* threshold for hot block allocation */
921         unsigned int min_ssr_sections;  /* threshold to trigger SSR allocation */
922 
923         /* for flush command control */
924         struct flush_cmd_control *fcc_info;
925 
926         /* for discard command control */
927         struct discard_cmd_control *dcc_info;
928 };
929 
930 /*
931  * For superblock
932  */
933 /*
934  * COUNT_TYPE for monitoring
935  *
936  * f2fs monitors the number of several block types such as on-writeback,
937  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
938  */
939 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
940 enum count_type {
941         F2FS_DIRTY_DENTS,
942         F2FS_DIRTY_DATA,
943         F2FS_DIRTY_QDATA,
944         F2FS_DIRTY_NODES,
945         F2FS_DIRTY_META,
946         F2FS_INMEM_PAGES,
947         F2FS_DIRTY_IMETA,
948         F2FS_WB_CP_DATA,
949         F2FS_WB_DATA,
950         F2FS_RD_DATA,
951         F2FS_RD_NODE,
952         F2FS_RD_META,
953         F2FS_DIO_WRITE,
954         F2FS_DIO_READ,
955         NR_COUNT_TYPE,
956 };
957 
958 /*
959  * The below are the page types of bios used in submit_bio().
960  * The available types are:
961  * DATA                 User data pages. It operates as async mode.
962  * NODE                 Node pages. It operates as async mode.
963  * META                 FS metadata pages such as SIT, NAT, CP.
964  * NR_PAGE_TYPE         The number of page types.
965  * META_FLUSH           Make sure the previous pages are written
966  *                      with waiting the bio's completion
967  * ...                  Only can be used with META.
968  */
969 #define PAGE_TYPE_OF_BIO(type)  ((type) > META ? META : (type))
970 enum page_type {
971         DATA,
972         NODE,
973         META,
974         NR_PAGE_TYPE,
975         META_FLUSH,
976         INMEM,          /* the below types are used by tracepoints only. */
977         INMEM_DROP,
978         INMEM_INVALIDATE,
979         INMEM_REVOKE,
980         IPU,
981         OPU,
982 };
983 
984 enum temp_type {
985         HOT = 0,        /* must be zero for meta bio */
986         WARM,
987         COLD,
988         NR_TEMP_TYPE,
989 };
990 
991 enum need_lock_type {
992         LOCK_REQ = 0,
993         LOCK_DONE,
994         LOCK_RETRY,
995 };
996 
997 enum cp_reason_type {
998         CP_NO_NEEDED,
999         CP_NON_REGULAR,
1000         CP_HARDLINK,
1001         CP_SB_NEED_CP,
1002         CP_WRONG_PINO,
1003         CP_NO_SPC_ROLL,
1004         CP_NODE_NEED_CP,
1005         CP_FASTBOOT_MODE,
1006         CP_SPEC_LOG_NUM,
1007         CP_RECOVER_DIR,
1008 };
1009 
1010 enum iostat_type {
1011         APP_DIRECT_IO,                  /* app direct IOs */
1012         APP_BUFFERED_IO,                /* app buffered IOs */
1013         APP_WRITE_IO,                   /* app write IOs */
1014         APP_MAPPED_IO,                  /* app mapped IOs */
1015         FS_DATA_IO,                     /* data IOs from kworker/fsync/reclaimer */
1016         FS_NODE_IO,                     /* node IOs from kworker/fsync/reclaimer */
1017         FS_META_IO,                     /* meta IOs from kworker/reclaimer */
1018         FS_GC_DATA_IO,                  /* data IOs from forground gc */
1019         FS_GC_NODE_IO,                  /* node IOs from forground gc */
1020         FS_CP_DATA_IO,                  /* data IOs from checkpoint */
1021         FS_CP_NODE_IO,                  /* node IOs from checkpoint */
1022         FS_CP_META_IO,                  /* meta IOs from checkpoint */
1023         FS_DISCARD,                     /* discard */
1024         NR_IO_TYPE,
1025 };
1026 
1027 struct f2fs_io_info {
1028         struct f2fs_sb_info *sbi;       /* f2fs_sb_info pointer */
1029         nid_t ino;              /* inode number */
1030         enum page_type type;    /* contains DATA/NODE/META/META_FLUSH */
1031         enum temp_type temp;    /* contains HOT/WARM/COLD */
1032         int op;                 /* contains REQ_OP_ */
1033         int op_flags;           /* req_flag_bits */
1034         block_t new_blkaddr;    /* new block address to be written */
1035         block_t old_blkaddr;    /* old block address before Cow */
1036         struct page *page;      /* page to be written */
1037         struct page *encrypted_page;    /* encrypted page */
1038         struct list_head list;          /* serialize IOs */
1039         bool submitted;         /* indicate IO submission */
1040         int need_lock;          /* indicate we need to lock cp_rwsem */
1041         bool in_list;           /* indicate fio is in io_list */
1042         bool is_meta;           /* indicate borrow meta inode mapping or not */
1043         bool retry;             /* need to reallocate block address */
1044         enum iostat_type io_type;       /* io type */
1045         struct writeback_control *io_wbc; /* writeback control */
1046         unsigned char version;          /* version of the node */
1047 };
1048 
1049 #define is_read_io(rw) ((rw) == READ)
1050 struct f2fs_bio_info {
1051         struct f2fs_sb_info *sbi;       /* f2fs superblock */
1052         struct bio *bio;                /* bios to merge */
1053         sector_t last_block_in_bio;     /* last block number */
1054         struct f2fs_io_info fio;        /* store buffered io info. */
1055         struct rw_semaphore io_rwsem;   /* blocking op for bio */
1056         spinlock_t io_lock;             /* serialize DATA/NODE IOs */
1057         struct list_head io_list;       /* track fios */
1058 };
1059 
1060 #define FDEV(i)                         (sbi->devs[i])
1061 #define RDEV(i)                         (raw_super->devs[i])
1062 struct f2fs_dev_info {
1063         struct block_device *bdev;
1064         char path[MAX_PATH_LEN];
1065         unsigned int total_segments;
1066         block_t start_blk;
1067         block_t end_blk;
1068 #ifdef CONFIG_BLK_DEV_ZONED
1069         unsigned int nr_blkz;                   /* Total number of zones */
1070         u8 *blkz_type;                          /* Array of zones type */
1071 #endif
1072 };
1073 
1074 enum inode_type {
1075         DIR_INODE,                      /* for dirty dir inode */
1076         FILE_INODE,                     /* for dirty regular/symlink inode */
1077         DIRTY_META,                     /* for all dirtied inode metadata */
1078         ATOMIC_FILE,                    /* for all atomic files */
1079         NR_INODE_TYPE,
1080 };
1081 
1082 /* for inner inode cache management */
1083 struct inode_management {
1084         struct radix_tree_root ino_root;        /* ino entry array */
1085         spinlock_t ino_lock;                    /* for ino entry lock */
1086         struct list_head ino_list;              /* inode list head */
1087         unsigned long ino_num;                  /* number of entries */
1088 };
1089 
1090 /* For s_flag in struct f2fs_sb_info */
1091 enum {
1092         SBI_IS_DIRTY,                           /* dirty flag for checkpoint */
1093         SBI_IS_CLOSE,                           /* specify unmounting */
1094         SBI_NEED_FSCK,                          /* need fsck.f2fs to fix */
1095         SBI_POR_DOING,                          /* recovery is doing or not */
1096         SBI_NEED_SB_WRITE,                      /* need to recover superblock */
1097         SBI_NEED_CP,                            /* need to checkpoint */
1098         SBI_IS_SHUTDOWN,                        /* shutdown by ioctl */
1099         SBI_IS_RECOVERED,                       /* recovered orphan/data */
1100         SBI_CP_DISABLED,                        /* CP was disabled last mount */
1101         SBI_QUOTA_NEED_FLUSH,                   /* need to flush quota info in CP */
1102         SBI_QUOTA_SKIP_FLUSH,                   /* skip flushing quota in current CP */
1103         SBI_QUOTA_NEED_REPAIR,                  /* quota file may be corrupted */
1104 };
1105 
1106 enum {
1107         CP_TIME,
1108         REQ_TIME,
1109         DISCARD_TIME,
1110         GC_TIME,
1111         DISABLE_TIME,
1112         MAX_TIME,
1113 };
1114 
1115 enum {
1116         GC_NORMAL,
1117         GC_IDLE_CB,
1118         GC_IDLE_GREEDY,
1119         GC_URGENT,
1120 };
1121 
1122 enum {
1123         WHINT_MODE_OFF,         /* not pass down write hints */
1124         WHINT_MODE_USER,        /* try to pass down hints given by users */
1125         WHINT_MODE_FS,          /* pass down hints with F2FS policy */
1126 };
1127 
1128 enum {
1129         ALLOC_MODE_DEFAULT,     /* stay default */
1130         ALLOC_MODE_REUSE,       /* reuse segments as much as possible */
1131 };
1132 
1133 enum fsync_mode {
1134         FSYNC_MODE_POSIX,       /* fsync follows posix semantics */
1135         FSYNC_MODE_STRICT,      /* fsync behaves in line with ext4 */
1136         FSYNC_MODE_NOBARRIER,   /* fsync behaves nobarrier based on posix */
1137 };
1138 
1139 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1140 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1141                         (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1142 #else
1143 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1144 #endif
1145 
1146 struct f2fs_sb_info {
1147         struct super_block *sb;                 /* pointer to VFS super block */
1148         struct proc_dir_entry *s_proc;          /* proc entry */
1149         struct f2fs_super_block *raw_super;     /* raw super block pointer */
1150         struct rw_semaphore sb_lock;            /* lock for raw super block */
1151         int valid_super_block;                  /* valid super block no */
1152         unsigned long s_flag;                           /* flags for sbi */
1153         struct mutex writepages;                /* mutex for writepages() */
1154 
1155 #ifdef CONFIG_BLK_DEV_ZONED
1156         unsigned int blocks_per_blkz;           /* F2FS blocks per zone */
1157         unsigned int log_blocks_per_blkz;       /* log2 F2FS blocks per zone */
1158 #endif
1159 
1160         /* for node-related operations */
1161         struct f2fs_nm_info *nm_info;           /* node manager */
1162         struct inode *node_inode;               /* cache node blocks */
1163 
1164         /* for segment-related operations */
1165         struct f2fs_sm_info *sm_info;           /* segment manager */
1166 
1167         /* for bio operations */
1168         struct f2fs_bio_info *write_io[NR_PAGE_TYPE];   /* for write bios */
1169         /* keep migration IO order for LFS mode */
1170         struct rw_semaphore io_order_lock;
1171         mempool_t *write_io_dummy;              /* Dummy pages */
1172 
1173         /* for checkpoint */
1174         struct f2fs_checkpoint *ckpt;           /* raw checkpoint pointer */
1175         int cur_cp_pack;                        /* remain current cp pack */
1176         spinlock_t cp_lock;                     /* for flag in ckpt */
1177         struct inode *meta_inode;               /* cache meta blocks */
1178         struct mutex cp_mutex;                  /* checkpoint procedure lock */
1179         struct rw_semaphore cp_rwsem;           /* blocking FS operations */
1180         struct rw_semaphore node_write;         /* locking node writes */
1181         struct rw_semaphore node_change;        /* locking node change */
1182         wait_queue_head_t cp_wait;
1183         unsigned long last_time[MAX_TIME];      /* to store time in jiffies */
1184         long interval_time[MAX_TIME];           /* to store thresholds */
1185 
1186         struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1187 
1188         spinlock_t fsync_node_lock;             /* for node entry lock */
1189         struct list_head fsync_node_list;       /* node list head */
1190         unsigned int fsync_seg_id;              /* sequence id */
1191         unsigned int fsync_node_num;            /* number of node entries */
1192 
1193         /* for orphan inode, use 0'th array */
1194         unsigned int max_orphans;               /* max orphan inodes */
1195 
1196         /* for inode management */
1197         struct list_head inode_list[NR_INODE_TYPE];     /* dirty inode list */
1198         spinlock_t inode_lock[NR_INODE_TYPE];   /* for dirty inode list lock */
1199 
1200         /* for extent tree cache */
1201         struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1202         struct mutex extent_tree_lock;  /* locking extent radix tree */
1203         struct list_head extent_list;           /* lru list for shrinker */
1204         spinlock_t extent_lock;                 /* locking extent lru list */
1205         atomic_t total_ext_tree;                /* extent tree count */
1206         struct list_head zombie_list;           /* extent zombie tree list */
1207         atomic_t total_zombie_tree;             /* extent zombie tree count */
1208         atomic_t total_ext_node;                /* extent info count */
1209 
1210         /* basic filesystem units */
1211         unsigned int log_sectors_per_block;     /* log2 sectors per block */
1212         unsigned int log_blocksize;             /* log2 block size */
1213         unsigned int blocksize;                 /* block size */
1214         unsigned int root_ino_num;              /* root inode number*/
1215         unsigned int node_ino_num;              /* node inode number*/
1216         unsigned int meta_ino_num;              /* meta inode number*/
1217         unsigned int log_blocks_per_seg;        /* log2 blocks per segment */
1218         unsigned int blocks_per_seg;            /* blocks per segment */
1219         unsigned int segs_per_sec;              /* segments per section */
1220         unsigned int secs_per_zone;             /* sections per zone */
1221         unsigned int total_sections;            /* total section count */
1222         unsigned int total_node_count;          /* total node block count */
1223         unsigned int total_valid_node_count;    /* valid node block count */
1224         loff_t max_file_blocks;                 /* max block index of file */
1225         int dir_level;                          /* directory level */
1226         int readdir_ra;                         /* readahead inode in readdir */
1227 
1228         block_t user_block_count;               /* # of user blocks */
1229         block_t total_valid_block_count;        /* # of valid blocks */
1230         block_t discard_blks;                   /* discard command candidats */
1231         block_t last_valid_block_count;         /* for recovery */
1232         block_t reserved_blocks;                /* configurable reserved blocks */
1233         block_t current_reserved_blocks;        /* current reserved blocks */
1234 
1235         /* Additional tracking for no checkpoint mode */
1236         block_t unusable_block_count;           /* # of blocks saved by last cp */
1237 
1238         unsigned int nquota_files;              /* # of quota sysfile */
1239 
1240         u32 s_next_generation;                  /* for NFS support */
1241 
1242         /* # of pages, see count_type */
1243         atomic_t nr_pages[NR_COUNT_TYPE];
1244         /* # of allocated blocks */
1245         struct percpu_counter alloc_valid_block_count;
1246 
1247         /* writeback control */
1248         atomic_t wb_sync_req[META];     /* count # of WB_SYNC threads */
1249 
1250         /* valid inode count */
1251         struct percpu_counter total_valid_inode_count;
1252 
1253         struct f2fs_mount_info mount_opt;       /* mount options */
1254 
1255         /* for cleaning operations */
1256         struct mutex gc_mutex;                  /* mutex for GC */
1257         struct f2fs_gc_kthread  *gc_thread;     /* GC thread */
1258         unsigned int cur_victim_sec;            /* current victim section num */
1259         unsigned int gc_mode;                   /* current GC state */
1260         unsigned int next_victim_seg[2];        /* next segment in victim section */
1261         /* for skip statistic */
1262         unsigned long long skipped_atomic_files[2];     /* FG_GC and BG_GC */
1263         unsigned long long skipped_gc_rwsem;            /* FG_GC only */
1264 
1265         /* threshold for gc trials on pinned files */
1266         u64 gc_pin_file_threshold;
1267 
1268         /* maximum # of trials to find a victim segment for SSR and GC */
1269         unsigned int max_victim_search;
1270         /* migration granularity of garbage collection, unit: segment */
1271         unsigned int migration_granularity;
1272 
1273         /*
1274          * for stat information.
1275          * one is for the LFS mode, and the other is for the SSR mode.
1276          */
1277 #ifdef CONFIG_F2FS_STAT_FS
1278         struct f2fs_stat_info *stat_info;       /* FS status information */
1279         atomic_t meta_count[META_MAX];          /* # of meta blocks */
1280         unsigned int segment_count[2];          /* # of allocated segments */
1281         unsigned int block_count[2];            /* # of allocated blocks */
1282         atomic_t inplace_count;         /* # of inplace update */
1283         atomic64_t total_hit_ext;               /* # of lookup extent cache */
1284         atomic64_t read_hit_rbtree;             /* # of hit rbtree extent node */
1285         atomic64_t read_hit_largest;            /* # of hit largest extent node */
1286         atomic64_t read_hit_cached;             /* # of hit cached extent node */
1287         atomic_t inline_xattr;                  /* # of inline_xattr inodes */
1288         atomic_t inline_inode;                  /* # of inline_data inodes */
1289         atomic_t inline_dir;                    /* # of inline_dentry inodes */
1290         atomic_t aw_cnt;                        /* # of atomic writes */
1291         atomic_t vw_cnt;                        /* # of volatile writes */
1292         atomic_t max_aw_cnt;                    /* max # of atomic writes */
1293         atomic_t max_vw_cnt;                    /* max # of volatile writes */
1294         int bg_gc;                              /* background gc calls */
1295         unsigned int io_skip_bggc;              /* skip background gc for in-flight IO */
1296         unsigned int other_skip_bggc;           /* skip background gc for other reasons */
1297         unsigned int ndirty_inode[NR_INODE_TYPE];       /* # of dirty inodes */
1298 #endif
1299         spinlock_t stat_lock;                   /* lock for stat operations */
1300 
1301         /* For app/fs IO statistics */
1302         spinlock_t iostat_lock;
1303         unsigned long long write_iostat[NR_IO_TYPE];
1304         bool iostat_enable;
1305 
1306         /* For sysfs suppport */
1307         struct kobject s_kobj;
1308         struct completion s_kobj_unregister;
1309 
1310         /* For shrinker support */
1311         struct list_head s_list;
1312         int s_ndevs;                            /* number of devices */
1313         struct f2fs_dev_info *devs;             /* for device list */
1314         unsigned int dirty_device;              /* for checkpoint data flush */
1315         spinlock_t dev_lock;                    /* protect dirty_device */
1316         struct mutex umount_mutex;
1317         unsigned int shrinker_run_no;
1318 
1319         /* For write statistics */
1320         u64 sectors_written_start;
1321         u64 kbytes_written;
1322 
1323         /* Reference to checksum algorithm driver via cryptoapi */
1324         struct crypto_shash *s_chksum_driver;
1325 
1326         /* Precomputed FS UUID checksum for seeding other checksums */
1327         __u32 s_chksum_seed;
1328 };
1329 
1330 struct f2fs_private_dio {
1331         struct inode *inode;
1332         void *orig_private;
1333         bio_end_io_t *orig_end_io;
1334         bool write;
1335 };
1336 
1337 #ifdef CONFIG_F2FS_FAULT_INJECTION
1338 #define f2fs_show_injection_info(type)                                  \
1339         printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n",      \
1340                 KERN_INFO, f2fs_fault_name[type],                       \
1341                 __func__, __builtin_return_address(0))
1342 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1343 {
1344         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1345 
1346         if (!ffi->inject_rate)
1347                 return false;
1348 
1349         if (!IS_FAULT_SET(ffi, type))
1350                 return false;
1351 
1352         atomic_inc(&ffi->inject_ops);
1353         if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1354                 atomic_set(&ffi->inject_ops, 0);
1355                 return true;
1356         }
1357         return false;
1358 }
1359 #else
1360 #define f2fs_show_injection_info(type) do { } while (0)
1361 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1362 {
1363         return false;
1364 }
1365 #endif
1366 
1367 /*
1368  * Test if the mounted volume is a multi-device volume.
1369  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1370  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1371  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1372  */
1373 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1374 {
1375         return sbi->s_ndevs > 1;
1376 }
1377 
1378 /* For write statistics. Suppose sector size is 512 bytes,
1379  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1380  */
1381 #define BD_PART_WRITTEN(s)                                               \
1382 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1383                 (s)->sectors_written_start) >> 1)
1384 
1385 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1386 {
1387         unsigned long now = jiffies;
1388 
1389         sbi->last_time[type] = now;
1390 
1391         /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1392         if (type == REQ_TIME) {
1393                 sbi->last_time[DISCARD_TIME] = now;
1394                 sbi->last_time[GC_TIME] = now;
1395         }
1396 }
1397 
1398 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1399 {
1400         unsigned long interval = sbi->interval_time[type] * HZ;
1401 
1402         return time_after(jiffies, sbi->last_time[type] + interval);
1403 }
1404 
1405 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1406                                                 int type)
1407 {
1408         unsigned long interval = sbi->interval_time[type] * HZ;
1409         unsigned int wait_ms = 0;
1410         long delta;
1411 
1412         delta = (sbi->last_time[type] + interval) - jiffies;
1413         if (delta > 0)
1414                 wait_ms = jiffies_to_msecs(delta);
1415 
1416         return wait_ms;
1417 }
1418 
1419 /*
1420  * Inline functions
1421  */
1422 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1423                               const void *address, unsigned int length)
1424 {
1425         struct {
1426                 struct shash_desc shash;
1427                 char ctx[4];
1428         } desc;
1429         int err;
1430 
1431         BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1432 
1433         desc.shash.tfm = sbi->s_chksum_driver;
1434         desc.shash.flags = 0;
1435         *(u32 *)desc.ctx = crc;
1436 
1437         err = crypto_shash_update(&desc.shash, address, length);
1438         BUG_ON(err);
1439 
1440         return *(u32 *)desc.ctx;
1441 }
1442 
1443 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1444                            unsigned int length)
1445 {
1446         return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1447 }
1448 
1449 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1450                                   void *buf, size_t buf_size)
1451 {
1452         return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1453 }
1454 
1455 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1456                               const void *address, unsigned int length)
1457 {
1458         return __f2fs_crc32(sbi, crc, address, length);
1459 }
1460 
1461 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1462 {
1463         return container_of(inode, struct f2fs_inode_info, vfs_inode);
1464 }
1465 
1466 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1467 {
1468         return sb->s_fs_info;
1469 }
1470 
1471 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1472 {
1473         return F2FS_SB(inode->i_sb);
1474 }
1475 
1476 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1477 {
1478         return F2FS_I_SB(mapping->host);
1479 }
1480 
1481 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1482 {
1483         return F2FS_M_SB(page->mapping);
1484 }
1485 
1486 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1487 {
1488         return (struct f2fs_super_block *)(sbi->raw_super);
1489 }
1490 
1491 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1492 {
1493         return (struct f2fs_checkpoint *)(sbi->ckpt);
1494 }
1495 
1496 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1497 {
1498         return (struct f2fs_node *)page_address(page);
1499 }
1500 
1501 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1502 {
1503         return &((struct f2fs_node *)page_address(page))->i;
1504 }
1505 
1506 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1507 {
1508         return (struct f2fs_nm_info *)(sbi->nm_info);
1509 }
1510 
1511 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1512 {
1513         return (struct f2fs_sm_info *)(sbi->sm_info);
1514 }
1515 
1516 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1517 {
1518         return (struct sit_info *)(SM_I(sbi)->sit_info);
1519 }
1520 
1521 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1522 {
1523         return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1524 }
1525 
1526 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1527 {
1528         return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1529 }
1530 
1531 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1532 {
1533         return sbi->meta_inode->i_mapping;
1534 }
1535 
1536 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1537 {
1538         return sbi->node_inode->i_mapping;
1539 }
1540 
1541 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1542 {
1543         return test_bit(type, &sbi->s_flag);
1544 }
1545 
1546 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1547 {
1548         set_bit(type, &sbi->s_flag);
1549 }
1550 
1551 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1552 {
1553         clear_bit(type, &sbi->s_flag);
1554 }
1555 
1556 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1557 {
1558         return le64_to_cpu(cp->checkpoint_ver);
1559 }
1560 
1561 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1562 {
1563         if (type < F2FS_MAX_QUOTAS)
1564                 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1565         return 0;
1566 }
1567 
1568 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1569 {
1570         size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1571         return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1572 }
1573 
1574 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1575 {
1576         unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1577 
1578         return ckpt_flags & f;
1579 }
1580 
1581 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1582 {
1583         return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1584 }
1585 
1586 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1587 {
1588         unsigned int ckpt_flags;
1589 
1590         ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1591         ckpt_flags |= f;
1592         cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1593 }
1594 
1595 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1596 {
1597         unsigned long flags;
1598 
1599         spin_lock_irqsave(&sbi->cp_lock, flags);
1600         __set_ckpt_flags(F2FS_CKPT(sbi), f);
1601         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1602 }
1603 
1604 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1605 {
1606         unsigned int ckpt_flags;
1607 
1608         ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1609         ckpt_flags &= (~f);
1610         cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1611 }
1612 
1613 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1614 {
1615         unsigned long flags;
1616 
1617         spin_lock_irqsave(&sbi->cp_lock, flags);
1618         __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1619         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1620 }
1621 
1622 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1623 {
1624         unsigned long flags;
1625 
1626         /*
1627          * In order to re-enable nat_bits we need to call fsck.f2fs by
1628          * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1629          * so let's rely on regular fsck or unclean shutdown.
1630          */
1631 
1632         if (lock)
1633                 spin_lock_irqsave(&sbi->cp_lock, flags);
1634         __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1635         kvfree(NM_I(sbi)->nat_bits);
1636         NM_I(sbi)->nat_bits = NULL;
1637         if (lock)
1638                 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1639 }
1640 
1641 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1642                                         struct cp_control *cpc)
1643 {
1644         bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1645 
1646         return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1647 }
1648 
1649 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1650 {
1651         down_read(&sbi->cp_rwsem);
1652 }
1653 
1654 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1655 {
1656         return down_read_trylock(&sbi->cp_rwsem);
1657 }
1658 
1659 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1660 {
1661         up_read(&sbi->cp_rwsem);
1662 }
1663 
1664 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1665 {
1666         down_write(&sbi->cp_rwsem);
1667 }
1668 
1669 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1670 {
1671         up_write(&sbi->cp_rwsem);
1672 }
1673 
1674 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1675 {
1676         int reason = CP_SYNC;
1677 
1678         if (test_opt(sbi, FASTBOOT))
1679                 reason = CP_FASTBOOT;
1680         if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1681                 reason = CP_UMOUNT;
1682         return reason;
1683 }
1684 
1685 static inline bool __remain_node_summaries(int reason)
1686 {
1687         return (reason & (CP_UMOUNT | CP_FASTBOOT));
1688 }
1689 
1690 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1691 {
1692         return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1693                         is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1694 }
1695 
1696 /*
1697  * Check whether the inode has blocks or not
1698  */
1699 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1700 {
1701         block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1702 
1703         return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1704 }
1705 
1706 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1707 {
1708         return ofs == XATTR_NODE_OFFSET;
1709 }
1710 
1711 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1712                                         struct inode *inode, bool cap)
1713 {
1714         if (!inode)
1715                 return true;
1716         if (!test_opt(sbi, RESERVE_ROOT))
1717                 return false;
1718         if (IS_NOQUOTA(inode))
1719                 return true;
1720         if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1721                 return true;
1722         if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1723                                         in_group_p(F2FS_OPTION(sbi).s_resgid))
1724                 return true;
1725         if (cap && capable(CAP_SYS_RESOURCE))
1726                 return true;
1727         return false;
1728 }
1729 
1730 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1731 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1732                                  struct inode *inode, blkcnt_t *count)
1733 {
1734         blkcnt_t diff = 0, release = 0;
1735         block_t avail_user_block_count;
1736         int ret;
1737 
1738         ret = dquot_reserve_block(inode, *count);
1739         if (ret)
1740                 return ret;
1741 
1742         if (time_to_inject(sbi, FAULT_BLOCK)) {
1743                 f2fs_show_injection_info(FAULT_BLOCK);
1744                 release = *count;
1745                 goto enospc;
1746         }
1747 
1748         /*
1749          * let's increase this in prior to actual block count change in order
1750          * for f2fs_sync_file to avoid data races when deciding checkpoint.
1751          */
1752         percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1753 
1754         spin_lock(&sbi->stat_lock);
1755         sbi->total_valid_block_count += (block_t)(*count);
1756         avail_user_block_count = sbi->user_block_count -
1757                                         sbi->current_reserved_blocks;
1758 
1759         if (!__allow_reserved_blocks(sbi, inode, true))
1760                 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1761         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1762                 avail_user_block_count -= sbi->unusable_block_count;
1763         if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1764                 diff = sbi->total_valid_block_count - avail_user_block_count;
1765                 if (diff > *count)
1766                         diff = *count;
1767                 *count -= diff;
1768                 release = diff;
1769                 sbi->total_valid_block_count -= diff;
1770                 if (!*count) {
1771                         spin_unlock(&sbi->stat_lock);
1772                         goto enospc;
1773                 }
1774         }
1775         spin_unlock(&sbi->stat_lock);
1776 
1777         if (unlikely(release)) {
1778                 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1779                 dquot_release_reservation_block(inode, release);
1780         }
1781         f2fs_i_blocks_write(inode, *count, true, true);
1782         return 0;
1783 
1784 enospc:
1785         percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1786         dquot_release_reservation_block(inode, release);
1787         return -ENOSPC;
1788 }
1789 
1790 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1791                                                 struct inode *inode,
1792                                                 block_t count)
1793 {
1794         blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1795 
1796         spin_lock(&sbi->stat_lock);
1797         f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1798         f2fs_bug_on(sbi, inode->i_blocks < sectors);
1799         sbi->total_valid_block_count -= (block_t)count;
1800         if (sbi->reserved_blocks &&
1801                 sbi->current_reserved_blocks < sbi->reserved_blocks)
1802                 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1803                                         sbi->current_reserved_blocks + count);
1804         spin_unlock(&sbi->stat_lock);
1805         f2fs_i_blocks_write(inode, count, false, true);
1806 }
1807 
1808 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1809 {
1810         atomic_inc(&sbi->nr_pages[count_type]);
1811 
1812         if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1813                 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA ||
1814                 count_type == F2FS_RD_DATA || count_type == F2FS_RD_NODE ||
1815                 count_type == F2FS_RD_META)
1816                 return;
1817 
1818         set_sbi_flag(sbi, SBI_IS_DIRTY);
1819 }
1820 
1821 static inline void inode_inc_dirty_pages(struct inode *inode)
1822 {
1823         atomic_inc(&F2FS_I(inode)->dirty_pages);
1824         inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1825                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1826         if (IS_NOQUOTA(inode))
1827                 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1828 }
1829 
1830 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1831 {
1832         atomic_dec(&sbi->nr_pages[count_type]);
1833 }
1834 
1835 static inline void inode_dec_dirty_pages(struct inode *inode)
1836 {
1837         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1838                         !S_ISLNK(inode->i_mode))
1839                 return;
1840 
1841         atomic_dec(&F2FS_I(inode)->dirty_pages);
1842         dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1843                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1844         if (IS_NOQUOTA(inode))
1845                 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1846 }
1847 
1848 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1849 {
1850         return atomic_read(&sbi->nr_pages[count_type]);
1851 }
1852 
1853 static inline int get_dirty_pages(struct inode *inode)
1854 {
1855         return atomic_read(&F2FS_I(inode)->dirty_pages);
1856 }
1857 
1858 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1859 {
1860         unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1861         unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1862                                                 sbi->log_blocks_per_seg;
1863 
1864         return segs / sbi->segs_per_sec;
1865 }
1866 
1867 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1868 {
1869         return sbi->total_valid_block_count;
1870 }
1871 
1872 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1873 {
1874         return sbi->discard_blks;
1875 }
1876 
1877 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1878 {
1879         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1880 
1881         /* return NAT or SIT bitmap */
1882         if (flag == NAT_BITMAP)
1883                 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1884         else if (flag == SIT_BITMAP)
1885                 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1886 
1887         return 0;
1888 }
1889 
1890 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1891 {
1892         return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1893 }
1894 
1895 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1896 {
1897         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1898         int offset;
1899 
1900         if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1901                 offset = (flag == SIT_BITMAP) ?
1902                         le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1903                 return &ckpt->sit_nat_version_bitmap + offset;
1904         }
1905 
1906         if (__cp_payload(sbi) > 0) {
1907                 if (flag == NAT_BITMAP)
1908                         return &ckpt->sit_nat_version_bitmap;
1909                 else
1910                         return (unsigned char *)ckpt + F2FS_BLKSIZE;
1911         } else {
1912                 offset = (flag == NAT_BITMAP) ?
1913                         le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1914                 return &ckpt->sit_nat_version_bitmap + offset;
1915         }
1916 }
1917 
1918 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1919 {
1920         block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1921 
1922         if (sbi->cur_cp_pack == 2)
1923                 start_addr += sbi->blocks_per_seg;
1924         return start_addr;
1925 }
1926 
1927 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1928 {
1929         block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1930 
1931         if (sbi->cur_cp_pack == 1)
1932                 start_addr += sbi->blocks_per_seg;
1933         return start_addr;
1934 }
1935 
1936 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1937 {
1938         sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1939 }
1940 
1941 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1942 {
1943         return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1944 }
1945 
1946 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1947                                         struct inode *inode, bool is_inode)
1948 {
1949         block_t valid_block_count;
1950         unsigned int valid_node_count;
1951         int err;
1952 
1953         if (is_inode) {
1954                 if (inode) {
1955                         err = dquot_alloc_inode(inode);
1956                         if (err)
1957                                 return err;
1958                 }
1959         } else {
1960                 err = dquot_reserve_block(inode, 1);
1961                 if (err)
1962                         return err;
1963         }
1964 
1965         if (time_to_inject(sbi, FAULT_BLOCK)) {
1966                 f2fs_show_injection_info(FAULT_BLOCK);
1967                 goto enospc;
1968         }
1969 
1970         spin_lock(&sbi->stat_lock);
1971 
1972         valid_block_count = sbi->total_valid_block_count +
1973                                         sbi->current_reserved_blocks + 1;
1974 
1975         if (!__allow_reserved_blocks(sbi, inode, false))
1976                 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1977         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1978                 valid_block_count += sbi->unusable_block_count;
1979 
1980         if (unlikely(valid_block_count > sbi->user_block_count)) {
1981                 spin_unlock(&sbi->stat_lock);
1982                 goto enospc;
1983         }
1984 
1985         valid_node_count = sbi->total_valid_node_count + 1;
1986         if (unlikely(valid_node_count > sbi->total_node_count)) {
1987                 spin_unlock(&sbi->stat_lock);
1988                 goto enospc;
1989         }
1990 
1991         sbi->total_valid_node_count++;
1992         sbi->total_valid_block_count++;
1993         spin_unlock(&sbi->stat_lock);
1994 
1995         if (inode) {
1996                 if (is_inode)
1997                         f2fs_mark_inode_dirty_sync(inode, true);
1998                 else
1999                         f2fs_i_blocks_write(inode, 1, true, true);
2000         }
2001 
2002         percpu_counter_inc(&sbi->alloc_valid_block_count);
2003         return 0;
2004 
2005 enospc:
2006         if (is_inode) {
2007                 if (inode)
2008                         dquot_free_inode(inode);
2009         } else {
2010                 dquot_release_reservation_block(inode, 1);
2011         }
2012         return -ENOSPC;
2013 }
2014 
2015 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2016                                         struct inode *inode, bool is_inode)
2017 {
2018         spin_lock(&sbi->stat_lock);
2019 
2020         f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2021         f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2022         f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2023 
2024         sbi->total_valid_node_count--;
2025         sbi->total_valid_block_count--;
2026         if (sbi->reserved_blocks &&
2027                 sbi->current_reserved_blocks < sbi->reserved_blocks)
2028                 sbi->current_reserved_blocks++;
2029 
2030         spin_unlock(&sbi->stat_lock);
2031 
2032         if (is_inode)
2033                 dquot_free_inode(inode);
2034         else
2035                 f2fs_i_blocks_write(inode, 1, false, true);
2036 }
2037 
2038 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2039 {
2040         return sbi->total_valid_node_count;
2041 }
2042 
2043 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2044 {
2045         percpu_counter_inc(&sbi->total_valid_inode_count);
2046 }
2047 
2048 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2049 {
2050         percpu_counter_dec(&sbi->total_valid_inode_count);
2051 }
2052 
2053 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2054 {
2055         return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2056 }
2057 
2058 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2059                                                 pgoff_t index, bool for_write)
2060 {
2061         struct page *page;
2062 
2063         if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2064                 if (!for_write)
2065                         page = find_get_page_flags(mapping, index,
2066                                                         FGP_LOCK | FGP_ACCESSED);
2067                 else
2068                         page = find_lock_page(mapping, index);
2069                 if (page)
2070                         return page;
2071 
2072                 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2073                         f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2074                         return NULL;
2075                 }
2076         }
2077 
2078         if (!for_write)
2079                 return grab_cache_page(mapping, index);
2080         return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2081 }
2082 
2083 static inline struct page *f2fs_pagecache_get_page(
2084                                 struct address_space *mapping, pgoff_t index,
2085                                 int fgp_flags, gfp_t gfp_mask)
2086 {
2087         if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2088                 f2fs_show_injection_info(FAULT_PAGE_GET);
2089                 return NULL;
2090         }
2091 
2092         return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2093 }
2094 
2095 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2096 {
2097         char *src_kaddr = kmap(src);
2098         char *dst_kaddr = kmap(dst);
2099 
2100         memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2101         kunmap(dst);
2102         kunmap(src);
2103 }
2104 
2105 static inline void f2fs_put_page(struct page *page, int unlock)
2106 {
2107         if (!page)
2108                 return;
2109 
2110         if (unlock) {
2111                 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2112                 unlock_page(page);
2113         }
2114         put_page(page);
2115 }
2116 
2117 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2118 {
2119         if (dn->node_page)
2120                 f2fs_put_page(dn->node_page, 1);
2121         if (dn->inode_page && dn->node_page != dn->inode_page)
2122                 f2fs_put_page(dn->inode_page, 0);
2123         dn->node_page = NULL;
2124         dn->inode_page = NULL;
2125 }
2126 
2127 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2128                                         size_t size)
2129 {
2130         return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2131 }
2132 
2133 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2134                                                 gfp_t flags)
2135 {
2136         void *entry;
2137 
2138         entry = kmem_cache_alloc(cachep, flags);
2139         if (!entry)
2140                 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2141         return entry;
2142 }
2143 
2144 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2145                                                 int npages, bool no_fail)
2146 {
2147         struct bio *bio;
2148 
2149         if (no_fail) {
2150                 /* No failure on bio allocation */
2151                 bio = bio_alloc(GFP_NOIO, npages);
2152                 if (!bio)
2153                         bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2154                 return bio;
2155         }
2156         if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2157                 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2158                 return NULL;
2159         }
2160 
2161         return bio_alloc(GFP_KERNEL, npages);
2162 }
2163 
2164 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2165 {
2166         if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2167                 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2168                 get_pages(sbi, F2FS_WB_CP_DATA) ||
2169                 get_pages(sbi, F2FS_DIO_READ) ||
2170                 get_pages(sbi, F2FS_DIO_WRITE) ||
2171                 atomic_read(&SM_I(sbi)->dcc_info->queued_discard) ||
2172                 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2173                 return false;
2174         return f2fs_time_over(sbi, type);
2175 }
2176 
2177 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2178                                 unsigned long index, void *item)
2179 {
2180         while (radix_tree_insert(root, index, item))
2181                 cond_resched();
2182 }
2183 
2184 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2185 
2186 static inline bool IS_INODE(struct page *page)
2187 {
2188         struct f2fs_node *p = F2FS_NODE(page);
2189 
2190         return RAW_IS_INODE(p);
2191 }
2192 
2193 static inline int offset_in_addr(struct f2fs_inode *i)
2194 {
2195         return (i->i_inline & F2FS_EXTRA_ATTR) ?
2196                         (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2197 }
2198 
2199 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2200 {
2201         return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2202 }
2203 
2204 static inline int f2fs_has_extra_attr(struct inode *inode);
2205 static inline block_t datablock_addr(struct inode *inode,
2206                         struct page *node_page, unsigned int offset)
2207 {
2208         struct f2fs_node *raw_node;
2209         __le32 *addr_array;
2210         int base = 0;
2211         bool is_inode = IS_INODE(node_page);
2212 
2213         raw_node = F2FS_NODE(node_page);
2214 
2215         /* from GC path only */
2216         if (is_inode) {
2217                 if (!inode)
2218                         base = offset_in_addr(&raw_node->i);
2219                 else if (f2fs_has_extra_attr(inode))
2220                         base = get_extra_isize(inode);
2221         }
2222 
2223         addr_array = blkaddr_in_node(raw_node);
2224         return le32_to_cpu(addr_array[base + offset]);
2225 }
2226 
2227 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2228 {
2229         int mask;
2230 
2231         addr += (nr >> 3);
2232         mask = 1 << (7 - (nr & 0x07));
2233         return mask & *addr;
2234 }
2235 
2236 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2237 {
2238         int mask;
2239 
2240         addr += (nr >> 3);
2241         mask = 1 << (7 - (nr & 0x07));
2242         *addr |= mask;
2243 }
2244 
2245 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2246 {
2247         int mask;
2248 
2249         addr += (nr >> 3);
2250         mask = 1 << (7 - (nr & 0x07));
2251         *addr &= ~mask;
2252 }
2253 
2254 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2255 {
2256         int mask;
2257         int ret;
2258 
2259         addr += (nr >> 3);
2260         mask = 1 << (7 - (nr & 0x07));
2261         ret = mask & *addr;
2262         *addr |= mask;
2263         return ret;
2264 }
2265 
2266 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2267 {
2268         int mask;
2269         int ret;
2270 
2271         addr += (nr >> 3);
2272         mask = 1 << (7 - (nr & 0x07));
2273         ret = mask & *addr;
2274         *addr &= ~mask;
2275         return ret;
2276 }
2277 
2278 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2279 {
2280         int mask;
2281 
2282         addr += (nr >> 3);
2283         mask = 1 << (7 - (nr & 0x07));
2284         *addr ^= mask;
2285 }
2286 
2287 /*
2288  * Inode flags
2289  */
2290 #define F2FS_SECRM_FL                   0x00000001 /* Secure deletion */
2291 #define F2FS_UNRM_FL                    0x00000002 /* Undelete */
2292 #define F2FS_COMPR_FL                   0x00000004 /* Compress file */
2293 #define F2FS_SYNC_FL                    0x00000008 /* Synchronous updates */
2294 #define F2FS_IMMUTABLE_FL               0x00000010 /* Immutable file */
2295 #define F2FS_APPEND_FL                  0x00000020 /* writes to file may only append */
2296 #define F2FS_NODUMP_FL                  0x00000040 /* do not dump file */
2297 #define F2FS_NOATIME_FL                 0x00000080 /* do not update atime */
2298 /* Reserved for compression usage... */
2299 #define F2FS_DIRTY_FL                   0x00000100
2300 #define F2FS_COMPRBLK_FL                0x00000200 /* One or more compressed clusters */
2301 #define F2FS_NOCOMPR_FL                 0x00000400 /* Don't compress */
2302 #define F2FS_ENCRYPT_FL                 0x00000800 /* encrypted file */
2303 /* End compression flags --- maybe not all used */
2304 #define F2FS_INDEX_FL                   0x00001000 /* hash-indexed directory */
2305 #define F2FS_IMAGIC_FL                  0x00002000 /* AFS directory */
2306 #define F2FS_JOURNAL_DATA_FL            0x00004000 /* file data should be journaled */
2307 #define F2FS_NOTAIL_FL                  0x00008000 /* file tail should not be merged */
2308 #define F2FS_DIRSYNC_FL                 0x00010000 /* dirsync behaviour (directories only) */
2309 #define F2FS_TOPDIR_FL                  0x00020000 /* Top of directory hierarchies*/
2310 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2311 #define F2FS_EXTENTS_FL                 0x00080000 /* Inode uses extents */
2312 #define F2FS_EA_INODE_FL                0x00200000 /* Inode used for large EA */
2313 #define F2FS_EOFBLOCKS_FL               0x00400000 /* Blocks allocated beyond EOF */
2314 #define F2FS_INLINE_DATA_FL             0x10000000 /* Inode has inline data. */
2315 #define F2FS_PROJINHERIT_FL             0x20000000 /* Create with parents projid */
2316 #define F2FS_RESERVED_FL                0x80000000 /* reserved for ext4 lib */
2317 
2318 #define F2FS_FL_USER_VISIBLE            0x304BDFFF /* User visible flags */
2319 #define F2FS_FL_USER_MODIFIABLE         0x204BC0FF /* User modifiable flags */
2320 
2321 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2322 #define F2FS_FL_XFLAG_VISIBLE           (F2FS_SYNC_FL | \
2323                                          F2FS_IMMUTABLE_FL | \
2324                                          F2FS_APPEND_FL | \
2325                                          F2FS_NODUMP_FL | \
2326                                          F2FS_NOATIME_FL | \
2327                                          F2FS_PROJINHERIT_FL)
2328 
2329 /* Flags that should be inherited by new inodes from their parent. */
2330 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2331                            F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2332                            F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2333                            F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2334                            F2FS_PROJINHERIT_FL)
2335 
2336 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2337 #define F2FS_REG_FLMASK         (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2338 
2339 /* Flags that are appropriate for non-directories/regular files. */
2340 #define F2FS_OTHER_FLMASK       (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2341 
2342 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2343 {
2344         if (S_ISDIR(mode))
2345                 return flags;
2346         else if (S_ISREG(mode))
2347                 return flags & F2FS_REG_FLMASK;
2348         else
2349                 return flags & F2FS_OTHER_FLMASK;
2350 }
2351 
2352 /* used for f2fs_inode_info->flags */
2353 enum {
2354         FI_NEW_INODE,           /* indicate newly allocated inode */
2355         FI_DIRTY_INODE,         /* indicate inode is dirty or not */
2356         FI_AUTO_RECOVER,        /* indicate inode is recoverable */
2357         FI_DIRTY_DIR,           /* indicate directory has dirty pages */
2358         FI_INC_LINK,            /* need to increment i_nlink */
2359         FI_ACL_MODE,            /* indicate acl mode */
2360         FI_NO_ALLOC,            /* should not allocate any blocks */
2361         FI_FREE_NID,            /* free allocated nide */
2362         FI_NO_EXTENT,           /* not to use the extent cache */
2363         FI_INLINE_XATTR,        /* used for inline xattr */
2364         FI_INLINE_DATA,         /* used for inline data*/
2365         FI_INLINE_DENTRY,       /* used for inline dentry */
2366         FI_APPEND_WRITE,        /* inode has appended data */
2367         FI_UPDATE_WRITE,        /* inode has in-place-update data */
2368         FI_NEED_IPU,            /* used for ipu per file */
2369         FI_ATOMIC_FILE,         /* indicate atomic file */
2370         FI_ATOMIC_COMMIT,       /* indicate the state of atomical committing */
2371         FI_VOLATILE_FILE,       /* indicate volatile file */
2372         FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2373         FI_DROP_CACHE,          /* drop dirty page cache */
2374         FI_DATA_EXIST,          /* indicate data exists */
2375         FI_INLINE_DOTS,         /* indicate inline dot dentries */
2376         FI_DO_DEFRAG,           /* indicate defragment is running */
2377         FI_DIRTY_FILE,          /* indicate regular/symlink has dirty pages */
2378         FI_NO_PREALLOC,         /* indicate skipped preallocated blocks */
2379         FI_HOT_DATA,            /* indicate file is hot */
2380         FI_EXTRA_ATTR,          /* indicate file has extra attribute */
2381         FI_PROJ_INHERIT,        /* indicate file inherits projectid */
2382         FI_PIN_FILE,            /* indicate file should not be gced */
2383         FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2384 };
2385 
2386 static inline void __mark_inode_dirty_flag(struct inode *inode,
2387                                                 int flag, bool set)
2388 {
2389         switch (flag) {
2390         case FI_INLINE_XATTR:
2391         case FI_INLINE_DATA:
2392         case FI_INLINE_DENTRY:
2393         case FI_NEW_INODE:
2394                 if (set)
2395                         return;
2396                 /* fall through */
2397         case FI_DATA_EXIST:
2398         case FI_INLINE_DOTS:
2399         case FI_PIN_FILE:
2400                 f2fs_mark_inode_dirty_sync(inode, true);
2401         }
2402 }
2403 
2404 static inline void set_inode_flag(struct inode *inode, int flag)
2405 {
2406         if (!test_bit(flag, &F2FS_I(inode)->flags))
2407                 set_bit(flag, &F2FS_I(inode)->flags);
2408         __mark_inode_dirty_flag(inode, flag, true);
2409 }
2410 
2411 static inline int is_inode_flag_set(struct inode *inode, int flag)
2412 {
2413         return test_bit(flag, &F2FS_I(inode)->flags);
2414 }
2415 
2416 static inline void clear_inode_flag(struct inode *inode, int flag)
2417 {
2418         if (test_bit(flag, &F2FS_I(inode)->flags))
2419                 clear_bit(flag, &F2FS_I(inode)->flags);
2420         __mark_inode_dirty_flag(inode, flag, false);
2421 }
2422 
2423 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2424 {
2425         F2FS_I(inode)->i_acl_mode = mode;
2426         set_inode_flag(inode, FI_ACL_MODE);
2427         f2fs_mark_inode_dirty_sync(inode, false);
2428 }
2429 
2430 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2431 {
2432         if (inc)
2433                 inc_nlink(inode);
2434         else
2435                 drop_nlink(inode);
2436         f2fs_mark_inode_dirty_sync(inode, true);
2437 }
2438 
2439 static inline void f2fs_i_blocks_write(struct inode *inode,
2440                                         block_t diff, bool add, bool claim)
2441 {
2442         bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2443         bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2444 
2445         /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2446         if (add) {
2447                 if (claim)
2448                         dquot_claim_block(inode, diff);
2449                 else
2450                         dquot_alloc_block_nofail(inode, diff);
2451         } else {
2452                 dquot_free_block(inode, diff);
2453         }
2454 
2455         f2fs_mark_inode_dirty_sync(inode, true);
2456         if (clean || recover)
2457                 set_inode_flag(inode, FI_AUTO_RECOVER);
2458 }
2459 
2460 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2461 {
2462         bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2463         bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2464 
2465         if (i_size_read(inode) == i_size)
2466                 return;
2467 
2468         i_size_write(inode, i_size);
2469         f2fs_mark_inode_dirty_sync(inode, true);
2470         if (clean || recover)
2471                 set_inode_flag(inode, FI_AUTO_RECOVER);
2472 }
2473 
2474 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2475 {
2476         F2FS_I(inode)->i_current_depth = depth;
2477         f2fs_mark_inode_dirty_sync(inode, true);
2478 }
2479 
2480 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2481                                         unsigned int count)
2482 {
2483         F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2484         f2fs_mark_inode_dirty_sync(inode, true);
2485 }
2486 
2487 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2488 {
2489         F2FS_I(inode)->i_xattr_nid = xnid;
2490         f2fs_mark_inode_dirty_sync(inode, true);
2491 }
2492 
2493 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2494 {
2495         F2FS_I(inode)->i_pino = pino;
2496         f2fs_mark_inode_dirty_sync(inode, true);
2497 }
2498 
2499 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2500 {
2501         struct f2fs_inode_info *fi = F2FS_I(inode);
2502 
2503         if (ri->i_inline & F2FS_INLINE_XATTR)
2504                 set_bit(FI_INLINE_XATTR, &fi->flags);
2505         if (ri->i_inline & F2FS_INLINE_DATA)
2506                 set_bit(FI_INLINE_DATA, &fi->flags);
2507         if (ri->i_inline & F2FS_INLINE_DENTRY)
2508                 set_bit(FI_INLINE_DENTRY, &fi->flags);
2509         if (ri->i_inline & F2FS_DATA_EXIST)
2510                 set_bit(FI_DATA_EXIST, &fi->flags);
2511         if (ri->i_inline & F2FS_INLINE_DOTS)
2512                 set_bit(FI_INLINE_DOTS, &fi->flags);
2513         if (ri->i_inline & F2FS_EXTRA_ATTR)
2514                 set_bit(FI_EXTRA_ATTR, &fi->flags);
2515         if (ri->i_inline & F2FS_PIN_FILE)
2516                 set_bit(FI_PIN_FILE, &fi->flags);
2517 }
2518 
2519 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2520 {
2521         ri->i_inline = 0;
2522 
2523         if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2524                 ri->i_inline |= F2FS_INLINE_XATTR;
2525         if (is_inode_flag_set(inode, FI_INLINE_DATA))
2526                 ri->i_inline |= F2FS_INLINE_DATA;
2527         if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2528                 ri->i_inline |= F2FS_INLINE_DENTRY;
2529         if (is_inode_flag_set(inode, FI_DATA_EXIST))
2530                 ri->i_inline |= F2FS_DATA_EXIST;
2531         if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2532                 ri->i_inline |= F2FS_INLINE_DOTS;
2533         if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2534                 ri->i_inline |= F2FS_EXTRA_ATTR;
2535         if (is_inode_flag_set(inode, FI_PIN_FILE))
2536                 ri->i_inline |= F2FS_PIN_FILE;
2537 }
2538 
2539 static inline int f2fs_has_extra_attr(struct inode *inode)
2540 {
2541         return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2542 }
2543 
2544 static inline int f2fs_has_inline_xattr(struct inode *inode)
2545 {
2546         return is_inode_flag_set(inode, FI_INLINE_XATTR);
2547 }
2548 
2549 static inline unsigned int addrs_per_inode(struct inode *inode)
2550 {
2551         return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2552 }
2553 
2554 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2555 {
2556         struct f2fs_inode *ri = F2FS_INODE(page);
2557 
2558         return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2559                                         get_inline_xattr_addrs(inode)]);
2560 }
2561 
2562 static inline int inline_xattr_size(struct inode *inode)
2563 {
2564         return get_inline_xattr_addrs(inode) * sizeof(__le32);
2565 }
2566 
2567 static inline int f2fs_has_inline_data(struct inode *inode)
2568 {
2569         return is_inode_flag_set(inode, FI_INLINE_DATA);
2570 }
2571 
2572 static inline int f2fs_exist_data(struct inode *inode)
2573 {
2574         return is_inode_flag_set(inode, FI_DATA_EXIST);
2575 }
2576 
2577 static inline int f2fs_has_inline_dots(struct inode *inode)
2578 {
2579         return is_inode_flag_set(inode, FI_INLINE_DOTS);
2580 }
2581 
2582 static inline bool f2fs_is_pinned_file(struct inode *inode)
2583 {
2584         return is_inode_flag_set(inode, FI_PIN_FILE);
2585 }
2586 
2587 static inline bool f2fs_is_atomic_file(struct inode *inode)
2588 {
2589         return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2590 }
2591 
2592 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2593 {
2594         return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2595 }
2596 
2597 static inline bool f2fs_is_volatile_file(struct inode *inode)
2598 {
2599         return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2600 }
2601 
2602 static inline bool f2fs_is_first_block_written(struct inode *inode)
2603 {
2604         return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2605 }
2606 
2607 static inline bool f2fs_is_drop_cache(struct inode *inode)
2608 {
2609         return is_inode_flag_set(inode, FI_DROP_CACHE);
2610 }
2611 
2612 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2613 {
2614         struct f2fs_inode *ri = F2FS_INODE(page);
2615         int extra_size = get_extra_isize(inode);
2616 
2617         return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2618 }
2619 
2620 static inline int f2fs_has_inline_dentry(struct inode *inode)
2621 {
2622         return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2623 }
2624 
2625 static inline int is_file(struct inode *inode, int type)
2626 {
2627         return F2FS_I(inode)->i_advise & type;
2628 }
2629 
2630 static inline void set_file(struct inode *inode, int type)
2631 {
2632         F2FS_I(inode)->i_advise |= type;
2633         f2fs_mark_inode_dirty_sync(inode, true);
2634 }
2635 
2636 static inline void clear_file(struct inode *inode, int type)
2637 {
2638         F2FS_I(inode)->i_advise &= ~type;
2639         f2fs_mark_inode_dirty_sync(inode, true);
2640 }
2641 
2642 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2643 {
2644         bool ret;
2645 
2646         if (dsync) {
2647                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2648 
2649                 spin_lock(&sbi->inode_lock[DIRTY_META]);
2650                 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2651                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2652                 return ret;
2653         }
2654         if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2655                         file_keep_isize(inode) ||
2656                         i_size_read(inode) & ~PAGE_MASK)
2657                 return false;
2658 
2659         if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2660                 return false;
2661         if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2662                 return false;
2663         if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2664                 return false;
2665         if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2666                                                 &F2FS_I(inode)->i_crtime))
2667                 return false;
2668 
2669         down_read(&F2FS_I(inode)->i_sem);
2670         ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2671         up_read(&F2FS_I(inode)->i_sem);
2672 
2673         return ret;
2674 }
2675 
2676 static inline bool f2fs_readonly(struct super_block *sb)
2677 {
2678         return sb_rdonly(sb);
2679 }
2680 
2681 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2682 {
2683         return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2684 }
2685 
2686 static inline bool is_dot_dotdot(const struct qstr *str)
2687 {
2688         if (str->len == 1 && str->name[0] == '.')
2689                 return true;
2690 
2691         if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2692                 return true;
2693 
2694         return false;
2695 }
2696 
2697 static inline bool f2fs_may_extent_tree(struct inode *inode)
2698 {
2699         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2700 
2701         if (!test_opt(sbi, EXTENT_CACHE) ||
2702                         is_inode_flag_set(inode, FI_NO_EXTENT))
2703                 return false;
2704 
2705         /*
2706          * for recovered files during mount do not create extents
2707          * if shrinker is not registered.
2708          */
2709         if (list_empty(&sbi->s_list))
2710                 return false;
2711 
2712         return S_ISREG(inode->i_mode);
2713 }
2714 
2715 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2716                                         size_t size, gfp_t flags)
2717 {
2718         void *ret;
2719 
2720         if (time_to_inject(sbi, FAULT_KMALLOC)) {
2721                 f2fs_show_injection_info(FAULT_KMALLOC);
2722                 return NULL;
2723         }
2724 
2725         ret = kmalloc(size, flags);
2726         if (ret)
2727                 return ret;
2728 
2729         return kvmalloc(size, flags);
2730 }
2731 
2732 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2733                                         size_t size, gfp_t flags)
2734 {
2735         return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2736 }
2737 
2738 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2739                                         size_t size, gfp_t flags)
2740 {
2741         if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2742                 f2fs_show_injection_info(FAULT_KVMALLOC);
2743                 return NULL;
2744         }
2745 
2746         return kvmalloc(size, flags);
2747 }
2748 
2749 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2750                                         size_t size, gfp_t flags)
2751 {
2752         return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2753 }
2754 
2755 static inline int get_extra_isize(struct inode *inode)
2756 {
2757         return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2758 }
2759 
2760 static inline int get_inline_xattr_addrs(struct inode *inode)
2761 {
2762         return F2FS_I(inode)->i_inline_xattr_size;
2763 }
2764 
2765 #define f2fs_get_inode_mode(i) \
2766         ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2767          (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2768 
2769 #define F2FS_TOTAL_EXTRA_ATTR_SIZE                      \
2770         (offsetof(struct f2fs_inode, i_extra_end) -     \
2771         offsetof(struct f2fs_inode, i_extra_isize))     \
2772 
2773 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2774 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)              \
2775                 ((offsetof(typeof(*f2fs_inode), field) +        \
2776                 sizeof((f2fs_inode)->field))                    \
2777                 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))     \
2778 
2779 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2780 {
2781         int i;
2782 
2783         spin_lock(&sbi->iostat_lock);
2784         for (i = 0; i < NR_IO_TYPE; i++)
2785                 sbi->write_iostat[i] = 0;
2786         spin_unlock(&sbi->iostat_lock);
2787 }
2788 
2789 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2790                         enum iostat_type type, unsigned long long io_bytes)
2791 {
2792         if (!sbi->iostat_enable)
2793                 return;
2794         spin_lock(&sbi->iostat_lock);
2795         sbi->write_iostat[type] += io_bytes;
2796 
2797         if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2798                 sbi->write_iostat[APP_BUFFERED_IO] =
2799                         sbi->write_iostat[APP_WRITE_IO] -
2800                         sbi->write_iostat[APP_DIRECT_IO];
2801         spin_unlock(&sbi->iostat_lock);
2802 }
2803 
2804 #define __is_large_section(sbi)         ((sbi)->segs_per_sec > 1)
2805 
2806 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META &&       \
2807                                 (!is_read_io(fio->op) || fio->is_meta))
2808 
2809 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2810                                         block_t blkaddr, int type);
2811 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2812 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2813                                         block_t blkaddr, int type)
2814 {
2815         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2816                 f2fs_msg(sbi->sb, KERN_ERR,
2817                         "invalid blkaddr: %u, type: %d, run fsck to fix.",
2818                         blkaddr, type);
2819                 f2fs_bug_on(sbi, 1);
2820         }
2821 }
2822 
2823 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2824 {
2825         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2826                 return false;
2827         return true;
2828 }
2829 
2830 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2831                                                 block_t blkaddr)
2832 {
2833         if (!__is_valid_data_blkaddr(blkaddr))
2834                 return false;
2835         verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2836         return true;
2837 }
2838 
2839 static inline void f2fs_set_page_private(struct page *page,
2840                                                 unsigned long data)
2841 {
2842         if (PagePrivate(page))
2843                 return;
2844 
2845         get_page(page);
2846         SetPagePrivate(page);
2847         set_page_private(page, data);
2848 }
2849 
2850 static inline void f2fs_clear_page_private(struct page *page)
2851 {
2852         if (!PagePrivate(page))
2853                 return;
2854 
2855         set_page_private(page, 0);
2856         ClearPagePrivate(page);
2857         f2fs_put_page(page, 0);
2858 }
2859 
2860 /*
2861  * file.c
2862  */
2863 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2864 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2865 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock,
2866                                                         bool buf_write);
2867 int f2fs_truncate(struct inode *inode);
2868 int f2fs_getattr(const struct path *path, struct kstat *stat,
2869                         u32 request_mask, unsigned int flags);
2870 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2871 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2872 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2873 int f2fs_precache_extents(struct inode *inode);
2874 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2875 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2876 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2877 int f2fs_pin_file_control(struct inode *inode, bool inc);
2878 
2879 /*
2880  * inode.c
2881  */
2882 void f2fs_set_inode_flags(struct inode *inode);
2883 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2884 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2885 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2886 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2887 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2888 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2889 void f2fs_update_inode_page(struct inode *inode);
2890 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2891 void f2fs_evict_inode(struct inode *inode);
2892 void f2fs_handle_failed_inode(struct inode *inode);
2893 
2894 /*
2895  * namei.c
2896  */
2897 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2898                                                         bool hot, bool set);
2899 struct dentry *f2fs_get_parent(struct dentry *child);
2900 
2901 /*
2902  * dir.c
2903  */
2904 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2905 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2906                         f2fs_hash_t namehash, int *max_slots,
2907                         struct f2fs_dentry_ptr *d);
2908 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2909                         unsigned int start_pos, struct fscrypt_str *fstr);
2910 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2911                         struct f2fs_dentry_ptr *d);
2912 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2913                         const struct qstr *new_name,
2914                         const struct qstr *orig_name, struct page *dpage);
2915 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2916                         unsigned int current_depth);
2917 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2918 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2919 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2920                         struct fscrypt_name *fname, struct page **res_page);
2921 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2922                         const struct qstr *child, struct page **res_page);
2923 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2924 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2925                         struct page **page);
2926 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2927                         struct page *page, struct inode *inode);
2928 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2929                         const struct qstr *name, f2fs_hash_t name_hash,
2930                         unsigned int bit_pos);
2931 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2932                         const struct qstr *orig_name,
2933                         struct inode *inode, nid_t ino, umode_t mode);
2934 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2935                         struct inode *inode, nid_t ino, umode_t mode);
2936 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2937                         struct inode *inode, nid_t ino, umode_t mode);
2938 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2939                         struct inode *dir, struct inode *inode);
2940 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2941 bool f2fs_empty_dir(struct inode *dir);
2942 
2943 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2944 {
2945         return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2946                                 inode, inode->i_ino, inode->i_mode);
2947 }
2948 
2949 /*
2950  * super.c
2951  */
2952 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2953 void f2fs_inode_synced(struct inode *inode);
2954 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2955 int f2fs_quota_sync(struct super_block *sb, int type);
2956 void f2fs_quota_off_umount(struct super_block *sb);
2957 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2958 int f2fs_sync_fs(struct super_block *sb, int sync);
2959 extern __printf(3, 4)
2960 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2961 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2962 
2963 /*
2964  * hash.c
2965  */
2966 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2967                                 struct fscrypt_name *fname);
2968 
2969 /*
2970  * node.c
2971  */
2972 struct dnode_of_data;
2973 struct node_info;
2974 
2975 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2976 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2977 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2978 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2979 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2980 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2981 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2982 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2983 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2984 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2985                                                 struct node_info *ni);
2986 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2987 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2988 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2989 int f2fs_truncate_xattr_node(struct inode *inode);
2990 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2991                                         unsigned int seq_id);
2992 int f2fs_remove_inode_page(struct inode *inode);
2993 struct page *f2fs_new_inode_page(struct inode *inode);
2994 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2995 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2996 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2997 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2998 int f2fs_move_node_page(struct page *node_page, int gc_type);
2999 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3000                         struct writeback_control *wbc, bool atomic,
3001                         unsigned int *seq_id);
3002 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3003                         struct writeback_control *wbc,
3004                         bool do_balance, enum iostat_type io_type);
3005 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3006 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3007 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3008 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3009 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3010 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3011 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3012 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3013 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3014                         unsigned int segno, struct f2fs_summary_block *sum);
3015 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3016 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3017 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3018 int __init f2fs_create_node_manager_caches(void);
3019 void f2fs_destroy_node_manager_caches(void);
3020 
3021 /*
3022  * segment.c
3023  */
3024 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3025 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3026 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3027 void f2fs_drop_inmem_pages(struct inode *inode);
3028 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3029 int f2fs_commit_inmem_pages(struct inode *inode);
3030 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3031 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3032 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3033 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3034 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3035 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3036 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3037 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3038 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3039 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3040 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
3041 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3042                                         struct cp_control *cpc);
3043 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3044 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3045 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3046 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3047 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3048 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3049 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3050                                         struct cp_control *cpc);
3051 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3052 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3053                                         block_t blk_addr);
3054 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3055                                                 enum iostat_type io_type);
3056 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3057 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3058                         struct f2fs_io_info *fio);
3059 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3060 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3061                         block_t old_blkaddr, block_t new_blkaddr,
3062                         bool recover_curseg, bool recover_newaddr);
3063 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3064                         block_t old_addr, block_t new_addr,
3065                         unsigned char version, bool recover_curseg,
3066                         bool recover_newaddr);
3067 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3068                         block_t old_blkaddr, block_t *new_blkaddr,
3069                         struct f2fs_summary *sum, int type,
3070                         struct f2fs_io_info *fio, bool add_list);
3071 void f2fs_wait_on_page_writeback(struct page *page,
3072                         enum page_type type, bool ordered, bool locked);
3073 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3074 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3075                                                                 block_t len);
3076 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3077 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3078 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3079                         unsigned int val, int alloc);
3080 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3081 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3082 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3083 int __init f2fs_create_segment_manager_caches(void);
3084 void f2fs_destroy_segment_manager_caches(void);
3085 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3086 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3087                         enum page_type type, enum temp_type temp);
3088 
3089 /*
3090  * checkpoint.c
3091  */
3092 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3093 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3094 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3095 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3096 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3097 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3098                                         block_t blkaddr, int type);
3099 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3100                         int type, bool sync);
3101 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3102 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3103                         long nr_to_write, enum iostat_type io_type);
3104 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3105 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3106 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3107 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3108 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3109                                         unsigned int devidx, int type);
3110 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3111                                         unsigned int devidx, int type);
3112 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3113 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3114 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3115 void f2fs_add_orphan_inode(struct inode *inode);
3116 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3117 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3118 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3119 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3120 void f2fs_remove_dirty_inode(struct inode *inode);
3121 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3122 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3123 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3124 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3125 int __init f2fs_create_checkpoint_caches(void);
3126 void f2fs_destroy_checkpoint_caches(void);
3127 
3128 /*
3129  * data.c
3130  */
3131 int f2fs_init_post_read_processing(void);
3132 void f2fs_destroy_post_read_processing(void);
3133 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3134 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3135                                 struct inode *inode, struct page *page,
3136                                 nid_t ino, enum page_type type);
3137 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3138 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3139 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3140 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3141                         block_t blk_addr, struct bio *bio);
3142 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3143 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3144 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3145 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3146 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3147 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3148 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3149 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3150 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3151                         int op_flags, bool for_write);
3152 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3153 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3154                         bool for_write);
3155 struct page *f2fs_get_new_data_page(struct inode *inode,
3156                         struct page *ipage, pgoff_t index, bool new_i_size);
3157 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3158 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3159 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3160                         int create, int flag);
3161 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3162                         u64 start, u64 len);
3163 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3164 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3165 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3166                         unsigned int length);
3167 int f2fs_release_page(struct page *page, gfp_t wait);
3168 #ifdef CONFIG_MIGRATION
3169 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3170                         struct page *page, enum migrate_mode mode);
3171 #endif
3172 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3173 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3174 
3175 /*
3176  * gc.c
3177  */
3178 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3179 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3180 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3181 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3182                         unsigned int segno);
3183 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3184 
3185 /*
3186  * recovery.c
3187  */
3188 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3189 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3190 
3191 /*
3192  * debug.c
3193  */
3194 #ifdef CONFIG_F2FS_STAT_FS
3195 struct f2fs_stat_info {
3196         struct list_head stat_list;
3197         struct f2fs_sb_info *sbi;
3198         int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3199         int main_area_segs, main_area_sections, main_area_zones;
3200         unsigned long long hit_largest, hit_cached, hit_rbtree;
3201         unsigned long long hit_total, total_ext;
3202         int ext_tree, zombie_tree, ext_node;
3203         int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3204         int ndirty_data, ndirty_qdata;
3205         int inmem_pages;
3206         unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3207         int nats, dirty_nats, sits, dirty_sits;
3208         int free_nids, avail_nids, alloc_nids;
3209         int total_count, utilization;
3210         int bg_gc, nr_wb_cp_data, nr_wb_data;
3211         int nr_rd_data, nr_rd_node, nr_rd_meta;
3212         int nr_dio_read, nr_dio_write;
3213         unsigned int io_skip_bggc, other_skip_bggc;
3214         int nr_flushing, nr_flushed, flush_list_empty;
3215         int nr_discarding, nr_discarded;
3216         int nr_discard_cmd;
3217         unsigned int undiscard_blks;
3218         int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3219         int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3220         unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3221         unsigned int bimodal, avg_vblocks;
3222         int util_free, util_valid, util_invalid;
3223         int rsvd_segs, overp_segs;
3224         int dirty_count, node_pages, meta_pages;
3225         int prefree_count, call_count, cp_count, bg_cp_count;
3226         int tot_segs, node_segs, data_segs, free_segs, free_secs;
3227         int bg_node_segs, bg_data_segs;
3228         int tot_blks, data_blks, node_blks;
3229         int bg_data_blks, bg_node_blks;
3230         unsigned long long skipped_atomic_files[2];
3231         int curseg[NR_CURSEG_TYPE];
3232         int cursec[NR_CURSEG_TYPE];
3233         int curzone[NR_CURSEG_TYPE];
3234 
3235         unsigned int meta_count[META_MAX];
3236         unsigned int segment_count[2];
3237         unsigned int block_count[2];
3238         unsigned int inplace_count;
3239         unsigned long long base_mem, cache_mem, page_mem;
3240 };
3241 
3242 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3243 {
3244         return (struct f2fs_stat_info *)sbi->stat_info;
3245 }
3246 
3247 #define stat_inc_cp_count(si)           ((si)->cp_count++)
3248 #define stat_inc_bg_cp_count(si)        ((si)->bg_cp_count++)
3249 #define stat_inc_call_count(si)         ((si)->call_count++)
3250 #define stat_inc_bggc_count(sbi)        ((sbi)->bg_gc++)
3251 #define stat_io_skip_bggc_count(sbi)    ((sbi)->io_skip_bggc++)
3252 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3253 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3254 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3255 #define stat_inc_total_hit(sbi)         (atomic64_inc(&(sbi)->total_hit_ext))
3256 #define stat_inc_rbtree_node_hit(sbi)   (atomic64_inc(&(sbi)->read_hit_rbtree))
3257 #define stat_inc_largest_node_hit(sbi)  (atomic64_inc(&(sbi)->read_hit_largest))
3258 #define stat_inc_cached_node_hit(sbi)   (atomic64_inc(&(sbi)->read_hit_cached))
3259 #define stat_inc_inline_xattr(inode)                                    \
3260         do {                                                            \
3261                 if (f2fs_has_inline_xattr(inode))                       \
3262                         (atomic_inc(&F2FS_I_SB(inode)->inline_xattr));  \
3263         } while (0)
3264 #define stat_dec_inline_xattr(inode)                                    \
3265         do {                                                            \
3266                 if (f2fs_has_inline_xattr(inode))                       \
3267                         (atomic_dec(&F2FS_I_SB(inode)->inline_xattr));  \
3268         } while (0)
3269 #define stat_inc_inline_inode(inode)                                    \
3270         do {                                                            \
3271                 if (f2fs_has_inline_data(inode))                        \
3272                         (atomic_inc(&F2FS_I_SB(inode)->inline_inode));  \
3273         } while (0)
3274 #define stat_dec_inline_inode(inode)                                    \
3275         do {                                                            \
3276                 if (f2fs_has_inline_data(inode))                        \
3277                         (atomic_dec(&F2FS_I_SB(inode)->inline_inode));  \
3278         } while (0)
3279 #define stat_inc_inline_dir(inode)                                      \
3280         do {                                                            \
3281                 if (f2fs_has_inline_dentry(inode))                      \
3282                         (atomic_inc(&F2FS_I_SB(inode)->inline_dir));    \
3283         } while (0)
3284 #define stat_dec_inline_dir(inode)                                      \
3285         do {                                                            \
3286                 if (f2fs_has_inline_dentry(inode))                      \
3287                         (atomic_dec(&F2FS_I_SB(inode)->inline_dir));    \
3288         } while (0)
3289 #define stat_inc_meta_count(sbi, blkaddr)                               \
3290         do {                                                            \
3291                 if (blkaddr < SIT_I(sbi)->sit_base_addr)                \
3292                         atomic_inc(&(sbi)->meta_count[META_CP]);        \
3293                 else if (blkaddr < NM_I(sbi)->nat_blkaddr)              \
3294                         atomic_inc(&(sbi)->meta_count[META_SIT]);       \
3295                 else if (blkaddr < SM_I(sbi)->ssa_blkaddr)              \
3296                         atomic_inc(&(sbi)->meta_count[META_NAT]);       \
3297                 else if (blkaddr < SM_I(sbi)->main_blkaddr)             \
3298                         atomic_inc(&(sbi)->meta_count[META_SSA]);       \
3299         } while (0)
3300 #define stat_inc_seg_type(sbi, curseg)                                  \
3301                 ((sbi)->segment_count[(curseg)->alloc_type]++)
3302 #define stat_inc_block_count(sbi, curseg)                               \
3303                 ((sbi)->block_count[(curseg)->alloc_type]++)
3304 #define stat_inc_inplace_blocks(sbi)                                    \
3305                 (atomic_inc(&(sbi)->inplace_count))
3306 #define stat_inc_atomic_write(inode)                                    \
3307                 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3308 #define stat_dec_atomic_write(inode)                                    \
3309                 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3310 #define stat_update_max_atomic_write(inode)                             \
3311         do {                                                            \
3312                 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);       \
3313                 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);   \
3314                 if (cur > max)                                          \
3315                         atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3316         } while (0)
3317 #define stat_inc_volatile_write(inode)                                  \
3318                 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3319 #define stat_dec_volatile_write(inode)                                  \
3320                 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3321 #define stat_update_max_volatile_write(inode)                           \
3322         do {                                                            \
3323                 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);       \
3324                 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);   \
3325                 if (cur > max)                                          \
3326                         atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3327         } while (0)
3328 #define stat_inc_seg_count(sbi, type, gc_type)                          \
3329         do {                                                            \
3330                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
3331                 si->tot_segs++;                                         \
3332                 if ((type) == SUM_TYPE_DATA) {                          \
3333                         si->data_segs++;                                \
3334                         si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3335                 } else {                                                \
3336                         si->node_segs++;                                \
3337                         si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3338                 }                                                       \
3339         } while (0)
3340 
3341 #define stat_inc_tot_blk_count(si, blks)                                \
3342         ((si)->tot_blks += (blks))
3343 
3344 #define stat_inc_data_blk_count(sbi, blks, gc_type)                     \
3345         do {                                                            \
3346                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
3347                 stat_inc_tot_blk_count(si, blks);                       \
3348                 si->data_blks += (blks);                                \
3349                 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;  \
3350         } while (0)
3351 
3352 #define stat_inc_node_blk_count(sbi, blks, gc_type)                     \
3353         do {                                                            \
3354                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
3355                 stat_inc_tot_blk_count(si, blks);                       \
3356                 si->node_blks += (blks);                                \
3357                 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;  \
3358         } while (0)
3359 
3360 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3361 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3362 int __init f2fs_create_root_stats(void);
3363 void f2fs_destroy_root_stats(void);
3364 #else
3365 #define stat_inc_cp_count(si)                           do { } while (0)
3366 #define stat_inc_bg_cp_count(si)                        do { } while (0)
3367 #define stat_inc_call_count(si)                         do { } while (0)
3368 #define stat_inc_bggc_count(si)                         do { } while (0)
3369 #define stat_io_skip_bggc_count(sbi)                    do { } while (0)
3370 #define stat_other_skip_bggc_count(sbi)                 do { } while (0)
3371 #define stat_inc_dirty_inode(sbi, type)                 do { } while (0)
3372 #define stat_dec_dirty_inode(sbi, type)                 do { } while (0)
3373 #define stat_inc_total_hit(sb)                          do { } while (0)
3374 #define stat_inc_rbtree_node_hit(sb)                    do { } while (0)
3375 #define stat_inc_largest_node_hit(sbi)                  do { } while (0)
3376 #define stat_inc_cached_node_hit(sbi)                   do { } while (0)
3377 #define stat_inc_inline_xattr(inode)                    do { } while (0)
3378 #define stat_dec_inline_xattr(inode)                    do { } while (0)
3379 #define stat_inc_inline_inode(inode)                    do { } while (0)
3380 #define stat_dec_inline_inode(inode)                    do { } while (0)
3381 #define stat_inc_inline_dir(inode)                      do { } while (0)
3382 #define stat_dec_inline_dir(inode)                      do { } while (0)
3383 #define stat_inc_atomic_write(inode)                    do { } while (0)
3384 #define stat_dec_atomic_write(inode)                    do { } while (0)
3385 #define stat_update_max_atomic_write(inode)             do { } while (0)
3386 #define stat_inc_volatile_write(inode)                  do { } while (0)
3387 #define stat_dec_volatile_write(inode)                  do { } while (0)
3388 #define stat_update_max_volatile_write(inode)           do { } while (0)
3389 #define stat_inc_meta_count(sbi, blkaddr)               do { } while (0)
3390 #define stat_inc_seg_type(sbi, curseg)                  do { } while (0)
3391 #define stat_inc_block_count(sbi, curseg)               do { } while (0)
3392 #define stat_inc_inplace_blocks(sbi)                    do { } while (0)
3393 #define stat_inc_seg_count(sbi, type, gc_type)          do { } while (0)
3394 #define stat_inc_tot_blk_count(si, blks)                do { } while (0)
3395 #define stat_inc_data_blk_count(sbi, blks, gc_type)     do { } while (0)
3396 #define stat_inc_node_blk_count(sbi, blks, gc_type)     do { } while (0)
3397 
3398 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3399 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3400 static inline int __init f2fs_create_root_stats(void) { return 0; }
3401 static inline void f2fs_destroy_root_stats(void) { }
3402 #endif
3403 
3404 extern const struct file_operations f2fs_dir_operations;
3405 extern const struct file_operations f2fs_file_operations;
3406 extern const struct inode_operations f2fs_file_inode_operations;
3407 extern const struct address_space_operations f2fs_dblock_aops;
3408 extern const struct address_space_operations f2fs_node_aops;
3409 extern const struct address_space_operations f2fs_meta_aops;
3410 extern const struct inode_operations f2fs_dir_inode_operations;
3411 extern const struct inode_operations f2fs_symlink_inode_operations;
3412 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3413 extern const struct inode_operations f2fs_special_inode_operations;
3414 extern struct kmem_cache *f2fs_inode_entry_slab;
3415 
3416 /*
3417  * inline.c
3418  */
3419 bool f2fs_may_inline_data(struct inode *inode);
3420 bool f2fs_may_inline_dentry(struct inode *inode);
3421 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3422 void f2fs_truncate_inline_inode(struct inode *inode,
3423                                                 struct page *ipage, u64 from);
3424 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3425 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3426 int f2fs_convert_inline_inode(struct inode *inode);
3427 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3428 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3429 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3430                         struct fscrypt_name *fname, struct page **res_page);
3431 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3432                         struct page *ipage);
3433 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3434                         const struct qstr *orig_name,
3435                         struct inode *inode, nid_t ino, umode_t mode);
3436 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3437                                 struct page *page, struct inode *dir,
3438                                 struct inode *inode);
3439 bool f2fs_empty_inline_dir(struct inode *dir);
3440 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3441                         struct fscrypt_str *fstr);
3442 int f2fs_inline_data_fiemap(struct inode *inode,
3443                         struct fiemap_extent_info *fieinfo,
3444                         __u64 start, __u64 len);
3445 
3446 /*
3447  * shrinker.c
3448  */
3449 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3450                         struct shrink_control *sc);
3451 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3452                         struct shrink_control *sc);
3453 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3454 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3455 
3456 /*
3457  * extent_cache.c
3458  */
3459 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3460                                 struct rb_entry *cached_re, unsigned int ofs);
3461 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3462                                 struct rb_root_cached *root,
3463                                 struct rb_node **parent,
3464                                 unsigned int ofs, bool *leftmost);
3465 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3466                 struct rb_entry *cached_re, unsigned int ofs,
3467                 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3468                 struct rb_node ***insert_p, struct rb_node **insert_parent,
3469                 bool force, bool *leftmost);
3470 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3471                                                 struct rb_root_cached *root);
3472 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3473 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3474 void f2fs_drop_extent_tree(struct inode *inode);
3475 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3476 void f2fs_destroy_extent_tree(struct inode *inode);
3477 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3478                         struct extent_info *ei);
3479 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3480 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3481                         pgoff_t fofs, block_t blkaddr, unsigned int len);
3482 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3483 int __init f2fs_create_extent_cache(void);
3484 void f2fs_destroy_extent_cache(void);
3485 
3486 /*
3487  * sysfs.c
3488  */
3489 int __init f2fs_init_sysfs(void);
3490 void f2fs_exit_sysfs(void);
3491 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3492 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3493 
3494 /*
3495  * crypto support
3496  */
3497 static inline bool f2fs_encrypted_inode(struct inode *inode)
3498 {
3499         return file_is_encrypt(inode);
3500 }
3501 
3502 static inline bool f2fs_encrypted_file(struct inode *inode)
3503 {
3504         return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3505 }
3506 
3507 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3508 {
3509 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3510         file_set_encrypt(inode);
3511         f2fs_set_inode_flags(inode);
3512 #endif
3513 }
3514 
3515 /*
3516  * Returns true if the reads of the inode's data need to undergo some
3517  * postprocessing step, like decryption or authenticity verification.
3518  */
3519 static inline bool f2fs_post_read_required(struct inode *inode)
3520 {
3521         return f2fs_encrypted_file(inode);
3522 }
3523 
3524 #define F2FS_FEATURE_FUNCS(name, flagname) \
3525 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3526 { \
3527         return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3528 }
3529 
3530 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3531 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3532 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3533 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3534 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3535 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3536 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3537 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3538 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3539 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3540 
3541 #ifdef CONFIG_BLK_DEV_ZONED
3542 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3543                         struct block_device *bdev, block_t blkaddr)
3544 {
3545         unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3546         int i;
3547 
3548         for (i = 0; i < sbi->s_ndevs; i++)
3549                 if (FDEV(i).bdev == bdev)
3550                         return FDEV(i).blkz_type[zno];
3551         return -EINVAL;
3552 }
3553 #endif
3554 
3555 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3556 {
3557         return f2fs_sb_has_blkzoned(sbi);
3558 }
3559 
3560 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3561 {
3562         return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3563 }
3564 
3565 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3566 {
3567         return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3568                                         f2fs_hw_should_discard(sbi);
3569 }
3570 
3571 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3572 {
3573         clear_opt(sbi, ADAPTIVE);
3574         clear_opt(sbi, LFS);
3575 
3576         switch (mt) {
3577         case F2FS_MOUNT_ADAPTIVE:
3578                 set_opt(sbi, ADAPTIVE);
3579                 break;
3580         case F2FS_MOUNT_LFS:
3581                 set_opt(sbi, LFS);
3582                 break;
3583         }
3584 }
3585 
3586 static inline bool f2fs_may_encrypt(struct inode *inode)
3587 {
3588 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3589         umode_t mode = inode->i_mode;
3590 
3591         return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3592 #else
3593         return false;
3594 #endif
3595 }
3596 
3597 static inline int block_unaligned_IO(struct inode *inode,
3598                                 struct kiocb *iocb, struct iov_iter *iter)
3599 {
3600         unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3601         unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3602         loff_t offset = iocb->ki_pos;
3603         unsigned long align = offset | iov_iter_alignment(iter);
3604 
3605         return align & blocksize_mask;
3606 }
3607 
3608 static inline int allow_outplace_dio(struct inode *inode,
3609                                 struct kiocb *iocb, struct iov_iter *iter)
3610 {
3611         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3612         int rw = iov_iter_rw(iter);
3613 
3614         return (test_opt(sbi, LFS) && (rw == WRITE) &&
3615                                 !block_unaligned_IO(inode, iocb, iter));
3616 }
3617 
3618 static inline bool f2fs_force_buffered_io(struct inode *inode,
3619                                 struct kiocb *iocb, struct iov_iter *iter)
3620 {
3621         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3622         int rw = iov_iter_rw(iter);
3623 
3624         if (f2fs_post_read_required(inode))
3625                 return true;
3626         if (f2fs_is_multi_device(sbi))
3627                 return true;
3628         /*
3629          * for blkzoned device, fallback direct IO to buffered IO, so
3630          * all IOs can be serialized by log-structured write.
3631          */
3632         if (f2fs_sb_has_blkzoned(sbi))
3633                 return true;
3634         if (test_opt(sbi, LFS) && (rw == WRITE) &&
3635                                 block_unaligned_IO(inode, iocb, iter))
3636                 return true;
3637         if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3638                 return true;
3639 
3640         return false;
3641 }
3642 
3643 #ifdef CONFIG_F2FS_FAULT_INJECTION
3644 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3645                                                         unsigned int type);
3646 #else
3647 #define f2fs_build_fault_attr(sbi, rate, type)          do { } while (0)
3648 #endif
3649 
3650 #endif
3651 
3652 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3653 {
3654 #ifdef CONFIG_QUOTA
3655         if (f2fs_sb_has_quota_ino(sbi))
3656                 return true;
3657         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3658                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3659                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3660                 return true;
3661 #endif
3662         return false;
3663 }
3664 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp