~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/super.c

Version: ~ [ linux-5.13-rc1 ] ~ [ linux-5.12.2 ] ~ [ linux-5.11.19 ] ~ [ linux-5.10.35 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.117 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.190 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.232 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.268 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.268 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * fs/f2fs/super.c
  3  *
  4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5  *             http://www.samsung.com/
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License version 2 as
  9  * published by the Free Software Foundation.
 10  */
 11 #include <linux/module.h>
 12 #include <linux/init.h>
 13 #include <linux/fs.h>
 14 #include <linux/statfs.h>
 15 #include <linux/buffer_head.h>
 16 #include <linux/backing-dev.h>
 17 #include <linux/kthread.h>
 18 #include <linux/parser.h>
 19 #include <linux/mount.h>
 20 #include <linux/seq_file.h>
 21 #include <linux/proc_fs.h>
 22 #include <linux/random.h>
 23 #include <linux/exportfs.h>
 24 #include <linux/blkdev.h>
 25 #include <linux/f2fs_fs.h>
 26 #include <linux/sysfs.h>
 27 
 28 #include "f2fs.h"
 29 #include "node.h"
 30 #include "segment.h"
 31 #include "xattr.h"
 32 #include "gc.h"
 33 #include "trace.h"
 34 
 35 #define CREATE_TRACE_POINTS
 36 #include <trace/events/f2fs.h>
 37 
 38 static struct proc_dir_entry *f2fs_proc_root;
 39 static struct kmem_cache *f2fs_inode_cachep;
 40 static struct kset *f2fs_kset;
 41 
 42 #ifdef CONFIG_F2FS_FAULT_INJECTION
 43 struct f2fs_fault_info f2fs_fault;
 44 
 45 char *fault_name[FAULT_MAX] = {
 46         [FAULT_KMALLOC]         = "kmalloc",
 47         [FAULT_PAGE_ALLOC]      = "page alloc",
 48         [FAULT_ALLOC_NID]       = "alloc nid",
 49         [FAULT_ORPHAN]          = "orphan",
 50         [FAULT_BLOCK]           = "no more block",
 51         [FAULT_DIR_DEPTH]       = "too big dir depth",
 52         [FAULT_EVICT_INODE]     = "evict_inode fail",
 53 };
 54 
 55 static void f2fs_build_fault_attr(unsigned int rate)
 56 {
 57         if (rate) {
 58                 atomic_set(&f2fs_fault.inject_ops, 0);
 59                 f2fs_fault.inject_rate = rate;
 60                 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
 61         } else {
 62                 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
 63         }
 64 }
 65 #endif
 66 
 67 /* f2fs-wide shrinker description */
 68 static struct shrinker f2fs_shrinker_info = {
 69         .scan_objects = f2fs_shrink_scan,
 70         .count_objects = f2fs_shrink_count,
 71         .seeks = DEFAULT_SEEKS,
 72 };
 73 
 74 enum {
 75         Opt_gc_background,
 76         Opt_disable_roll_forward,
 77         Opt_norecovery,
 78         Opt_discard,
 79         Opt_nodiscard,
 80         Opt_noheap,
 81         Opt_user_xattr,
 82         Opt_nouser_xattr,
 83         Opt_acl,
 84         Opt_noacl,
 85         Opt_active_logs,
 86         Opt_disable_ext_identify,
 87         Opt_inline_xattr,
 88         Opt_inline_data,
 89         Opt_inline_dentry,
 90         Opt_flush_merge,
 91         Opt_noflush_merge,
 92         Opt_nobarrier,
 93         Opt_fastboot,
 94         Opt_extent_cache,
 95         Opt_noextent_cache,
 96         Opt_noinline_data,
 97         Opt_data_flush,
 98         Opt_mode,
 99         Opt_fault_injection,
100         Opt_lazytime,
101         Opt_nolazytime,
102         Opt_err,
103 };
104 
105 static match_table_t f2fs_tokens = {
106         {Opt_gc_background, "background_gc=%s"},
107         {Opt_disable_roll_forward, "disable_roll_forward"},
108         {Opt_norecovery, "norecovery"},
109         {Opt_discard, "discard"},
110         {Opt_nodiscard, "nodiscard"},
111         {Opt_noheap, "no_heap"},
112         {Opt_user_xattr, "user_xattr"},
113         {Opt_nouser_xattr, "nouser_xattr"},
114         {Opt_acl, "acl"},
115         {Opt_noacl, "noacl"},
116         {Opt_active_logs, "active_logs=%u"},
117         {Opt_disable_ext_identify, "disable_ext_identify"},
118         {Opt_inline_xattr, "inline_xattr"},
119         {Opt_inline_data, "inline_data"},
120         {Opt_inline_dentry, "inline_dentry"},
121         {Opt_flush_merge, "flush_merge"},
122         {Opt_noflush_merge, "noflush_merge"},
123         {Opt_nobarrier, "nobarrier"},
124         {Opt_fastboot, "fastboot"},
125         {Opt_extent_cache, "extent_cache"},
126         {Opt_noextent_cache, "noextent_cache"},
127         {Opt_noinline_data, "noinline_data"},
128         {Opt_data_flush, "data_flush"},
129         {Opt_mode, "mode=%s"},
130         {Opt_fault_injection, "fault_injection=%u"},
131         {Opt_lazytime, "lazytime"},
132         {Opt_nolazytime, "nolazytime"},
133         {Opt_err, NULL},
134 };
135 
136 /* Sysfs support for f2fs */
137 enum {
138         GC_THREAD,      /* struct f2fs_gc_thread */
139         SM_INFO,        /* struct f2fs_sm_info */
140         NM_INFO,        /* struct f2fs_nm_info */
141         F2FS_SBI,       /* struct f2fs_sb_info */
142 #ifdef CONFIG_F2FS_FAULT_INJECTION
143         FAULT_INFO_RATE,        /* struct f2fs_fault_info */
144         FAULT_INFO_TYPE,        /* struct f2fs_fault_info */
145 #endif
146 };
147 
148 struct f2fs_attr {
149         struct attribute attr;
150         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
151         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
152                          const char *, size_t);
153         int struct_type;
154         int offset;
155 };
156 
157 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
158 {
159         if (struct_type == GC_THREAD)
160                 return (unsigned char *)sbi->gc_thread;
161         else if (struct_type == SM_INFO)
162                 return (unsigned char *)SM_I(sbi);
163         else if (struct_type == NM_INFO)
164                 return (unsigned char *)NM_I(sbi);
165         else if (struct_type == F2FS_SBI)
166                 return (unsigned char *)sbi;
167 #ifdef CONFIG_F2FS_FAULT_INJECTION
168         else if (struct_type == FAULT_INFO_RATE ||
169                                         struct_type == FAULT_INFO_TYPE)
170                 return (unsigned char *)&f2fs_fault;
171 #endif
172         return NULL;
173 }
174 
175 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
176                 struct f2fs_sb_info *sbi, char *buf)
177 {
178         struct super_block *sb = sbi->sb;
179 
180         if (!sb->s_bdev->bd_part)
181                 return snprintf(buf, PAGE_SIZE, "\n");
182 
183         return snprintf(buf, PAGE_SIZE, "%llu\n",
184                 (unsigned long long)(sbi->kbytes_written +
185                         BD_PART_WRITTEN(sbi)));
186 }
187 
188 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
189                         struct f2fs_sb_info *sbi, char *buf)
190 {
191         unsigned char *ptr = NULL;
192         unsigned int *ui;
193 
194         ptr = __struct_ptr(sbi, a->struct_type);
195         if (!ptr)
196                 return -EINVAL;
197 
198         ui = (unsigned int *)(ptr + a->offset);
199 
200         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
201 }
202 
203 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
204                         struct f2fs_sb_info *sbi,
205                         const char *buf, size_t count)
206 {
207         unsigned char *ptr;
208         unsigned long t;
209         unsigned int *ui;
210         ssize_t ret;
211 
212         ptr = __struct_ptr(sbi, a->struct_type);
213         if (!ptr)
214                 return -EINVAL;
215 
216         ui = (unsigned int *)(ptr + a->offset);
217 
218         ret = kstrtoul(skip_spaces(buf), 0, &t);
219         if (ret < 0)
220                 return ret;
221 #ifdef CONFIG_F2FS_FAULT_INJECTION
222         if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
223                 return -EINVAL;
224 #endif
225         *ui = t;
226         return count;
227 }
228 
229 static ssize_t f2fs_attr_show(struct kobject *kobj,
230                                 struct attribute *attr, char *buf)
231 {
232         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
233                                                                 s_kobj);
234         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
235 
236         return a->show ? a->show(a, sbi, buf) : 0;
237 }
238 
239 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
240                                                 const char *buf, size_t len)
241 {
242         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
243                                                                         s_kobj);
244         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
245 
246         return a->store ? a->store(a, sbi, buf, len) : 0;
247 }
248 
249 static void f2fs_sb_release(struct kobject *kobj)
250 {
251         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
252                                                                 s_kobj);
253         complete(&sbi->s_kobj_unregister);
254 }
255 
256 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
257 static struct f2fs_attr f2fs_attr_##_name = {                   \
258         .attr = {.name = __stringify(_name), .mode = _mode },   \
259         .show   = _show,                                        \
260         .store  = _store,                                       \
261         .struct_type = _struct_type,                            \
262         .offset = _offset                                       \
263 }
264 
265 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
266         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
267                 f2fs_sbi_show, f2fs_sbi_store,                  \
268                 offsetof(struct struct_name, elname))
269 
270 #define F2FS_GENERAL_RO_ATTR(name) \
271 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
272 
273 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
274 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
275 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
276 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
277 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
278 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
279 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
280 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
281 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
282 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
283 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
284 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
285 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
286 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
287 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
288 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
289 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
290 #ifdef CONFIG_F2FS_FAULT_INJECTION
291 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
292 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
293 #endif
294 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
295 
296 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
297 static struct attribute *f2fs_attrs[] = {
298         ATTR_LIST(gc_min_sleep_time),
299         ATTR_LIST(gc_max_sleep_time),
300         ATTR_LIST(gc_no_gc_sleep_time),
301         ATTR_LIST(gc_idle),
302         ATTR_LIST(reclaim_segments),
303         ATTR_LIST(max_small_discards),
304         ATTR_LIST(batched_trim_sections),
305         ATTR_LIST(ipu_policy),
306         ATTR_LIST(min_ipu_util),
307         ATTR_LIST(min_fsync_blocks),
308         ATTR_LIST(max_victim_search),
309         ATTR_LIST(dir_level),
310         ATTR_LIST(ram_thresh),
311         ATTR_LIST(ra_nid_pages),
312         ATTR_LIST(dirty_nats_ratio),
313         ATTR_LIST(cp_interval),
314         ATTR_LIST(idle_interval),
315         ATTR_LIST(lifetime_write_kbytes),
316         NULL,
317 };
318 
319 static const struct sysfs_ops f2fs_attr_ops = {
320         .show   = f2fs_attr_show,
321         .store  = f2fs_attr_store,
322 };
323 
324 static struct kobj_type f2fs_ktype = {
325         .default_attrs  = f2fs_attrs,
326         .sysfs_ops      = &f2fs_attr_ops,
327         .release        = f2fs_sb_release,
328 };
329 
330 #ifdef CONFIG_F2FS_FAULT_INJECTION
331 /* sysfs for f2fs fault injection */
332 static struct kobject f2fs_fault_inject;
333 
334 static struct attribute *f2fs_fault_attrs[] = {
335         ATTR_LIST(inject_rate),
336         ATTR_LIST(inject_type),
337         NULL
338 };
339 
340 static struct kobj_type f2fs_fault_ktype = {
341         .default_attrs  = f2fs_fault_attrs,
342         .sysfs_ops      = &f2fs_attr_ops,
343 };
344 #endif
345 
346 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
347 {
348         struct va_format vaf;
349         va_list args;
350 
351         va_start(args, fmt);
352         vaf.fmt = fmt;
353         vaf.va = &args;
354         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
355         va_end(args);
356 }
357 
358 static void init_once(void *foo)
359 {
360         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
361 
362         inode_init_once(&fi->vfs_inode);
363 }
364 
365 static int parse_options(struct super_block *sb, char *options)
366 {
367         struct f2fs_sb_info *sbi = F2FS_SB(sb);
368         struct request_queue *q;
369         substring_t args[MAX_OPT_ARGS];
370         char *p, *name;
371         int arg = 0;
372 
373 #ifdef CONFIG_F2FS_FAULT_INJECTION
374         f2fs_build_fault_attr(0);
375 #endif
376 
377         if (!options)
378                 return 0;
379 
380         while ((p = strsep(&options, ",")) != NULL) {
381                 int token;
382                 if (!*p)
383                         continue;
384                 /*
385                  * Initialize args struct so we know whether arg was
386                  * found; some options take optional arguments.
387                  */
388                 args[0].to = args[0].from = NULL;
389                 token = match_token(p, f2fs_tokens, args);
390 
391                 switch (token) {
392                 case Opt_gc_background:
393                         name = match_strdup(&args[0]);
394 
395                         if (!name)
396                                 return -ENOMEM;
397                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
398                                 set_opt(sbi, BG_GC);
399                                 clear_opt(sbi, FORCE_FG_GC);
400                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
401                                 clear_opt(sbi, BG_GC);
402                                 clear_opt(sbi, FORCE_FG_GC);
403                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
404                                 set_opt(sbi, BG_GC);
405                                 set_opt(sbi, FORCE_FG_GC);
406                         } else {
407                                 kfree(name);
408                                 return -EINVAL;
409                         }
410                         kfree(name);
411                         break;
412                 case Opt_disable_roll_forward:
413                         set_opt(sbi, DISABLE_ROLL_FORWARD);
414                         break;
415                 case Opt_norecovery:
416                         /* this option mounts f2fs with ro */
417                         set_opt(sbi, DISABLE_ROLL_FORWARD);
418                         if (!f2fs_readonly(sb))
419                                 return -EINVAL;
420                         break;
421                 case Opt_discard:
422                         q = bdev_get_queue(sb->s_bdev);
423                         if (blk_queue_discard(q)) {
424                                 set_opt(sbi, DISCARD);
425                         } else {
426                                 f2fs_msg(sb, KERN_WARNING,
427                                         "mounting with \"discard\" option, but "
428                                         "the device does not support discard");
429                         }
430                         break;
431                 case Opt_nodiscard:
432                         clear_opt(sbi, DISCARD);
433                 case Opt_noheap:
434                         set_opt(sbi, NOHEAP);
435                         break;
436 #ifdef CONFIG_F2FS_FS_XATTR
437                 case Opt_user_xattr:
438                         set_opt(sbi, XATTR_USER);
439                         break;
440                 case Opt_nouser_xattr:
441                         clear_opt(sbi, XATTR_USER);
442                         break;
443                 case Opt_inline_xattr:
444                         set_opt(sbi, INLINE_XATTR);
445                         break;
446 #else
447                 case Opt_user_xattr:
448                         f2fs_msg(sb, KERN_INFO,
449                                 "user_xattr options not supported");
450                         break;
451                 case Opt_nouser_xattr:
452                         f2fs_msg(sb, KERN_INFO,
453                                 "nouser_xattr options not supported");
454                         break;
455                 case Opt_inline_xattr:
456                         f2fs_msg(sb, KERN_INFO,
457                                 "inline_xattr options not supported");
458                         break;
459 #endif
460 #ifdef CONFIG_F2FS_FS_POSIX_ACL
461                 case Opt_acl:
462                         set_opt(sbi, POSIX_ACL);
463                         break;
464                 case Opt_noacl:
465                         clear_opt(sbi, POSIX_ACL);
466                         break;
467 #else
468                 case Opt_acl:
469                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
470                         break;
471                 case Opt_noacl:
472                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
473                         break;
474 #endif
475                 case Opt_active_logs:
476                         if (args->from && match_int(args, &arg))
477                                 return -EINVAL;
478                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
479                                 return -EINVAL;
480                         sbi->active_logs = arg;
481                         break;
482                 case Opt_disable_ext_identify:
483                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
484                         break;
485                 case Opt_inline_data:
486                         set_opt(sbi, INLINE_DATA);
487                         break;
488                 case Opt_inline_dentry:
489                         set_opt(sbi, INLINE_DENTRY);
490                         break;
491                 case Opt_flush_merge:
492                         set_opt(sbi, FLUSH_MERGE);
493                         break;
494                 case Opt_noflush_merge:
495                         clear_opt(sbi, FLUSH_MERGE);
496                         break;
497                 case Opt_nobarrier:
498                         set_opt(sbi, NOBARRIER);
499                         break;
500                 case Opt_fastboot:
501                         set_opt(sbi, FASTBOOT);
502                         break;
503                 case Opt_extent_cache:
504                         set_opt(sbi, EXTENT_CACHE);
505                         break;
506                 case Opt_noextent_cache:
507                         clear_opt(sbi, EXTENT_CACHE);
508                         break;
509                 case Opt_noinline_data:
510                         clear_opt(sbi, INLINE_DATA);
511                         break;
512                 case Opt_data_flush:
513                         set_opt(sbi, DATA_FLUSH);
514                         break;
515                 case Opt_mode:
516                         name = match_strdup(&args[0]);
517 
518                         if (!name)
519                                 return -ENOMEM;
520                         if (strlen(name) == 8 &&
521                                         !strncmp(name, "adaptive", 8)) {
522                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
523                         } else if (strlen(name) == 3 &&
524                                         !strncmp(name, "lfs", 3)) {
525                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
526                         } else {
527                                 kfree(name);
528                                 return -EINVAL;
529                         }
530                         kfree(name);
531                         break;
532                 case Opt_fault_injection:
533                         if (args->from && match_int(args, &arg))
534                                 return -EINVAL;
535 #ifdef CONFIG_F2FS_FAULT_INJECTION
536                         f2fs_build_fault_attr(arg);
537 #else
538                         f2fs_msg(sb, KERN_INFO,
539                                 "FAULT_INJECTION was not selected");
540 #endif
541                         break;
542                 case Opt_lazytime:
543                         sb->s_flags |= MS_LAZYTIME;
544                         break;
545                 case Opt_nolazytime:
546                         sb->s_flags &= ~MS_LAZYTIME;
547                         break;
548                 default:
549                         f2fs_msg(sb, KERN_ERR,
550                                 "Unrecognized mount option \"%s\" or missing value",
551                                 p);
552                         return -EINVAL;
553                 }
554         }
555         return 0;
556 }
557 
558 static struct inode *f2fs_alloc_inode(struct super_block *sb)
559 {
560         struct f2fs_inode_info *fi;
561 
562         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
563         if (!fi)
564                 return NULL;
565 
566         init_once((void *) fi);
567 
568         /* Initialize f2fs-specific inode info */
569         fi->vfs_inode.i_version = 1;
570         atomic_set(&fi->dirty_pages, 0);
571         fi->i_current_depth = 1;
572         fi->i_advise = 0;
573         init_rwsem(&fi->i_sem);
574         INIT_LIST_HEAD(&fi->dirty_list);
575         INIT_LIST_HEAD(&fi->gdirty_list);
576         INIT_LIST_HEAD(&fi->inmem_pages);
577         mutex_init(&fi->inmem_lock);
578         init_rwsem(&fi->dio_rwsem[READ]);
579         init_rwsem(&fi->dio_rwsem[WRITE]);
580 
581         /* Will be used by directory only */
582         fi->i_dir_level = F2FS_SB(sb)->dir_level;
583         return &fi->vfs_inode;
584 }
585 
586 static int f2fs_drop_inode(struct inode *inode)
587 {
588         /*
589          * This is to avoid a deadlock condition like below.
590          * writeback_single_inode(inode)
591          *  - f2fs_write_data_page
592          *    - f2fs_gc -> iput -> evict
593          *       - inode_wait_for_writeback(inode)
594          */
595         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
596                 if (!inode->i_nlink && !is_bad_inode(inode)) {
597                         /* to avoid evict_inode call simultaneously */
598                         atomic_inc(&inode->i_count);
599                         spin_unlock(&inode->i_lock);
600 
601                         /* some remained atomic pages should discarded */
602                         if (f2fs_is_atomic_file(inode))
603                                 drop_inmem_pages(inode);
604 
605                         /* should remain fi->extent_tree for writepage */
606                         f2fs_destroy_extent_node(inode);
607 
608                         sb_start_intwrite(inode->i_sb);
609                         f2fs_i_size_write(inode, 0);
610 
611                         if (F2FS_HAS_BLOCKS(inode))
612                                 f2fs_truncate(inode);
613 
614                         sb_end_intwrite(inode->i_sb);
615 
616                         fscrypt_put_encryption_info(inode, NULL);
617                         spin_lock(&inode->i_lock);
618                         atomic_dec(&inode->i_count);
619                 }
620                 return 0;
621         }
622 
623         return generic_drop_inode(inode);
624 }
625 
626 int f2fs_inode_dirtied(struct inode *inode)
627 {
628         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
629 
630         spin_lock(&sbi->inode_lock[DIRTY_META]);
631         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
632                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
633                 return 1;
634         }
635 
636         set_inode_flag(inode, FI_DIRTY_INODE);
637         list_add_tail(&F2FS_I(inode)->gdirty_list,
638                                 &sbi->inode_list[DIRTY_META]);
639         inc_page_count(sbi, F2FS_DIRTY_IMETA);
640         stat_inc_dirty_inode(sbi, DIRTY_META);
641         spin_unlock(&sbi->inode_lock[DIRTY_META]);
642 
643         return 0;
644 }
645 
646 void f2fs_inode_synced(struct inode *inode)
647 {
648         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
649 
650         spin_lock(&sbi->inode_lock[DIRTY_META]);
651         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
652                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
653                 return;
654         }
655         list_del_init(&F2FS_I(inode)->gdirty_list);
656         clear_inode_flag(inode, FI_DIRTY_INODE);
657         clear_inode_flag(inode, FI_AUTO_RECOVER);
658         dec_page_count(sbi, F2FS_DIRTY_IMETA);
659         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
660         spin_unlock(&sbi->inode_lock[DIRTY_META]);
661 }
662 
663 /*
664  * f2fs_dirty_inode() is called from __mark_inode_dirty()
665  *
666  * We should call set_dirty_inode to write the dirty inode through write_inode.
667  */
668 static void f2fs_dirty_inode(struct inode *inode, int flags)
669 {
670         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
671 
672         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
673                         inode->i_ino == F2FS_META_INO(sbi))
674                 return;
675 
676         if (flags == I_DIRTY_TIME)
677                 return;
678 
679         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
680                 clear_inode_flag(inode, FI_AUTO_RECOVER);
681 
682         f2fs_inode_dirtied(inode);
683 }
684 
685 static void f2fs_i_callback(struct rcu_head *head)
686 {
687         struct inode *inode = container_of(head, struct inode, i_rcu);
688         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
689 }
690 
691 static void f2fs_destroy_inode(struct inode *inode)
692 {
693         call_rcu(&inode->i_rcu, f2fs_i_callback);
694 }
695 
696 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
697 {
698         int i;
699 
700         for (i = 0; i < NR_COUNT_TYPE; i++)
701                 percpu_counter_destroy(&sbi->nr_pages[i]);
702         percpu_counter_destroy(&sbi->alloc_valid_block_count);
703         percpu_counter_destroy(&sbi->total_valid_inode_count);
704 }
705 
706 static void f2fs_put_super(struct super_block *sb)
707 {
708         struct f2fs_sb_info *sbi = F2FS_SB(sb);
709 
710         if (sbi->s_proc) {
711                 remove_proc_entry("segment_info", sbi->s_proc);
712                 remove_proc_entry("segment_bits", sbi->s_proc);
713                 remove_proc_entry(sb->s_id, f2fs_proc_root);
714         }
715         kobject_del(&sbi->s_kobj);
716 
717         stop_gc_thread(sbi);
718 
719         /* prevent remaining shrinker jobs */
720         mutex_lock(&sbi->umount_mutex);
721 
722         /*
723          * We don't need to do checkpoint when superblock is clean.
724          * But, the previous checkpoint was not done by umount, it needs to do
725          * clean checkpoint again.
726          */
727         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
728                         !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
729                 struct cp_control cpc = {
730                         .reason = CP_UMOUNT,
731                 };
732                 write_checkpoint(sbi, &cpc);
733         }
734 
735         /* write_checkpoint can update stat informaion */
736         f2fs_destroy_stats(sbi);
737 
738         /*
739          * normally superblock is clean, so we need to release this.
740          * In addition, EIO will skip do checkpoint, we need this as well.
741          */
742         release_ino_entry(sbi, true);
743         release_discard_addrs(sbi);
744 
745         f2fs_leave_shrinker(sbi);
746         mutex_unlock(&sbi->umount_mutex);
747 
748         /* our cp_error case, we can wait for any writeback page */
749         f2fs_flush_merged_bios(sbi);
750 
751         iput(sbi->node_inode);
752         iput(sbi->meta_inode);
753 
754         /* destroy f2fs internal modules */
755         destroy_node_manager(sbi);
756         destroy_segment_manager(sbi);
757 
758         kfree(sbi->ckpt);
759         kobject_put(&sbi->s_kobj);
760         wait_for_completion(&sbi->s_kobj_unregister);
761 
762         sb->s_fs_info = NULL;
763         if (sbi->s_chksum_driver)
764                 crypto_free_shash(sbi->s_chksum_driver);
765         kfree(sbi->raw_super);
766 
767         destroy_percpu_info(sbi);
768         kfree(sbi);
769 }
770 
771 int f2fs_sync_fs(struct super_block *sb, int sync)
772 {
773         struct f2fs_sb_info *sbi = F2FS_SB(sb);
774         int err = 0;
775 
776         trace_f2fs_sync_fs(sb, sync);
777 
778         if (sync) {
779                 struct cp_control cpc;
780 
781                 cpc.reason = __get_cp_reason(sbi);
782 
783                 mutex_lock(&sbi->gc_mutex);
784                 err = write_checkpoint(sbi, &cpc);
785                 mutex_unlock(&sbi->gc_mutex);
786         }
787         f2fs_trace_ios(NULL, 1);
788 
789         return err;
790 }
791 
792 static int f2fs_freeze(struct super_block *sb)
793 {
794         int err;
795 
796         if (f2fs_readonly(sb))
797                 return 0;
798 
799         err = f2fs_sync_fs(sb, 1);
800         return err;
801 }
802 
803 static int f2fs_unfreeze(struct super_block *sb)
804 {
805         return 0;
806 }
807 
808 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
809 {
810         struct super_block *sb = dentry->d_sb;
811         struct f2fs_sb_info *sbi = F2FS_SB(sb);
812         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
813         block_t total_count, user_block_count, start_count, ovp_count;
814 
815         total_count = le64_to_cpu(sbi->raw_super->block_count);
816         user_block_count = sbi->user_block_count;
817         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
818         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
819         buf->f_type = F2FS_SUPER_MAGIC;
820         buf->f_bsize = sbi->blocksize;
821 
822         buf->f_blocks = total_count - start_count;
823         buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
824         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
825 
826         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
827         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
828 
829         buf->f_namelen = F2FS_NAME_LEN;
830         buf->f_fsid.val[0] = (u32)id;
831         buf->f_fsid.val[1] = (u32)(id >> 32);
832 
833         return 0;
834 }
835 
836 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
837 {
838         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
839 
840         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
841                 if (test_opt(sbi, FORCE_FG_GC))
842                         seq_printf(seq, ",background_gc=%s", "sync");
843                 else
844                         seq_printf(seq, ",background_gc=%s", "on");
845         } else {
846                 seq_printf(seq, ",background_gc=%s", "off");
847         }
848         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
849                 seq_puts(seq, ",disable_roll_forward");
850         if (test_opt(sbi, DISCARD))
851                 seq_puts(seq, ",discard");
852         if (test_opt(sbi, NOHEAP))
853                 seq_puts(seq, ",no_heap_alloc");
854 #ifdef CONFIG_F2FS_FS_XATTR
855         if (test_opt(sbi, XATTR_USER))
856                 seq_puts(seq, ",user_xattr");
857         else
858                 seq_puts(seq, ",nouser_xattr");
859         if (test_opt(sbi, INLINE_XATTR))
860                 seq_puts(seq, ",inline_xattr");
861 #endif
862 #ifdef CONFIG_F2FS_FS_POSIX_ACL
863         if (test_opt(sbi, POSIX_ACL))
864                 seq_puts(seq, ",acl");
865         else
866                 seq_puts(seq, ",noacl");
867 #endif
868         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
869                 seq_puts(seq, ",disable_ext_identify");
870         if (test_opt(sbi, INLINE_DATA))
871                 seq_puts(seq, ",inline_data");
872         else
873                 seq_puts(seq, ",noinline_data");
874         if (test_opt(sbi, INLINE_DENTRY))
875                 seq_puts(seq, ",inline_dentry");
876         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
877                 seq_puts(seq, ",flush_merge");
878         if (test_opt(sbi, NOBARRIER))
879                 seq_puts(seq, ",nobarrier");
880         if (test_opt(sbi, FASTBOOT))
881                 seq_puts(seq, ",fastboot");
882         if (test_opt(sbi, EXTENT_CACHE))
883                 seq_puts(seq, ",extent_cache");
884         else
885                 seq_puts(seq, ",noextent_cache");
886         if (test_opt(sbi, DATA_FLUSH))
887                 seq_puts(seq, ",data_flush");
888 
889         seq_puts(seq, ",mode=");
890         if (test_opt(sbi, ADAPTIVE))
891                 seq_puts(seq, "adaptive");
892         else if (test_opt(sbi, LFS))
893                 seq_puts(seq, "lfs");
894         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
895 
896         return 0;
897 }
898 
899 static int segment_info_seq_show(struct seq_file *seq, void *offset)
900 {
901         struct super_block *sb = seq->private;
902         struct f2fs_sb_info *sbi = F2FS_SB(sb);
903         unsigned int total_segs =
904                         le32_to_cpu(sbi->raw_super->segment_count_main);
905         int i;
906 
907         seq_puts(seq, "format: segment_type|valid_blocks\n"
908                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
909 
910         for (i = 0; i < total_segs; i++) {
911                 struct seg_entry *se = get_seg_entry(sbi, i);
912 
913                 if ((i % 10) == 0)
914                         seq_printf(seq, "%-10d", i);
915                 seq_printf(seq, "%d|%-3u", se->type,
916                                         get_valid_blocks(sbi, i, 1));
917                 if ((i % 10) == 9 || i == (total_segs - 1))
918                         seq_putc(seq, '\n');
919                 else
920                         seq_putc(seq, ' ');
921         }
922 
923         return 0;
924 }
925 
926 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
927 {
928         struct super_block *sb = seq->private;
929         struct f2fs_sb_info *sbi = F2FS_SB(sb);
930         unsigned int total_segs =
931                         le32_to_cpu(sbi->raw_super->segment_count_main);
932         int i, j;
933 
934         seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
935                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
936 
937         for (i = 0; i < total_segs; i++) {
938                 struct seg_entry *se = get_seg_entry(sbi, i);
939 
940                 seq_printf(seq, "%-10d", i);
941                 seq_printf(seq, "%d|%-3u|", se->type,
942                                         get_valid_blocks(sbi, i, 1));
943                 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
944                         seq_printf(seq, "%x ", se->cur_valid_map[j]);
945                 seq_putc(seq, '\n');
946         }
947         return 0;
948 }
949 
950 #define F2FS_PROC_FILE_DEF(_name)                                       \
951 static int _name##_open_fs(struct inode *inode, struct file *file)      \
952 {                                                                       \
953         return single_open(file, _name##_seq_show, PDE_DATA(inode));    \
954 }                                                                       \
955                                                                         \
956 static const struct file_operations f2fs_seq_##_name##_fops = {         \
957         .open = _name##_open_fs,                                        \
958         .read = seq_read,                                               \
959         .llseek = seq_lseek,                                            \
960         .release = single_release,                                      \
961 };
962 
963 F2FS_PROC_FILE_DEF(segment_info);
964 F2FS_PROC_FILE_DEF(segment_bits);
965 
966 static void default_options(struct f2fs_sb_info *sbi)
967 {
968         /* init some FS parameters */
969         sbi->active_logs = NR_CURSEG_TYPE;
970 
971         set_opt(sbi, BG_GC);
972         set_opt(sbi, INLINE_DATA);
973         set_opt(sbi, EXTENT_CACHE);
974         sbi->sb->s_flags |= MS_LAZYTIME;
975         set_opt(sbi, FLUSH_MERGE);
976         if (f2fs_sb_mounted_hmsmr(sbi->sb)) {
977                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
978                 set_opt(sbi, DISCARD);
979         } else {
980                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
981         }
982 
983 #ifdef CONFIG_F2FS_FS_XATTR
984         set_opt(sbi, XATTR_USER);
985 #endif
986 #ifdef CONFIG_F2FS_FS_POSIX_ACL
987         set_opt(sbi, POSIX_ACL);
988 #endif
989 }
990 
991 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
992 {
993         struct f2fs_sb_info *sbi = F2FS_SB(sb);
994         struct f2fs_mount_info org_mount_opt;
995         int err, active_logs;
996         bool need_restart_gc = false;
997         bool need_stop_gc = false;
998         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
999 
1000         /*
1001          * Save the old mount options in case we
1002          * need to restore them.
1003          */
1004         org_mount_opt = sbi->mount_opt;
1005         active_logs = sbi->active_logs;
1006 
1007         /* recover superblocks we couldn't write due to previous RO mount */
1008         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1009                 err = f2fs_commit_super(sbi, false);
1010                 f2fs_msg(sb, KERN_INFO,
1011                         "Try to recover all the superblocks, ret: %d", err);
1012                 if (!err)
1013                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1014         }
1015 
1016         sbi->mount_opt.opt = 0;
1017         default_options(sbi);
1018 
1019         /* parse mount options */
1020         err = parse_options(sb, data);
1021         if (err)
1022                 goto restore_opts;
1023 
1024         /*
1025          * Previous and new state of filesystem is RO,
1026          * so skip checking GC and FLUSH_MERGE conditions.
1027          */
1028         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1029                 goto skip;
1030 
1031         /* disallow enable/disable extent_cache dynamically */
1032         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1033                 err = -EINVAL;
1034                 f2fs_msg(sbi->sb, KERN_WARNING,
1035                                 "switch extent_cache option is not allowed");
1036                 goto restore_opts;
1037         }
1038 
1039         /*
1040          * We stop the GC thread if FS is mounted as RO
1041          * or if background_gc = off is passed in mount
1042          * option. Also sync the filesystem.
1043          */
1044         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1045                 if (sbi->gc_thread) {
1046                         stop_gc_thread(sbi);
1047                         need_restart_gc = true;
1048                 }
1049         } else if (!sbi->gc_thread) {
1050                 err = start_gc_thread(sbi);
1051                 if (err)
1052                         goto restore_opts;
1053                 need_stop_gc = true;
1054         }
1055 
1056         if (*flags & MS_RDONLY) {
1057                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1058                 sync_inodes_sb(sb);
1059 
1060                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1061                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1062                 f2fs_sync_fs(sb, 1);
1063                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1064         }
1065 
1066         /*
1067          * We stop issue flush thread if FS is mounted as RO
1068          * or if flush_merge is not passed in mount option.
1069          */
1070         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1071                 destroy_flush_cmd_control(sbi);
1072         } else if (!SM_I(sbi)->cmd_control_info) {
1073                 err = create_flush_cmd_control(sbi);
1074                 if (err)
1075                         goto restore_gc;
1076         }
1077 skip:
1078         /* Update the POSIXACL Flag */
1079         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1080                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1081 
1082         return 0;
1083 restore_gc:
1084         if (need_restart_gc) {
1085                 if (start_gc_thread(sbi))
1086                         f2fs_msg(sbi->sb, KERN_WARNING,
1087                                 "background gc thread has stopped");
1088         } else if (need_stop_gc) {
1089                 stop_gc_thread(sbi);
1090         }
1091 restore_opts:
1092         sbi->mount_opt = org_mount_opt;
1093         sbi->active_logs = active_logs;
1094         return err;
1095 }
1096 
1097 static struct super_operations f2fs_sops = {
1098         .alloc_inode    = f2fs_alloc_inode,
1099         .drop_inode     = f2fs_drop_inode,
1100         .destroy_inode  = f2fs_destroy_inode,
1101         .write_inode    = f2fs_write_inode,
1102         .dirty_inode    = f2fs_dirty_inode,
1103         .show_options   = f2fs_show_options,
1104         .evict_inode    = f2fs_evict_inode,
1105         .put_super      = f2fs_put_super,
1106         .sync_fs        = f2fs_sync_fs,
1107         .freeze_fs      = f2fs_freeze,
1108         .unfreeze_fs    = f2fs_unfreeze,
1109         .statfs         = f2fs_statfs,
1110         .remount_fs     = f2fs_remount,
1111 };
1112 
1113 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1114 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1115 {
1116         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1117                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1118                                 ctx, len, NULL);
1119 }
1120 
1121 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1122 {
1123         *key = F2FS_I_SB(inode)->key_prefix;
1124         return F2FS_I_SB(inode)->key_prefix_size;
1125 }
1126 
1127 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1128                                                         void *fs_data)
1129 {
1130         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1131                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1132                                 ctx, len, fs_data, XATTR_CREATE);
1133 }
1134 
1135 static unsigned f2fs_max_namelen(struct inode *inode)
1136 {
1137         return S_ISLNK(inode->i_mode) ?
1138                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1139 }
1140 
1141 static struct fscrypt_operations f2fs_cryptops = {
1142         .get_context    = f2fs_get_context,
1143         .key_prefix     = f2fs_key_prefix,
1144         .set_context    = f2fs_set_context,
1145         .is_encrypted   = f2fs_encrypted_inode,
1146         .empty_dir      = f2fs_empty_dir,
1147         .max_namelen    = f2fs_max_namelen,
1148 };
1149 #else
1150 static struct fscrypt_operations f2fs_cryptops = {
1151         .is_encrypted   = f2fs_encrypted_inode,
1152 };
1153 #endif
1154 
1155 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1156                 u64 ino, u32 generation)
1157 {
1158         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1159         struct inode *inode;
1160 
1161         if (check_nid_range(sbi, ino))
1162                 return ERR_PTR(-ESTALE);
1163 
1164         /*
1165          * f2fs_iget isn't quite right if the inode is currently unallocated!
1166          * However f2fs_iget currently does appropriate checks to handle stale
1167          * inodes so everything is OK.
1168          */
1169         inode = f2fs_iget(sb, ino);
1170         if (IS_ERR(inode))
1171                 return ERR_CAST(inode);
1172         if (unlikely(generation && inode->i_generation != generation)) {
1173                 /* we didn't find the right inode.. */
1174                 iput(inode);
1175                 return ERR_PTR(-ESTALE);
1176         }
1177         return inode;
1178 }
1179 
1180 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1181                 int fh_len, int fh_type)
1182 {
1183         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1184                                     f2fs_nfs_get_inode);
1185 }
1186 
1187 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1188                 int fh_len, int fh_type)
1189 {
1190         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1191                                     f2fs_nfs_get_inode);
1192 }
1193 
1194 static const struct export_operations f2fs_export_ops = {
1195         .fh_to_dentry = f2fs_fh_to_dentry,
1196         .fh_to_parent = f2fs_fh_to_parent,
1197         .get_parent = f2fs_get_parent,
1198 };
1199 
1200 static loff_t max_file_blocks(void)
1201 {
1202         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1203         loff_t leaf_count = ADDRS_PER_BLOCK;
1204 
1205         /* two direct node blocks */
1206         result += (leaf_count * 2);
1207 
1208         /* two indirect node blocks */
1209         leaf_count *= NIDS_PER_BLOCK;
1210         result += (leaf_count * 2);
1211 
1212         /* one double indirect node block */
1213         leaf_count *= NIDS_PER_BLOCK;
1214         result += leaf_count;
1215 
1216         return result;
1217 }
1218 
1219 static int __f2fs_commit_super(struct buffer_head *bh,
1220                         struct f2fs_super_block *super)
1221 {
1222         lock_buffer(bh);
1223         if (super)
1224                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1225         set_buffer_uptodate(bh);
1226         set_buffer_dirty(bh);
1227         unlock_buffer(bh);
1228 
1229         /* it's rare case, we can do fua all the time */
1230         return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1231 }
1232 
1233 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1234                                         struct buffer_head *bh)
1235 {
1236         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1237                                         (bh->b_data + F2FS_SUPER_OFFSET);
1238         struct super_block *sb = sbi->sb;
1239         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1240         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1241         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1242         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1243         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1244         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1245         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1246         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1247         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1248         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1249         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1250         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1251         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1252         u64 main_end_blkaddr = main_blkaddr +
1253                                 (segment_count_main << log_blocks_per_seg);
1254         u64 seg_end_blkaddr = segment0_blkaddr +
1255                                 (segment_count << log_blocks_per_seg);
1256 
1257         if (segment0_blkaddr != cp_blkaddr) {
1258                 f2fs_msg(sb, KERN_INFO,
1259                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1260                         segment0_blkaddr, cp_blkaddr);
1261                 return true;
1262         }
1263 
1264         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1265                                                         sit_blkaddr) {
1266                 f2fs_msg(sb, KERN_INFO,
1267                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1268                         cp_blkaddr, sit_blkaddr,
1269                         segment_count_ckpt << log_blocks_per_seg);
1270                 return true;
1271         }
1272 
1273         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1274                                                         nat_blkaddr) {
1275                 f2fs_msg(sb, KERN_INFO,
1276                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1277                         sit_blkaddr, nat_blkaddr,
1278                         segment_count_sit << log_blocks_per_seg);
1279                 return true;
1280         }
1281 
1282         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1283                                                         ssa_blkaddr) {
1284                 f2fs_msg(sb, KERN_INFO,
1285                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1286                         nat_blkaddr, ssa_blkaddr,
1287                         segment_count_nat << log_blocks_per_seg);
1288                 return true;
1289         }
1290 
1291         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1292                                                         main_blkaddr) {
1293                 f2fs_msg(sb, KERN_INFO,
1294                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1295                         ssa_blkaddr, main_blkaddr,
1296                         segment_count_ssa << log_blocks_per_seg);
1297                 return true;
1298         }
1299 
1300         if (main_end_blkaddr > seg_end_blkaddr) {
1301                 f2fs_msg(sb, KERN_INFO,
1302                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1303                         main_blkaddr,
1304                         segment0_blkaddr +
1305                                 (segment_count << log_blocks_per_seg),
1306                         segment_count_main << log_blocks_per_seg);
1307                 return true;
1308         } else if (main_end_blkaddr < seg_end_blkaddr) {
1309                 int err = 0;
1310                 char *res;
1311 
1312                 /* fix in-memory information all the time */
1313                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1314                                 segment0_blkaddr) >> log_blocks_per_seg);
1315 
1316                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1317                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1318                         res = "internally";
1319                 } else {
1320                         err = __f2fs_commit_super(bh, NULL);
1321                         res = err ? "failed" : "done";
1322                 }
1323                 f2fs_msg(sb, KERN_INFO,
1324                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1325                         res, main_blkaddr,
1326                         segment0_blkaddr +
1327                                 (segment_count << log_blocks_per_seg),
1328                         segment_count_main << log_blocks_per_seg);
1329                 if (err)
1330                         return true;
1331         }
1332         return false;
1333 }
1334 
1335 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1336                                 struct buffer_head *bh)
1337 {
1338         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1339                                         (bh->b_data + F2FS_SUPER_OFFSET);
1340         struct super_block *sb = sbi->sb;
1341         unsigned int blocksize;
1342 
1343         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1344                 f2fs_msg(sb, KERN_INFO,
1345                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1346                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1347                 return 1;
1348         }
1349 
1350         /* Currently, support only 4KB page cache size */
1351         if (F2FS_BLKSIZE != PAGE_SIZE) {
1352                 f2fs_msg(sb, KERN_INFO,
1353                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1354                         PAGE_SIZE);
1355                 return 1;
1356         }
1357 
1358         /* Currently, support only 4KB block size */
1359         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1360         if (blocksize != F2FS_BLKSIZE) {
1361                 f2fs_msg(sb, KERN_INFO,
1362                         "Invalid blocksize (%u), supports only 4KB\n",
1363                         blocksize);
1364                 return 1;
1365         }
1366 
1367         /* check log blocks per segment */
1368         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1369                 f2fs_msg(sb, KERN_INFO,
1370                         "Invalid log blocks per segment (%u)\n",
1371                         le32_to_cpu(raw_super->log_blocks_per_seg));
1372                 return 1;
1373         }
1374 
1375         /* Currently, support 512/1024/2048/4096 bytes sector size */
1376         if (le32_to_cpu(raw_super->log_sectorsize) >
1377                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1378                 le32_to_cpu(raw_super->log_sectorsize) <
1379                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1380                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1381                         le32_to_cpu(raw_super->log_sectorsize));
1382                 return 1;
1383         }
1384         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1385                 le32_to_cpu(raw_super->log_sectorsize) !=
1386                         F2FS_MAX_LOG_SECTOR_SIZE) {
1387                 f2fs_msg(sb, KERN_INFO,
1388                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1389                         le32_to_cpu(raw_super->log_sectors_per_block),
1390                         le32_to_cpu(raw_super->log_sectorsize));
1391                 return 1;
1392         }
1393 
1394         /* check reserved ino info */
1395         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1396                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1397                 le32_to_cpu(raw_super->root_ino) != 3) {
1398                 f2fs_msg(sb, KERN_INFO,
1399                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1400                         le32_to_cpu(raw_super->node_ino),
1401                         le32_to_cpu(raw_super->meta_ino),
1402                         le32_to_cpu(raw_super->root_ino));
1403                 return 1;
1404         }
1405 
1406         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1407         if (sanity_check_area_boundary(sbi, bh))
1408                 return 1;
1409 
1410         return 0;
1411 }
1412 
1413 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1414 {
1415         unsigned int total, fsmeta;
1416         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1417         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1418 
1419         total = le32_to_cpu(raw_super->segment_count);
1420         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1421         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1422         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1423         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1424         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1425 
1426         if (unlikely(fsmeta >= total))
1427                 return 1;
1428 
1429         if (unlikely(f2fs_cp_error(sbi))) {
1430                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1431                 return 1;
1432         }
1433         return 0;
1434 }
1435 
1436 static void init_sb_info(struct f2fs_sb_info *sbi)
1437 {
1438         struct f2fs_super_block *raw_super = sbi->raw_super;
1439 
1440         sbi->log_sectors_per_block =
1441                 le32_to_cpu(raw_super->log_sectors_per_block);
1442         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1443         sbi->blocksize = 1 << sbi->log_blocksize;
1444         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1445         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1446         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1447         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1448         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1449         sbi->total_node_count =
1450                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1451                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1452         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1453         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1454         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1455         sbi->cur_victim_sec = NULL_SECNO;
1456         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1457 
1458         sbi->dir_level = DEF_DIR_LEVEL;
1459         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1460         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1461         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1462 
1463         INIT_LIST_HEAD(&sbi->s_list);
1464         mutex_init(&sbi->umount_mutex);
1465         mutex_init(&sbi->wio_mutex[NODE]);
1466         mutex_init(&sbi->wio_mutex[DATA]);
1467 
1468 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1469         memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1470                                 F2FS_KEY_DESC_PREFIX_SIZE);
1471         sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1472 #endif
1473 }
1474 
1475 static int init_percpu_info(struct f2fs_sb_info *sbi)
1476 {
1477         int i, err;
1478 
1479         for (i = 0; i < NR_COUNT_TYPE; i++) {
1480                 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1481                 if (err)
1482                         return err;
1483         }
1484 
1485         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1486         if (err)
1487                 return err;
1488 
1489         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1490                                                                 GFP_KERNEL);
1491 }
1492 
1493 /*
1494  * Read f2fs raw super block.
1495  * Because we have two copies of super block, so read both of them
1496  * to get the first valid one. If any one of them is broken, we pass
1497  * them recovery flag back to the caller.
1498  */
1499 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1500                         struct f2fs_super_block **raw_super,
1501                         int *valid_super_block, int *recovery)
1502 {
1503         struct super_block *sb = sbi->sb;
1504         int block;
1505         struct buffer_head *bh;
1506         struct f2fs_super_block *super;
1507         int err = 0;
1508 
1509         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1510         if (!super)
1511                 return -ENOMEM;
1512 
1513         for (block = 0; block < 2; block++) {
1514                 bh = sb_bread(sb, block);
1515                 if (!bh) {
1516                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1517                                 block + 1);
1518                         err = -EIO;
1519                         continue;
1520                 }
1521 
1522                 /* sanity checking of raw super */
1523                 if (sanity_check_raw_super(sbi, bh)) {
1524                         f2fs_msg(sb, KERN_ERR,
1525                                 "Can't find valid F2FS filesystem in %dth superblock",
1526                                 block + 1);
1527                         err = -EINVAL;
1528                         brelse(bh);
1529                         continue;
1530                 }
1531 
1532                 if (!*raw_super) {
1533                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1534                                                         sizeof(*super));
1535                         *valid_super_block = block;
1536                         *raw_super = super;
1537                 }
1538                 brelse(bh);
1539         }
1540 
1541         /* Fail to read any one of the superblocks*/
1542         if (err < 0)
1543                 *recovery = 1;
1544 
1545         /* No valid superblock */
1546         if (!*raw_super)
1547                 kfree(super);
1548         else
1549                 err = 0;
1550 
1551         return err;
1552 }
1553 
1554 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1555 {
1556         struct buffer_head *bh;
1557         int err;
1558 
1559         if ((recover && f2fs_readonly(sbi->sb)) ||
1560                                 bdev_read_only(sbi->sb->s_bdev)) {
1561                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1562                 return -EROFS;
1563         }
1564 
1565         /* write back-up superblock first */
1566         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1567         if (!bh)
1568                 return -EIO;
1569         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1570         brelse(bh);
1571 
1572         /* if we are in recovery path, skip writing valid superblock */
1573         if (recover || err)
1574                 return err;
1575 
1576         /* write current valid superblock */
1577         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1578         if (!bh)
1579                 return -EIO;
1580         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1581         brelse(bh);
1582         return err;
1583 }
1584 
1585 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1586 {
1587         struct f2fs_sb_info *sbi;
1588         struct f2fs_super_block *raw_super;
1589         struct inode *root;
1590         int err;
1591         bool retry = true, need_fsck = false;
1592         char *options = NULL;
1593         int recovery, i, valid_super_block;
1594         struct curseg_info *seg_i;
1595 
1596 try_onemore:
1597         err = -EINVAL;
1598         raw_super = NULL;
1599         valid_super_block = -1;
1600         recovery = 0;
1601 
1602         /* allocate memory for f2fs-specific super block info */
1603         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1604         if (!sbi)
1605                 return -ENOMEM;
1606 
1607         sbi->sb = sb;
1608 
1609         /* Load the checksum driver */
1610         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1611         if (IS_ERR(sbi->s_chksum_driver)) {
1612                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1613                 err = PTR_ERR(sbi->s_chksum_driver);
1614                 sbi->s_chksum_driver = NULL;
1615                 goto free_sbi;
1616         }
1617 
1618         /* set a block size */
1619         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1620                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1621                 goto free_sbi;
1622         }
1623 
1624         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1625                                                                 &recovery);
1626         if (err)
1627                 goto free_sbi;
1628 
1629         sb->s_fs_info = sbi;
1630         sbi->raw_super = raw_super;
1631 
1632         default_options(sbi);
1633         /* parse mount options */
1634         options = kstrdup((const char *)data, GFP_KERNEL);
1635         if (data && !options) {
1636                 err = -ENOMEM;
1637                 goto free_sb_buf;
1638         }
1639 
1640         err = parse_options(sb, options);
1641         if (err)
1642                 goto free_options;
1643 
1644         sbi->max_file_blocks = max_file_blocks();
1645         sb->s_maxbytes = sbi->max_file_blocks <<
1646                                 le32_to_cpu(raw_super->log_blocksize);
1647         sb->s_max_links = F2FS_LINK_MAX;
1648         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1649 
1650         sb->s_op = &f2fs_sops;
1651         sb->s_cop = &f2fs_cryptops;
1652         sb->s_xattr = f2fs_xattr_handlers;
1653         sb->s_export_op = &f2fs_export_ops;
1654         sb->s_magic = F2FS_SUPER_MAGIC;
1655         sb->s_time_gran = 1;
1656         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1657                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1658         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1659 
1660         /* init f2fs-specific super block info */
1661         sbi->valid_super_block = valid_super_block;
1662         mutex_init(&sbi->gc_mutex);
1663         mutex_init(&sbi->cp_mutex);
1664         init_rwsem(&sbi->node_write);
1665 
1666         /* disallow all the data/node/meta page writes */
1667         set_sbi_flag(sbi, SBI_POR_DOING);
1668         spin_lock_init(&sbi->stat_lock);
1669 
1670         init_rwsem(&sbi->read_io.io_rwsem);
1671         sbi->read_io.sbi = sbi;
1672         sbi->read_io.bio = NULL;
1673         for (i = 0; i < NR_PAGE_TYPE; i++) {
1674                 init_rwsem(&sbi->write_io[i].io_rwsem);
1675                 sbi->write_io[i].sbi = sbi;
1676                 sbi->write_io[i].bio = NULL;
1677         }
1678 
1679         init_rwsem(&sbi->cp_rwsem);
1680         init_waitqueue_head(&sbi->cp_wait);
1681         init_sb_info(sbi);
1682 
1683         err = init_percpu_info(sbi);
1684         if (err)
1685                 goto free_options;
1686 
1687         /* get an inode for meta space */
1688         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1689         if (IS_ERR(sbi->meta_inode)) {
1690                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1691                 err = PTR_ERR(sbi->meta_inode);
1692                 goto free_options;
1693         }
1694 
1695         err = get_valid_checkpoint(sbi);
1696         if (err) {
1697                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1698                 goto free_meta_inode;
1699         }
1700 
1701         sbi->total_valid_node_count =
1702                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1703         percpu_counter_set(&sbi->total_valid_inode_count,
1704                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
1705         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1706         sbi->total_valid_block_count =
1707                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1708         sbi->last_valid_block_count = sbi->total_valid_block_count;
1709 
1710         for (i = 0; i < NR_INODE_TYPE; i++) {
1711                 INIT_LIST_HEAD(&sbi->inode_list[i]);
1712                 spin_lock_init(&sbi->inode_lock[i]);
1713         }
1714 
1715         init_extent_cache_info(sbi);
1716 
1717         init_ino_entry_info(sbi);
1718 
1719         /* setup f2fs internal modules */
1720         err = build_segment_manager(sbi);
1721         if (err) {
1722                 f2fs_msg(sb, KERN_ERR,
1723                         "Failed to initialize F2FS segment manager");
1724                 goto free_sm;
1725         }
1726         err = build_node_manager(sbi);
1727         if (err) {
1728                 f2fs_msg(sb, KERN_ERR,
1729                         "Failed to initialize F2FS node manager");
1730                 goto free_nm;
1731         }
1732 
1733         /* For write statistics */
1734         if (sb->s_bdev->bd_part)
1735                 sbi->sectors_written_start =
1736                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1737 
1738         /* Read accumulated write IO statistics if exists */
1739         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1740         if (__exist_node_summaries(sbi))
1741                 sbi->kbytes_written =
1742                         le64_to_cpu(seg_i->journal->info.kbytes_written);
1743 
1744         build_gc_manager(sbi);
1745 
1746         /* get an inode for node space */
1747         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1748         if (IS_ERR(sbi->node_inode)) {
1749                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1750                 err = PTR_ERR(sbi->node_inode);
1751                 goto free_nm;
1752         }
1753 
1754         f2fs_join_shrinker(sbi);
1755 
1756         /* if there are nt orphan nodes free them */
1757         err = recover_orphan_inodes(sbi);
1758         if (err)
1759                 goto free_node_inode;
1760 
1761         /* read root inode and dentry */
1762         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1763         if (IS_ERR(root)) {
1764                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1765                 err = PTR_ERR(root);
1766                 goto free_node_inode;
1767         }
1768         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1769                 iput(root);
1770                 err = -EINVAL;
1771                 goto free_node_inode;
1772         }
1773 
1774         sb->s_root = d_make_root(root); /* allocate root dentry */
1775         if (!sb->s_root) {
1776                 err = -ENOMEM;
1777                 goto free_root_inode;
1778         }
1779 
1780         err = f2fs_build_stats(sbi);
1781         if (err)
1782                 goto free_root_inode;
1783 
1784         if (f2fs_proc_root)
1785                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1786 
1787         if (sbi->s_proc) {
1788                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1789                                  &f2fs_seq_segment_info_fops, sb);
1790                 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1791                                  &f2fs_seq_segment_bits_fops, sb);
1792         }
1793 
1794         sbi->s_kobj.kset = f2fs_kset;
1795         init_completion(&sbi->s_kobj_unregister);
1796         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1797                                                         "%s", sb->s_id);
1798         if (err)
1799                 goto free_proc;
1800 
1801         /* recover fsynced data */
1802         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1803                 /*
1804                  * mount should be failed, when device has readonly mode, and
1805                  * previous checkpoint was not done by clean system shutdown.
1806                  */
1807                 if (bdev_read_only(sb->s_bdev) &&
1808                                 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1809                         err = -EROFS;
1810                         goto free_kobj;
1811                 }
1812 
1813                 if (need_fsck)
1814                         set_sbi_flag(sbi, SBI_NEED_FSCK);
1815 
1816                 err = recover_fsync_data(sbi, false);
1817                 if (err < 0) {
1818                         need_fsck = true;
1819                         f2fs_msg(sb, KERN_ERR,
1820                                 "Cannot recover all fsync data errno=%d", err);
1821                         goto free_kobj;
1822                 }
1823         } else {
1824                 err = recover_fsync_data(sbi, true);
1825 
1826                 if (!f2fs_readonly(sb) && err > 0) {
1827                         err = -EINVAL;
1828                         f2fs_msg(sb, KERN_ERR,
1829                                 "Need to recover fsync data");
1830                         goto free_kobj;
1831                 }
1832         }
1833 
1834         /* recover_fsync_data() cleared this already */
1835         clear_sbi_flag(sbi, SBI_POR_DOING);
1836 
1837         /*
1838          * If filesystem is not mounted as read-only then
1839          * do start the gc_thread.
1840          */
1841         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1842                 /* After POR, we can run background GC thread.*/
1843                 err = start_gc_thread(sbi);
1844                 if (err)
1845                         goto free_kobj;
1846         }
1847         kfree(options);
1848 
1849         /* recover broken superblock */
1850         if (recovery) {
1851                 err = f2fs_commit_super(sbi, true);
1852                 f2fs_msg(sb, KERN_INFO,
1853                         "Try to recover %dth superblock, ret: %d",
1854                         sbi->valid_super_block ? 1 : 2, err);
1855         }
1856 
1857         f2fs_update_time(sbi, CP_TIME);
1858         f2fs_update_time(sbi, REQ_TIME);
1859         return 0;
1860 
1861 free_kobj:
1862         f2fs_sync_inode_meta(sbi);
1863         kobject_del(&sbi->s_kobj);
1864         kobject_put(&sbi->s_kobj);
1865         wait_for_completion(&sbi->s_kobj_unregister);
1866 free_proc:
1867         if (sbi->s_proc) {
1868                 remove_proc_entry("segment_info", sbi->s_proc);
1869                 remove_proc_entry("segment_bits", sbi->s_proc);
1870                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1871         }
1872         f2fs_destroy_stats(sbi);
1873 free_root_inode:
1874         dput(sb->s_root);
1875         sb->s_root = NULL;
1876 free_node_inode:
1877         mutex_lock(&sbi->umount_mutex);
1878         f2fs_leave_shrinker(sbi);
1879         iput(sbi->node_inode);
1880         mutex_unlock(&sbi->umount_mutex);
1881 free_nm:
1882         destroy_node_manager(sbi);
1883 free_sm:
1884         destroy_segment_manager(sbi);
1885         kfree(sbi->ckpt);
1886 free_meta_inode:
1887         make_bad_inode(sbi->meta_inode);
1888         iput(sbi->meta_inode);
1889 free_options:
1890         destroy_percpu_info(sbi);
1891         kfree(options);
1892 free_sb_buf:
1893         kfree(raw_super);
1894 free_sbi:
1895         if (sbi->s_chksum_driver)
1896                 crypto_free_shash(sbi->s_chksum_driver);
1897         kfree(sbi);
1898 
1899         /* give only one another chance */
1900         if (retry) {
1901                 retry = false;
1902                 shrink_dcache_sb(sb);
1903                 goto try_onemore;
1904         }
1905         return err;
1906 }
1907 
1908 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1909                         const char *dev_name, void *data)
1910 {
1911         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1912 }
1913 
1914 static void kill_f2fs_super(struct super_block *sb)
1915 {
1916         if (sb->s_root)
1917                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1918         kill_block_super(sb);
1919 }
1920 
1921 static struct file_system_type f2fs_fs_type = {
1922         .owner          = THIS_MODULE,
1923         .name           = "f2fs",
1924         .mount          = f2fs_mount,
1925         .kill_sb        = kill_f2fs_super,
1926         .fs_flags       = FS_REQUIRES_DEV,
1927 };
1928 MODULE_ALIAS_FS("f2fs");
1929 
1930 static int __init init_inodecache(void)
1931 {
1932         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1933                         sizeof(struct f2fs_inode_info), 0,
1934                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1935         if (!f2fs_inode_cachep)
1936                 return -ENOMEM;
1937         return 0;
1938 }
1939 
1940 static void destroy_inodecache(void)
1941 {
1942         /*
1943          * Make sure all delayed rcu free inodes are flushed before we
1944          * destroy cache.
1945          */
1946         rcu_barrier();
1947         kmem_cache_destroy(f2fs_inode_cachep);
1948 }
1949 
1950 static int __init init_f2fs_fs(void)
1951 {
1952         int err;
1953 
1954         f2fs_build_trace_ios();
1955 
1956         err = init_inodecache();
1957         if (err)
1958                 goto fail;
1959         err = create_node_manager_caches();
1960         if (err)
1961                 goto free_inodecache;
1962         err = create_segment_manager_caches();
1963         if (err)
1964                 goto free_node_manager_caches;
1965         err = create_checkpoint_caches();
1966         if (err)
1967                 goto free_segment_manager_caches;
1968         err = create_extent_cache();
1969         if (err)
1970                 goto free_checkpoint_caches;
1971         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1972         if (!f2fs_kset) {
1973                 err = -ENOMEM;
1974                 goto free_extent_cache;
1975         }
1976 #ifdef CONFIG_F2FS_FAULT_INJECTION
1977         f2fs_fault_inject.kset = f2fs_kset;
1978         f2fs_build_fault_attr(0);
1979         err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1980                                 NULL, "fault_injection");
1981         if (err) {
1982                 f2fs_fault_inject.kset = NULL;
1983                 goto free_kset;
1984         }
1985 #endif
1986         err = register_shrinker(&f2fs_shrinker_info);
1987         if (err)
1988                 goto free_kset;
1989 
1990         err = register_filesystem(&f2fs_fs_type);
1991         if (err)
1992                 goto free_shrinker;
1993         err = f2fs_create_root_stats();
1994         if (err)
1995                 goto free_filesystem;
1996         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1997         return 0;
1998 
1999 free_filesystem:
2000         unregister_filesystem(&f2fs_fs_type);
2001 free_shrinker:
2002         unregister_shrinker(&f2fs_shrinker_info);
2003 free_kset:
2004 #ifdef CONFIG_F2FS_FAULT_INJECTION
2005         if (f2fs_fault_inject.kset)
2006                 kobject_put(&f2fs_fault_inject);
2007 #endif
2008         kset_unregister(f2fs_kset);
2009 free_extent_cache:
2010         destroy_extent_cache();
2011 free_checkpoint_caches:
2012         destroy_checkpoint_caches();
2013 free_segment_manager_caches:
2014         destroy_segment_manager_caches();
2015 free_node_manager_caches:
2016         destroy_node_manager_caches();
2017 free_inodecache:
2018         destroy_inodecache();
2019 fail:
2020         return err;
2021 }
2022 
2023 static void __exit exit_f2fs_fs(void)
2024 {
2025         remove_proc_entry("fs/f2fs", NULL);
2026         f2fs_destroy_root_stats();
2027         unregister_filesystem(&f2fs_fs_type);
2028         unregister_shrinker(&f2fs_shrinker_info);
2029 #ifdef CONFIG_F2FS_FAULT_INJECTION
2030         kobject_put(&f2fs_fault_inject);
2031 #endif
2032         kset_unregister(f2fs_kset);
2033         destroy_extent_cache();
2034         destroy_checkpoint_caches();
2035         destroy_segment_manager_caches();
2036         destroy_node_manager_caches();
2037         destroy_inodecache();
2038         f2fs_destroy_trace_ios();
2039 }
2040 
2041 module_init(init_f2fs_fs)
2042 module_exit(exit_f2fs_fs)
2043 
2044 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2045 MODULE_DESCRIPTION("Flash Friendly File System");
2046 MODULE_LICENSE("GPL");
2047 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp