~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/sched.h

Version: ~ [ linux-5.14-rc3 ] ~ [ linux-5.13.5 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.53 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.135 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.198 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.240 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.276 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.276 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _LINUX_SCHED_H
  3 #define _LINUX_SCHED_H
  4 
  5 /*
  6  * Define 'struct task_struct' and provide the main scheduler
  7  * APIs (schedule(), wakeup variants, etc.)
  8  */
  9 
 10 #include <uapi/linux/sched.h>
 11 
 12 #include <asm/current.h>
 13 
 14 #include <linux/pid.h>
 15 #include <linux/sem.h>
 16 #include <linux/shm.h>
 17 #include <linux/kcov.h>
 18 #include <linux/mutex.h>
 19 #include <linux/plist.h>
 20 #include <linux/hrtimer.h>
 21 #include <linux/seccomp.h>
 22 #include <linux/nodemask.h>
 23 #include <linux/rcupdate.h>
 24 #include <linux/refcount.h>
 25 #include <linux/resource.h>
 26 #include <linux/latencytop.h>
 27 #include <linux/sched/prio.h>
 28 #include <linux/signal_types.h>
 29 #include <linux/psi_types.h>
 30 #include <linux/mm_types_task.h>
 31 #include <linux/task_io_accounting.h>
 32 #include <linux/rseq.h>
 33 
 34 /* task_struct member predeclarations (sorted alphabetically): */
 35 struct audit_context;
 36 struct backing_dev_info;
 37 struct bio_list;
 38 struct blk_plug;
 39 struct ccs_domain_info;
 40 struct cfs_rq;
 41 struct fs_struct;
 42 struct futex_pi_state;
 43 struct io_context;
 44 struct mempolicy;
 45 struct nameidata;
 46 struct nsproxy;
 47 struct perf_event_context;
 48 struct pid_namespace;
 49 struct pipe_inode_info;
 50 struct rcu_node;
 51 struct reclaim_state;
 52 struct capture_control;
 53 struct robust_list_head;
 54 struct sched_attr;
 55 struct sched_param;
 56 struct seq_file;
 57 struct sighand_struct;
 58 struct signal_struct;
 59 struct task_delay_info;
 60 struct task_group;
 61 
 62 /*
 63  * Task state bitmask. NOTE! These bits are also
 64  * encoded in fs/proc/array.c: get_task_state().
 65  *
 66  * We have two separate sets of flags: task->state
 67  * is about runnability, while task->exit_state are
 68  * about the task exiting. Confusing, but this way
 69  * modifying one set can't modify the other one by
 70  * mistake.
 71  */
 72 
 73 /* Used in tsk->state: */
 74 #define TASK_RUNNING                    0x0000
 75 #define TASK_INTERRUPTIBLE              0x0001
 76 #define TASK_UNINTERRUPTIBLE            0x0002
 77 #define __TASK_STOPPED                  0x0004
 78 #define __TASK_TRACED                   0x0008
 79 /* Used in tsk->exit_state: */
 80 #define EXIT_DEAD                       0x0010
 81 #define EXIT_ZOMBIE                     0x0020
 82 #define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
 83 /* Used in tsk->state again: */
 84 #define TASK_PARKED                     0x0040
 85 #define TASK_DEAD                       0x0080
 86 #define TASK_WAKEKILL                   0x0100
 87 #define TASK_WAKING                     0x0200
 88 #define TASK_NOLOAD                     0x0400
 89 #define TASK_NEW                        0x0800
 90 #define TASK_STATE_MAX                  0x1000
 91 
 92 /* Convenience macros for the sake of set_current_state: */
 93 #define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 94 #define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
 95 #define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
 96 
 97 #define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 98 
 99 /* Convenience macros for the sake of wake_up(): */
100 #define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
101 
102 /* get_task_state(): */
103 #define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
104                                          TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
105                                          __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
106                                          TASK_PARKED)
107 
108 #define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
109 
110 #define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
111 
112 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
113 
114 #define task_contributes_to_load(task)  ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
115                                          (task->flags & PF_FROZEN) == 0 && \
116                                          (task->state & TASK_NOLOAD) == 0)
117 
118 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
119 
120 /*
121  * Special states are those that do not use the normal wait-loop pattern. See
122  * the comment with set_special_state().
123  */
124 #define is_special_task_state(state)                            \
125         ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
126 
127 #define __set_current_state(state_value)                        \
128         do {                                                    \
129                 WARN_ON_ONCE(is_special_task_state(state_value));\
130                 current->task_state_change = _THIS_IP_;         \
131                 current->state = (state_value);                 \
132         } while (0)
133 
134 #define set_current_state(state_value)                          \
135         do {                                                    \
136                 WARN_ON_ONCE(is_special_task_state(state_value));\
137                 current->task_state_change = _THIS_IP_;         \
138                 smp_store_mb(current->state, (state_value));    \
139         } while (0)
140 
141 #define set_special_state(state_value)                                  \
142         do {                                                            \
143                 unsigned long flags; /* may shadow */                   \
144                 WARN_ON_ONCE(!is_special_task_state(state_value));      \
145                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
146                 current->task_state_change = _THIS_IP_;                 \
147                 current->state = (state_value);                         \
148                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
149         } while (0)
150 #else
151 /*
152  * set_current_state() includes a barrier so that the write of current->state
153  * is correctly serialised wrt the caller's subsequent test of whether to
154  * actually sleep:
155  *
156  *   for (;;) {
157  *      set_current_state(TASK_UNINTERRUPTIBLE);
158  *      if (!need_sleep)
159  *              break;
160  *
161  *      schedule();
162  *   }
163  *   __set_current_state(TASK_RUNNING);
164  *
165  * If the caller does not need such serialisation (because, for instance, the
166  * condition test and condition change and wakeup are under the same lock) then
167  * use __set_current_state().
168  *
169  * The above is typically ordered against the wakeup, which does:
170  *
171  *   need_sleep = false;
172  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
173  *
174  * where wake_up_state() executes a full memory barrier before accessing the
175  * task state.
176  *
177  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
178  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
179  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
180  *
181  * However, with slightly different timing the wakeup TASK_RUNNING store can
182  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
183  * a problem either because that will result in one extra go around the loop
184  * and our @cond test will save the day.
185  *
186  * Also see the comments of try_to_wake_up().
187  */
188 #define __set_current_state(state_value)                                \
189         current->state = (state_value)
190 
191 #define set_current_state(state_value)                                  \
192         smp_store_mb(current->state, (state_value))
193 
194 /*
195  * set_special_state() should be used for those states when the blocking task
196  * can not use the regular condition based wait-loop. In that case we must
197  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
198  * will not collide with our state change.
199  */
200 #define set_special_state(state_value)                                  \
201         do {                                                            \
202                 unsigned long flags; /* may shadow */                   \
203                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
204                 current->state = (state_value);                         \
205                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
206         } while (0)
207 
208 #endif
209 
210 /* Task command name length: */
211 #define TASK_COMM_LEN                   16
212 
213 extern void scheduler_tick(void);
214 
215 #define MAX_SCHEDULE_TIMEOUT            LONG_MAX
216 
217 extern long schedule_timeout(long timeout);
218 extern long schedule_timeout_interruptible(long timeout);
219 extern long schedule_timeout_killable(long timeout);
220 extern long schedule_timeout_uninterruptible(long timeout);
221 extern long schedule_timeout_idle(long timeout);
222 asmlinkage void schedule(void);
223 extern void schedule_preempt_disabled(void);
224 
225 extern int __must_check io_schedule_prepare(void);
226 extern void io_schedule_finish(int token);
227 extern long io_schedule_timeout(long timeout);
228 extern void io_schedule(void);
229 
230 /**
231  * struct prev_cputime - snapshot of system and user cputime
232  * @utime: time spent in user mode
233  * @stime: time spent in system mode
234  * @lock: protects the above two fields
235  *
236  * Stores previous user/system time values such that we can guarantee
237  * monotonicity.
238  */
239 struct prev_cputime {
240 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
241         u64                             utime;
242         u64                             stime;
243         raw_spinlock_t                  lock;
244 #endif
245 };
246 
247 /**
248  * struct task_cputime - collected CPU time counts
249  * @utime:              time spent in user mode, in nanoseconds
250  * @stime:              time spent in kernel mode, in nanoseconds
251  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
252  *
253  * This structure groups together three kinds of CPU time that are tracked for
254  * threads and thread groups.  Most things considering CPU time want to group
255  * these counts together and treat all three of them in parallel.
256  */
257 struct task_cputime {
258         u64                             utime;
259         u64                             stime;
260         unsigned long long              sum_exec_runtime;
261 };
262 
263 /* Alternate field names when used on cache expirations: */
264 #define virt_exp                        utime
265 #define prof_exp                        stime
266 #define sched_exp                       sum_exec_runtime
267 
268 enum vtime_state {
269         /* Task is sleeping or running in a CPU with VTIME inactive: */
270         VTIME_INACTIVE = 0,
271         /* Task runs in userspace in a CPU with VTIME active: */
272         VTIME_USER,
273         /* Task runs in kernelspace in a CPU with VTIME active: */
274         VTIME_SYS,
275 };
276 
277 struct vtime {
278         seqcount_t              seqcount;
279         unsigned long long      starttime;
280         enum vtime_state        state;
281         u64                     utime;
282         u64                     stime;
283         u64                     gtime;
284 };
285 
286 struct sched_info {
287 #ifdef CONFIG_SCHED_INFO
288         /* Cumulative counters: */
289 
290         /* # of times we have run on this CPU: */
291         unsigned long                   pcount;
292 
293         /* Time spent waiting on a runqueue: */
294         unsigned long long              run_delay;
295 
296         /* Timestamps: */
297 
298         /* When did we last run on a CPU? */
299         unsigned long long              last_arrival;
300 
301         /* When were we last queued to run? */
302         unsigned long long              last_queued;
303 
304 #endif /* CONFIG_SCHED_INFO */
305 };
306 
307 /*
308  * Integer metrics need fixed point arithmetic, e.g., sched/fair
309  * has a few: load, load_avg, util_avg, freq, and capacity.
310  *
311  * We define a basic fixed point arithmetic range, and then formalize
312  * all these metrics based on that basic range.
313  */
314 # define SCHED_FIXEDPOINT_SHIFT         10
315 # define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
316 
317 struct load_weight {
318         unsigned long                   weight;
319         u32                             inv_weight;
320 };
321 
322 /**
323  * struct util_est - Estimation utilization of FAIR tasks
324  * @enqueued: instantaneous estimated utilization of a task/cpu
325  * @ewma:     the Exponential Weighted Moving Average (EWMA)
326  *            utilization of a task
327  *
328  * Support data structure to track an Exponential Weighted Moving Average
329  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
330  * average each time a task completes an activation. Sample's weight is chosen
331  * so that the EWMA will be relatively insensitive to transient changes to the
332  * task's workload.
333  *
334  * The enqueued attribute has a slightly different meaning for tasks and cpus:
335  * - task:   the task's util_avg at last task dequeue time
336  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
337  * Thus, the util_est.enqueued of a task represents the contribution on the
338  * estimated utilization of the CPU where that task is currently enqueued.
339  *
340  * Only for tasks we track a moving average of the past instantaneous
341  * estimated utilization. This allows to absorb sporadic drops in utilization
342  * of an otherwise almost periodic task.
343  */
344 struct util_est {
345         unsigned int                    enqueued;
346         unsigned int                    ewma;
347 #define UTIL_EST_WEIGHT_SHIFT           2
348 } __attribute__((__aligned__(sizeof(u64))));
349 
350 /*
351  * The load_avg/util_avg accumulates an infinite geometric series
352  * (see __update_load_avg() in kernel/sched/fair.c).
353  *
354  * [load_avg definition]
355  *
356  *   load_avg = runnable% * scale_load_down(load)
357  *
358  * where runnable% is the time ratio that a sched_entity is runnable.
359  * For cfs_rq, it is the aggregated load_avg of all runnable and
360  * blocked sched_entities.
361  *
362  * [util_avg definition]
363  *
364  *   util_avg = running% * SCHED_CAPACITY_SCALE
365  *
366  * where running% is the time ratio that a sched_entity is running on
367  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
368  * and blocked sched_entities.
369  *
370  * load_avg and util_avg don't direcly factor frequency scaling and CPU
371  * capacity scaling. The scaling is done through the rq_clock_pelt that
372  * is used for computing those signals (see update_rq_clock_pelt())
373  *
374  * N.B., the above ratios (runnable% and running%) themselves are in the
375  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
376  * to as large a range as necessary. This is for example reflected by
377  * util_avg's SCHED_CAPACITY_SCALE.
378  *
379  * [Overflow issue]
380  *
381  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
382  * with the highest load (=88761), always runnable on a single cfs_rq,
383  * and should not overflow as the number already hits PID_MAX_LIMIT.
384  *
385  * For all other cases (including 32-bit kernels), struct load_weight's
386  * weight will overflow first before we do, because:
387  *
388  *    Max(load_avg) <= Max(load.weight)
389  *
390  * Then it is the load_weight's responsibility to consider overflow
391  * issues.
392  */
393 struct sched_avg {
394         u64                             last_update_time;
395         u64                             load_sum;
396         u64                             runnable_load_sum;
397         u32                             util_sum;
398         u32                             period_contrib;
399         unsigned long                   load_avg;
400         unsigned long                   runnable_load_avg;
401         unsigned long                   util_avg;
402         struct util_est                 util_est;
403 } ____cacheline_aligned;
404 
405 struct sched_statistics {
406 #ifdef CONFIG_SCHEDSTATS
407         u64                             wait_start;
408         u64                             wait_max;
409         u64                             wait_count;
410         u64                             wait_sum;
411         u64                             iowait_count;
412         u64                             iowait_sum;
413 
414         u64                             sleep_start;
415         u64                             sleep_max;
416         s64                             sum_sleep_runtime;
417 
418         u64                             block_start;
419         u64                             block_max;
420         u64                             exec_max;
421         u64                             slice_max;
422 
423         u64                             nr_migrations_cold;
424         u64                             nr_failed_migrations_affine;
425         u64                             nr_failed_migrations_running;
426         u64                             nr_failed_migrations_hot;
427         u64                             nr_forced_migrations;
428 
429         u64                             nr_wakeups;
430         u64                             nr_wakeups_sync;
431         u64                             nr_wakeups_migrate;
432         u64                             nr_wakeups_local;
433         u64                             nr_wakeups_remote;
434         u64                             nr_wakeups_affine;
435         u64                             nr_wakeups_affine_attempts;
436         u64                             nr_wakeups_passive;
437         u64                             nr_wakeups_idle;
438 #endif
439 };
440 
441 struct sched_entity {
442         /* For load-balancing: */
443         struct load_weight              load;
444         unsigned long                   runnable_weight;
445         struct rb_node                  run_node;
446         struct list_head                group_node;
447         unsigned int                    on_rq;
448 
449         u64                             exec_start;
450         u64                             sum_exec_runtime;
451         u64                             vruntime;
452         u64                             prev_sum_exec_runtime;
453 
454         u64                             nr_migrations;
455 
456         struct sched_statistics         statistics;
457 
458 #ifdef CONFIG_FAIR_GROUP_SCHED
459         int                             depth;
460         struct sched_entity             *parent;
461         /* rq on which this entity is (to be) queued: */
462         struct cfs_rq                   *cfs_rq;
463         /* rq "owned" by this entity/group: */
464         struct cfs_rq                   *my_q;
465 #endif
466 
467 #ifdef CONFIG_SMP
468         /*
469          * Per entity load average tracking.
470          *
471          * Put into separate cache line so it does not
472          * collide with read-mostly values above.
473          */
474         struct sched_avg                avg;
475 #endif
476 };
477 
478 struct sched_rt_entity {
479         struct list_head                run_list;
480         unsigned long                   timeout;
481         unsigned long                   watchdog_stamp;
482         unsigned int                    time_slice;
483         unsigned short                  on_rq;
484         unsigned short                  on_list;
485 
486         struct sched_rt_entity          *back;
487 #ifdef CONFIG_RT_GROUP_SCHED
488         struct sched_rt_entity          *parent;
489         /* rq on which this entity is (to be) queued: */
490         struct rt_rq                    *rt_rq;
491         /* rq "owned" by this entity/group: */
492         struct rt_rq                    *my_q;
493 #endif
494 } __randomize_layout;
495 
496 struct sched_dl_entity {
497         struct rb_node                  rb_node;
498 
499         /*
500          * Original scheduling parameters. Copied here from sched_attr
501          * during sched_setattr(), they will remain the same until
502          * the next sched_setattr().
503          */
504         u64                             dl_runtime;     /* Maximum runtime for each instance    */
505         u64                             dl_deadline;    /* Relative deadline of each instance   */
506         u64                             dl_period;      /* Separation of two instances (period) */
507         u64                             dl_bw;          /* dl_runtime / dl_period               */
508         u64                             dl_density;     /* dl_runtime / dl_deadline             */
509 
510         /*
511          * Actual scheduling parameters. Initialized with the values above,
512          * they are continuously updated during task execution. Note that
513          * the remaining runtime could be < 0 in case we are in overrun.
514          */
515         s64                             runtime;        /* Remaining runtime for this instance  */
516         u64                             deadline;       /* Absolute deadline for this instance  */
517         unsigned int                    flags;          /* Specifying the scheduler behaviour   */
518 
519         /*
520          * Some bool flags:
521          *
522          * @dl_throttled tells if we exhausted the runtime. If so, the
523          * task has to wait for a replenishment to be performed at the
524          * next firing of dl_timer.
525          *
526          * @dl_boosted tells if we are boosted due to DI. If so we are
527          * outside bandwidth enforcement mechanism (but only until we
528          * exit the critical section);
529          *
530          * @dl_yielded tells if task gave up the CPU before consuming
531          * all its available runtime during the last job.
532          *
533          * @dl_non_contending tells if the task is inactive while still
534          * contributing to the active utilization. In other words, it
535          * indicates if the inactive timer has been armed and its handler
536          * has not been executed yet. This flag is useful to avoid race
537          * conditions between the inactive timer handler and the wakeup
538          * code.
539          *
540          * @dl_overrun tells if the task asked to be informed about runtime
541          * overruns.
542          */
543         unsigned int                    dl_throttled      : 1;
544         unsigned int                    dl_boosted        : 1;
545         unsigned int                    dl_yielded        : 1;
546         unsigned int                    dl_non_contending : 1;
547         unsigned int                    dl_overrun        : 1;
548 
549         /*
550          * Bandwidth enforcement timer. Each -deadline task has its
551          * own bandwidth to be enforced, thus we need one timer per task.
552          */
553         struct hrtimer                  dl_timer;
554 
555         /*
556          * Inactive timer, responsible for decreasing the active utilization
557          * at the "0-lag time". When a -deadline task blocks, it contributes
558          * to GRUB's active utilization until the "0-lag time", hence a
559          * timer is needed to decrease the active utilization at the correct
560          * time.
561          */
562         struct hrtimer inactive_timer;
563 };
564 
565 union rcu_special {
566         struct {
567                 u8                      blocked;
568                 u8                      need_qs;
569                 u8                      exp_hint; /* Hint for performance. */
570                 u8                      pad; /* No garbage from compiler! */
571         } b; /* Bits. */
572         u32 s; /* Set of bits. */
573 };
574 
575 enum perf_event_task_context {
576         perf_invalid_context = -1,
577         perf_hw_context = 0,
578         perf_sw_context,
579         perf_nr_task_contexts,
580 };
581 
582 struct wake_q_node {
583         struct wake_q_node *next;
584 };
585 
586 struct task_struct {
587 #ifdef CONFIG_THREAD_INFO_IN_TASK
588         /*
589          * For reasons of header soup (see current_thread_info()), this
590          * must be the first element of task_struct.
591          */
592         struct thread_info              thread_info;
593 #endif
594         /* -1 unrunnable, 0 runnable, >0 stopped: */
595         volatile long                   state;
596 
597         /*
598          * This begins the randomizable portion of task_struct. Only
599          * scheduling-critical items should be added above here.
600          */
601         randomized_struct_fields_start
602 
603         void                            *stack;
604         refcount_t                      usage;
605         /* Per task flags (PF_*), defined further below: */
606         unsigned int                    flags;
607         unsigned int                    ptrace;
608 
609 #ifdef CONFIG_SMP
610         struct llist_node               wake_entry;
611         int                             on_cpu;
612 #ifdef CONFIG_THREAD_INFO_IN_TASK
613         /* Current CPU: */
614         unsigned int                    cpu;
615 #endif
616         unsigned int                    wakee_flips;
617         unsigned long                   wakee_flip_decay_ts;
618         struct task_struct              *last_wakee;
619 
620         /*
621          * recent_used_cpu is initially set as the last CPU used by a task
622          * that wakes affine another task. Waker/wakee relationships can
623          * push tasks around a CPU where each wakeup moves to the next one.
624          * Tracking a recently used CPU allows a quick search for a recently
625          * used CPU that may be idle.
626          */
627         int                             recent_used_cpu;
628         int                             wake_cpu;
629 #endif
630         int                             on_rq;
631 
632         int                             prio;
633         int                             static_prio;
634         int                             normal_prio;
635         unsigned int                    rt_priority;
636 
637         const struct sched_class        *sched_class;
638         struct sched_entity             se;
639         struct sched_rt_entity          rt;
640 #ifdef CONFIG_CGROUP_SCHED
641         struct task_group               *sched_task_group;
642 #endif
643         struct sched_dl_entity          dl;
644 
645 #ifdef CONFIG_PREEMPT_NOTIFIERS
646         /* List of struct preempt_notifier: */
647         struct hlist_head               preempt_notifiers;
648 #endif
649 
650 #ifdef CONFIG_BLK_DEV_IO_TRACE
651         unsigned int                    btrace_seq;
652 #endif
653 
654         unsigned int                    policy;
655         int                             nr_cpus_allowed;
656         cpumask_t                       cpus_allowed;
657 
658 #ifdef CONFIG_PREEMPT_RCU
659         int                             rcu_read_lock_nesting;
660         union rcu_special               rcu_read_unlock_special;
661         struct list_head                rcu_node_entry;
662         struct rcu_node                 *rcu_blocked_node;
663 #endif /* #ifdef CONFIG_PREEMPT_RCU */
664 
665 #ifdef CONFIG_TASKS_RCU
666         unsigned long                   rcu_tasks_nvcsw;
667         u8                              rcu_tasks_holdout;
668         u8                              rcu_tasks_idx;
669         int                             rcu_tasks_idle_cpu;
670         struct list_head                rcu_tasks_holdout_list;
671 #endif /* #ifdef CONFIG_TASKS_RCU */
672 
673         struct sched_info               sched_info;
674 
675         struct list_head                tasks;
676 #ifdef CONFIG_SMP
677         struct plist_node               pushable_tasks;
678         struct rb_node                  pushable_dl_tasks;
679 #endif
680 
681         struct mm_struct                *mm;
682         struct mm_struct                *active_mm;
683 
684         /* Per-thread vma caching: */
685         struct vmacache                 vmacache;
686 
687 #ifdef SPLIT_RSS_COUNTING
688         struct task_rss_stat            rss_stat;
689 #endif
690         int                             exit_state;
691         int                             exit_code;
692         int                             exit_signal;
693         /* The signal sent when the parent dies: */
694         int                             pdeath_signal;
695         /* JOBCTL_*, siglock protected: */
696         unsigned long                   jobctl;
697 
698         /* Used for emulating ABI behavior of previous Linux versions: */
699         unsigned int                    personality;
700 
701         /* Scheduler bits, serialized by scheduler locks: */
702         unsigned                        sched_reset_on_fork:1;
703         unsigned                        sched_contributes_to_load:1;
704         unsigned                        sched_migrated:1;
705         unsigned                        sched_remote_wakeup:1;
706 #ifdef CONFIG_PSI
707         unsigned                        sched_psi_wake_requeue:1;
708 #endif
709 
710         /* Force alignment to the next boundary: */
711         unsigned                        :0;
712 
713         /* Unserialized, strictly 'current' */
714 
715         /* Bit to tell LSMs we're in execve(): */
716         unsigned                        in_execve:1;
717         unsigned                        in_iowait:1;
718 #ifndef TIF_RESTORE_SIGMASK
719         unsigned                        restore_sigmask:1;
720 #endif
721 #ifdef CONFIG_MEMCG
722         unsigned                        in_user_fault:1;
723 #endif
724 #ifdef CONFIG_COMPAT_BRK
725         unsigned                        brk_randomized:1;
726 #endif
727 #ifdef CONFIG_CGROUPS
728         /* disallow userland-initiated cgroup migration */
729         unsigned                        no_cgroup_migration:1;
730 #endif
731 #ifdef CONFIG_BLK_CGROUP
732         /* to be used once the psi infrastructure lands upstream. */
733         unsigned                        use_memdelay:1;
734 #endif
735 
736         unsigned long                   atomic_flags; /* Flags requiring atomic access. */
737 
738         struct restart_block            restart_block;
739 
740         pid_t                           pid;
741         pid_t                           tgid;
742 
743 #ifdef CONFIG_STACKPROTECTOR
744         /* Canary value for the -fstack-protector GCC feature: */
745         unsigned long                   stack_canary;
746 #endif
747         /*
748          * Pointers to the (original) parent process, youngest child, younger sibling,
749          * older sibling, respectively.  (p->father can be replaced with
750          * p->real_parent->pid)
751          */
752 
753         /* Real parent process: */
754         struct task_struct __rcu        *real_parent;
755 
756         /* Recipient of SIGCHLD, wait4() reports: */
757         struct task_struct __rcu        *parent;
758 
759         /*
760          * Children/sibling form the list of natural children:
761          */
762         struct list_head                children;
763         struct list_head                sibling;
764         struct task_struct              *group_leader;
765 
766         /*
767          * 'ptraced' is the list of tasks this task is using ptrace() on.
768          *
769          * This includes both natural children and PTRACE_ATTACH targets.
770          * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
771          */
772         struct list_head                ptraced;
773         struct list_head                ptrace_entry;
774 
775         /* PID/PID hash table linkage. */
776         struct pid                      *thread_pid;
777         struct hlist_node               pid_links[PIDTYPE_MAX];
778         struct list_head                thread_group;
779         struct list_head                thread_node;
780 
781         struct completion               *vfork_done;
782 
783         /* CLONE_CHILD_SETTID: */
784         int __user                      *set_child_tid;
785 
786         /* CLONE_CHILD_CLEARTID: */
787         int __user                      *clear_child_tid;
788 
789         u64                             utime;
790         u64                             stime;
791 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
792         u64                             utimescaled;
793         u64                             stimescaled;
794 #endif
795         u64                             gtime;
796         struct prev_cputime             prev_cputime;
797 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
798         struct vtime                    vtime;
799 #endif
800 
801 #ifdef CONFIG_NO_HZ_FULL
802         atomic_t                        tick_dep_mask;
803 #endif
804         /* Context switch counts: */
805         unsigned long                   nvcsw;
806         unsigned long                   nivcsw;
807 
808         /* Monotonic time in nsecs: */
809         u64                             start_time;
810 
811         /* Boot based time in nsecs: */
812         u64                             real_start_time;
813 
814         /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
815         unsigned long                   min_flt;
816         unsigned long                   maj_flt;
817 
818 #ifdef CONFIG_POSIX_TIMERS
819         struct task_cputime             cputime_expires;
820         struct list_head                cpu_timers[3];
821 #endif
822 
823         /* Process credentials: */
824 
825         /* Tracer's credentials at attach: */
826         const struct cred __rcu         *ptracer_cred;
827 
828         /* Objective and real subjective task credentials (COW): */
829         const struct cred __rcu         *real_cred;
830 
831         /* Effective (overridable) subjective task credentials (COW): */
832         const struct cred __rcu         *cred;
833 
834         /*
835          * executable name, excluding path.
836          *
837          * - normally initialized setup_new_exec()
838          * - access it with [gs]et_task_comm()
839          * - lock it with task_lock()
840          */
841         char                            comm[TASK_COMM_LEN];
842 
843         struct nameidata                *nameidata;
844 
845 #ifdef CONFIG_SYSVIPC
846         struct sysv_sem                 sysvsem;
847         struct sysv_shm                 sysvshm;
848 #endif
849 #ifdef CONFIG_DETECT_HUNG_TASK
850         unsigned long                   last_switch_count;
851         unsigned long                   last_switch_time;
852 #endif
853         /* Filesystem information: */
854         struct fs_struct                *fs;
855 
856         /* Open file information: */
857         struct files_struct             *files;
858 
859         /* Namespaces: */
860         struct nsproxy                  *nsproxy;
861 
862         /* Signal handlers: */
863         struct signal_struct            *signal;
864         struct sighand_struct           *sighand;
865         sigset_t                        blocked;
866         sigset_t                        real_blocked;
867         /* Restored if set_restore_sigmask() was used: */
868         sigset_t                        saved_sigmask;
869         struct sigpending               pending;
870         unsigned long                   sas_ss_sp;
871         size_t                          sas_ss_size;
872         unsigned int                    sas_ss_flags;
873 
874         struct callback_head            *task_works;
875 
876 #ifdef CONFIG_AUDIT
877 #ifdef CONFIG_AUDITSYSCALL
878         struct audit_context            *audit_context;
879 #endif
880         kuid_t                          loginuid;
881         unsigned int                    sessionid;
882 #endif
883         struct seccomp                  seccomp;
884 
885         /* Thread group tracking: */
886         u32                             parent_exec_id;
887         u32                             self_exec_id;
888 
889         /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
890         spinlock_t                      alloc_lock;
891 
892         /* Protection of the PI data structures: */
893         raw_spinlock_t                  pi_lock;
894 
895         struct wake_q_node              wake_q;
896 
897 #ifdef CONFIG_RT_MUTEXES
898         /* PI waiters blocked on a rt_mutex held by this task: */
899         struct rb_root_cached           pi_waiters;
900         /* Updated under owner's pi_lock and rq lock */
901         struct task_struct              *pi_top_task;
902         /* Deadlock detection and priority inheritance handling: */
903         struct rt_mutex_waiter          *pi_blocked_on;
904 #endif
905 
906 #ifdef CONFIG_DEBUG_MUTEXES
907         /* Mutex deadlock detection: */
908         struct mutex_waiter             *blocked_on;
909 #endif
910 
911 #ifdef CONFIG_TRACE_IRQFLAGS
912         unsigned int                    irq_events;
913         unsigned long                   hardirq_enable_ip;
914         unsigned long                   hardirq_disable_ip;
915         unsigned int                    hardirq_enable_event;
916         unsigned int                    hardirq_disable_event;
917         int                             hardirqs_enabled;
918         int                             hardirq_context;
919         unsigned long                   softirq_disable_ip;
920         unsigned long                   softirq_enable_ip;
921         unsigned int                    softirq_disable_event;
922         unsigned int                    softirq_enable_event;
923         int                             softirqs_enabled;
924         int                             softirq_context;
925 #endif
926 
927 #ifdef CONFIG_LOCKDEP
928 # define MAX_LOCK_DEPTH                 48UL
929         u64                             curr_chain_key;
930         int                             lockdep_depth;
931         unsigned int                    lockdep_recursion;
932         struct held_lock                held_locks[MAX_LOCK_DEPTH];
933 #endif
934 
935 #ifdef CONFIG_UBSAN
936         unsigned int                    in_ubsan;
937 #endif
938 
939         /* Journalling filesystem info: */
940         void                            *journal_info;
941 
942         /* Stacked block device info: */
943         struct bio_list                 *bio_list;
944 
945 #ifdef CONFIG_BLOCK
946         /* Stack plugging: */
947         struct blk_plug                 *plug;
948 #endif
949 
950         /* VM state: */
951         struct reclaim_state            *reclaim_state;
952 
953         struct backing_dev_info         *backing_dev_info;
954 
955         struct io_context               *io_context;
956 
957 #ifdef CONFIG_COMPACTION
958         struct capture_control          *capture_control;
959 #endif
960         /* Ptrace state: */
961         unsigned long                   ptrace_message;
962         kernel_siginfo_t                *last_siginfo;
963 
964         struct task_io_accounting       ioac;
965 #ifdef CONFIG_PSI
966         /* Pressure stall state */
967         unsigned int                    psi_flags;
968 #endif
969 #ifdef CONFIG_TASK_XACCT
970         /* Accumulated RSS usage: */
971         u64                             acct_rss_mem1;
972         /* Accumulated virtual memory usage: */
973         u64                             acct_vm_mem1;
974         /* stime + utime since last update: */
975         u64                             acct_timexpd;
976 #endif
977 #ifdef CONFIG_CPUSETS
978         /* Protected by ->alloc_lock: */
979         nodemask_t                      mems_allowed;
980         /* Seqence number to catch updates: */
981         seqcount_t                      mems_allowed_seq;
982         int                             cpuset_mem_spread_rotor;
983         int                             cpuset_slab_spread_rotor;
984 #endif
985 #ifdef CONFIG_CGROUPS
986         /* Control Group info protected by css_set_lock: */
987         struct css_set __rcu            *cgroups;
988         /* cg_list protected by css_set_lock and tsk->alloc_lock: */
989         struct list_head                cg_list;
990 #endif
991 #ifdef CONFIG_X86_CPU_RESCTRL
992         u32                             closid;
993         u32                             rmid;
994 #endif
995 #ifdef CONFIG_FUTEX
996         struct robust_list_head __user  *robust_list;
997 #ifdef CONFIG_COMPAT
998         struct compat_robust_list_head __user *compat_robust_list;
999 #endif
1000         struct list_head                pi_state_list;
1001         struct futex_pi_state           *pi_state_cache;
1002 #endif
1003 #ifdef CONFIG_PERF_EVENTS
1004         struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1005         struct mutex                    perf_event_mutex;
1006         struct list_head                perf_event_list;
1007 #endif
1008 #ifdef CONFIG_DEBUG_PREEMPT
1009         unsigned long                   preempt_disable_ip;
1010 #endif
1011 #ifdef CONFIG_NUMA
1012         /* Protected by alloc_lock: */
1013         struct mempolicy                *mempolicy;
1014         short                           il_prev;
1015         short                           pref_node_fork;
1016 #endif
1017 #ifdef CONFIG_NUMA_BALANCING
1018         int                             numa_scan_seq;
1019         unsigned int                    numa_scan_period;
1020         unsigned int                    numa_scan_period_max;
1021         int                             numa_preferred_nid;
1022         unsigned long                   numa_migrate_retry;
1023         /* Migration stamp: */
1024         u64                             node_stamp;
1025         u64                             last_task_numa_placement;
1026         u64                             last_sum_exec_runtime;
1027         struct callback_head            numa_work;
1028 
1029         struct numa_group               *numa_group;
1030 
1031         /*
1032          * numa_faults is an array split into four regions:
1033          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1034          * in this precise order.
1035          *
1036          * faults_memory: Exponential decaying average of faults on a per-node
1037          * basis. Scheduling placement decisions are made based on these
1038          * counts. The values remain static for the duration of a PTE scan.
1039          * faults_cpu: Track the nodes the process was running on when a NUMA
1040          * hinting fault was incurred.
1041          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1042          * during the current scan window. When the scan completes, the counts
1043          * in faults_memory and faults_cpu decay and these values are copied.
1044          */
1045         unsigned long                   *numa_faults;
1046         unsigned long                   total_numa_faults;
1047 
1048         /*
1049          * numa_faults_locality tracks if faults recorded during the last
1050          * scan window were remote/local or failed to migrate. The task scan
1051          * period is adapted based on the locality of the faults with different
1052          * weights depending on whether they were shared or private faults
1053          */
1054         unsigned long                   numa_faults_locality[3];
1055 
1056         unsigned long                   numa_pages_migrated;
1057 #endif /* CONFIG_NUMA_BALANCING */
1058 
1059 #ifdef CONFIG_RSEQ
1060         struct rseq __user *rseq;
1061         u32 rseq_len;
1062         u32 rseq_sig;
1063         /*
1064          * RmW on rseq_event_mask must be performed atomically
1065          * with respect to preemption.
1066          */
1067         unsigned long rseq_event_mask;
1068 #endif
1069 
1070         struct tlbflush_unmap_batch     tlb_ubc;
1071 
1072         struct rcu_head                 rcu;
1073 
1074         /* Cache last used pipe for splice(): */
1075         struct pipe_inode_info          *splice_pipe;
1076 
1077         struct page_frag                task_frag;
1078 
1079 #ifdef CONFIG_TASK_DELAY_ACCT
1080         struct task_delay_info          *delays;
1081 #endif
1082 
1083 #ifdef CONFIG_FAULT_INJECTION
1084         int                             make_it_fail;
1085         unsigned int                    fail_nth;
1086 #endif
1087         /*
1088          * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1089          * balance_dirty_pages() for a dirty throttling pause:
1090          */
1091         int                             nr_dirtied;
1092         int                             nr_dirtied_pause;
1093         /* Start of a write-and-pause period: */
1094         unsigned long                   dirty_paused_when;
1095 
1096 #ifdef CONFIG_LATENCYTOP
1097         int                             latency_record_count;
1098         struct latency_record           latency_record[LT_SAVECOUNT];
1099 #endif
1100         /*
1101          * Time slack values; these are used to round up poll() and
1102          * select() etc timeout values. These are in nanoseconds.
1103          */
1104         u64                             timer_slack_ns;
1105         u64                             default_timer_slack_ns;
1106 
1107 #ifdef CONFIG_KASAN
1108         unsigned int                    kasan_depth;
1109 #endif
1110 
1111 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1112         /* Index of current stored address in ret_stack: */
1113         int                             curr_ret_stack;
1114         int                             curr_ret_depth;
1115 
1116         /* Stack of return addresses for return function tracing: */
1117         struct ftrace_ret_stack         *ret_stack;
1118 
1119         /* Timestamp for last schedule: */
1120         unsigned long long              ftrace_timestamp;
1121 
1122         /*
1123          * Number of functions that haven't been traced
1124          * because of depth overrun:
1125          */
1126         atomic_t                        trace_overrun;
1127 
1128         /* Pause tracing: */
1129         atomic_t                        tracing_graph_pause;
1130 #endif
1131 
1132 #ifdef CONFIG_TRACING
1133         /* State flags for use by tracers: */
1134         unsigned long                   trace;
1135 
1136         /* Bitmask and counter of trace recursion: */
1137         unsigned long                   trace_recursion;
1138 #endif /* CONFIG_TRACING */
1139 
1140 #ifdef CONFIG_KCOV
1141         /* Coverage collection mode enabled for this task (0 if disabled): */
1142         unsigned int                    kcov_mode;
1143 
1144         /* Size of the kcov_area: */
1145         unsigned int                    kcov_size;
1146 
1147         /* Buffer for coverage collection: */
1148         void                            *kcov_area;
1149 
1150         /* KCOV descriptor wired with this task or NULL: */
1151         struct kcov                     *kcov;
1152 #endif
1153 
1154 #ifdef CONFIG_MEMCG
1155         struct mem_cgroup               *memcg_in_oom;
1156         gfp_t                           memcg_oom_gfp_mask;
1157         int                             memcg_oom_order;
1158 
1159         /* Number of pages to reclaim on returning to userland: */
1160         unsigned int                    memcg_nr_pages_over_high;
1161 
1162         /* Used by memcontrol for targeted memcg charge: */
1163         struct mem_cgroup               *active_memcg;
1164 #endif
1165 
1166 #ifdef CONFIG_BLK_CGROUP
1167         struct request_queue            *throttle_queue;
1168 #endif
1169 
1170 #ifdef CONFIG_UPROBES
1171         struct uprobe_task              *utask;
1172 #endif
1173 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1174         unsigned int                    sequential_io;
1175         unsigned int                    sequential_io_avg;
1176 #endif
1177 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1178         unsigned long                   task_state_change;
1179 #endif
1180         int                             pagefault_disabled;
1181 #ifdef CONFIG_MMU
1182         struct task_struct              *oom_reaper_list;
1183 #endif
1184 #ifdef CONFIG_VMAP_STACK
1185         struct vm_struct                *stack_vm_area;
1186 #endif
1187 #ifdef CONFIG_THREAD_INFO_IN_TASK
1188         /* A live task holds one reference: */
1189         refcount_t                      stack_refcount;
1190 #endif
1191 #ifdef CONFIG_LIVEPATCH
1192         int patch_state;
1193 #endif
1194 #ifdef CONFIG_SECURITY
1195         /* Used by LSM modules for access restriction: */
1196         void                            *security;
1197 #endif
1198 
1199 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1200         unsigned long                   lowest_stack;
1201         unsigned long                   prev_lowest_stack;
1202 #endif
1203 #if defined(CONFIG_CCSECURITY) && !defined(CONFIG_CCSECURITY_USE_EXTERNAL_TASK_SECURITY)
1204         struct ccs_domain_info          *ccs_domain_info;
1205         u32                             ccs_flags;
1206 #endif
1207 
1208         /*
1209          * New fields for task_struct should be added above here, so that
1210          * they are included in the randomized portion of task_struct.
1211          */
1212         randomized_struct_fields_end
1213 
1214         /* CPU-specific state of this task: */
1215         struct thread_struct            thread;
1216 
1217         /*
1218          * WARNING: on x86, 'thread_struct' contains a variable-sized
1219          * structure.  It *MUST* be at the end of 'task_struct'.
1220          *
1221          * Do not put anything below here!
1222          */
1223 };
1224 
1225 static inline struct pid *task_pid(struct task_struct *task)
1226 {
1227         return task->thread_pid;
1228 }
1229 
1230 /*
1231  * the helpers to get the task's different pids as they are seen
1232  * from various namespaces
1233  *
1234  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1235  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1236  *                     current.
1237  * task_xid_nr_ns()  : id seen from the ns specified;
1238  *
1239  * see also pid_nr() etc in include/linux/pid.h
1240  */
1241 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1242 
1243 static inline pid_t task_pid_nr(struct task_struct *tsk)
1244 {
1245         return tsk->pid;
1246 }
1247 
1248 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1249 {
1250         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1251 }
1252 
1253 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1254 {
1255         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1256 }
1257 
1258 
1259 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1260 {
1261         return tsk->tgid;
1262 }
1263 
1264 /**
1265  * pid_alive - check that a task structure is not stale
1266  * @p: Task structure to be checked.
1267  *
1268  * Test if a process is not yet dead (at most zombie state)
1269  * If pid_alive fails, then pointers within the task structure
1270  * can be stale and must not be dereferenced.
1271  *
1272  * Return: 1 if the process is alive. 0 otherwise.
1273  */
1274 static inline int pid_alive(const struct task_struct *p)
1275 {
1276         return p->thread_pid != NULL;
1277 }
1278 
1279 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1280 {
1281         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1282 }
1283 
1284 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1285 {
1286         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1287 }
1288 
1289 
1290 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1291 {
1292         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1293 }
1294 
1295 static inline pid_t task_session_vnr(struct task_struct *tsk)
1296 {
1297         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1298 }
1299 
1300 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1301 {
1302         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1303 }
1304 
1305 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1306 {
1307         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1308 }
1309 
1310 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1311 {
1312         pid_t pid = 0;
1313 
1314         rcu_read_lock();
1315         if (pid_alive(tsk))
1316                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1317         rcu_read_unlock();
1318 
1319         return pid;
1320 }
1321 
1322 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1323 {
1324         return task_ppid_nr_ns(tsk, &init_pid_ns);
1325 }
1326 
1327 /* Obsolete, do not use: */
1328 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1329 {
1330         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1331 }
1332 
1333 #define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1334 #define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1335 
1336 static inline unsigned int task_state_index(struct task_struct *tsk)
1337 {
1338         unsigned int tsk_state = READ_ONCE(tsk->state);
1339         unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1340 
1341         BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1342 
1343         if (tsk_state == TASK_IDLE)
1344                 state = TASK_REPORT_IDLE;
1345 
1346         return fls(state);
1347 }
1348 
1349 static inline char task_index_to_char(unsigned int state)
1350 {
1351         static const char state_char[] = "RSDTtXZPI";
1352 
1353         BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1354 
1355         return state_char[state];
1356 }
1357 
1358 static inline char task_state_to_char(struct task_struct *tsk)
1359 {
1360         return task_index_to_char(task_state_index(tsk));
1361 }
1362 
1363 /**
1364  * is_global_init - check if a task structure is init. Since init
1365  * is free to have sub-threads we need to check tgid.
1366  * @tsk: Task structure to be checked.
1367  *
1368  * Check if a task structure is the first user space task the kernel created.
1369  *
1370  * Return: 1 if the task structure is init. 0 otherwise.
1371  */
1372 static inline int is_global_init(struct task_struct *tsk)
1373 {
1374         return task_tgid_nr(tsk) == 1;
1375 }
1376 
1377 extern struct pid *cad_pid;
1378 
1379 /*
1380  * Per process flags
1381  */
1382 #define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1383 #define PF_EXITING              0x00000004      /* Getting shut down */
1384 #define PF_EXITPIDONE           0x00000008      /* PI exit done on shut down */
1385 #define PF_VCPU                 0x00000010      /* I'm a virtual CPU */
1386 #define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1387 #define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1388 #define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1389 #define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1390 #define PF_DUMPCORE             0x00000200      /* Dumped core */
1391 #define PF_SIGNALED             0x00000400      /* Killed by a signal */
1392 #define PF_MEMALLOC             0x00000800      /* Allocating memory */
1393 #define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1394 #define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1395 #define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1396 #define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1397 #define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1398 #define PF_KSWAPD               0x00020000      /* I am kswapd */
1399 #define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1400 #define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1401 #define PF_LESS_THROTTLE        0x00100000      /* Throttle me less: I clean memory */
1402 #define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1403 #define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1404 #define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1405 #define PF_MEMSTALL             0x01000000      /* Stalled due to lack of memory */
1406 #define PF_UMH                  0x02000000      /* I'm an Usermodehelper process */
1407 #define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_allowed */
1408 #define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1409 #define PF_MEMALLOC_NOCMA       0x10000000      /* All allocation request will have _GFP_MOVABLE cleared */
1410 #define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1411 #define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1412 
1413 /*
1414  * Only the _current_ task can read/write to tsk->flags, but other
1415  * tasks can access tsk->flags in readonly mode for example
1416  * with tsk_used_math (like during threaded core dumping).
1417  * There is however an exception to this rule during ptrace
1418  * or during fork: the ptracer task is allowed to write to the
1419  * child->flags of its traced child (same goes for fork, the parent
1420  * can write to the child->flags), because we're guaranteed the
1421  * child is not running and in turn not changing child->flags
1422  * at the same time the parent does it.
1423  */
1424 #define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1425 #define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1426 #define clear_used_math()                       clear_stopped_child_used_math(current)
1427 #define set_used_math()                         set_stopped_child_used_math(current)
1428 
1429 #define conditional_stopped_child_used_math(condition, child) \
1430         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1431 
1432 #define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1433 
1434 #define copy_to_stopped_child_used_math(child) \
1435         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1436 
1437 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1438 #define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1439 #define used_math()                             tsk_used_math(current)
1440 
1441 static inline bool is_percpu_thread(void)
1442 {
1443 #ifdef CONFIG_SMP
1444         return (current->flags & PF_NO_SETAFFINITY) &&
1445                 (current->nr_cpus_allowed  == 1);
1446 #else
1447         return true;
1448 #endif
1449 }
1450 
1451 /* Per-process atomic flags. */
1452 #define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1453 #define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1454 #define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1455 #define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1456 #define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1457 #define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1458 #define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1459 #define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1460 
1461 #define TASK_PFA_TEST(name, func)                                       \
1462         static inline bool task_##func(struct task_struct *p)           \
1463         { return test_bit(PFA_##name, &p->atomic_flags); }
1464 
1465 #define TASK_PFA_SET(name, func)                                        \
1466         static inline void task_set_##func(struct task_struct *p)       \
1467         { set_bit(PFA_##name, &p->atomic_flags); }
1468 
1469 #define TASK_PFA_CLEAR(name, func)                                      \
1470         static inline void task_clear_##func(struct task_struct *p)     \
1471         { clear_bit(PFA_##name, &p->atomic_flags); }
1472 
1473 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1474 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1475 
1476 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1477 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1478 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1479 
1480 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1481 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1482 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1483 
1484 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1485 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1486 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1487 
1488 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1489 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1490 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1491 
1492 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1493 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1494 
1495 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1496 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1497 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1498 
1499 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1500 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1501 
1502 static inline void
1503 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1504 {
1505         current->flags &= ~flags;
1506         current->flags |= orig_flags & flags;
1507 }
1508 
1509 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1510 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1511 #ifdef CONFIG_SMP
1512 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1513 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1514 #else
1515 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1516 {
1517 }
1518 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1519 {
1520         if (!cpumask_test_cpu(0, new_mask))
1521                 return -EINVAL;
1522         return 0;
1523 }
1524 #endif
1525 
1526 #ifndef cpu_relax_yield
1527 #define cpu_relax_yield() cpu_relax()
1528 #endif
1529 
1530 extern int yield_to(struct task_struct *p, bool preempt);
1531 extern void set_user_nice(struct task_struct *p, long nice);
1532 extern int task_prio(const struct task_struct *p);
1533 
1534 /**
1535  * task_nice - return the nice value of a given task.
1536  * @p: the task in question.
1537  *
1538  * Return: The nice value [ -20 ... 0 ... 19 ].
1539  */
1540 static inline int task_nice(const struct task_struct *p)
1541 {
1542         return PRIO_TO_NICE((p)->static_prio);
1543 }
1544 
1545 extern int can_nice(const struct task_struct *p, const int nice);
1546 extern int task_curr(const struct task_struct *p);
1547 extern int idle_cpu(int cpu);
1548 extern int available_idle_cpu(int cpu);
1549 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1550 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1551 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1552 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1553 extern struct task_struct *idle_task(int cpu);
1554 
1555 /**
1556  * is_idle_task - is the specified task an idle task?
1557  * @p: the task in question.
1558  *
1559  * Return: 1 if @p is an idle task. 0 otherwise.
1560  */
1561 static inline bool is_idle_task(const struct task_struct *p)
1562 {
1563         return !!(p->flags & PF_IDLE);
1564 }
1565 
1566 extern struct task_struct *curr_task(int cpu);
1567 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1568 
1569 void yield(void);
1570 
1571 union thread_union {
1572 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1573         struct task_struct task;
1574 #endif
1575 #ifndef CONFIG_THREAD_INFO_IN_TASK
1576         struct thread_info thread_info;
1577 #endif
1578         unsigned long stack[THREAD_SIZE/sizeof(long)];
1579 };
1580 
1581 #ifndef CONFIG_THREAD_INFO_IN_TASK
1582 extern struct thread_info init_thread_info;
1583 #endif
1584 
1585 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1586 
1587 #ifdef CONFIG_THREAD_INFO_IN_TASK
1588 static inline struct thread_info *task_thread_info(struct task_struct *task)
1589 {
1590         return &task->thread_info;
1591 }
1592 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1593 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1594 #endif
1595 
1596 /*
1597  * find a task by one of its numerical ids
1598  *
1599  * find_task_by_pid_ns():
1600  *      finds a task by its pid in the specified namespace
1601  * find_task_by_vpid():
1602  *      finds a task by its virtual pid
1603  *
1604  * see also find_vpid() etc in include/linux/pid.h
1605  */
1606 
1607 extern struct task_struct *find_task_by_vpid(pid_t nr);
1608 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1609 
1610 /*
1611  * find a task by its virtual pid and get the task struct
1612  */
1613 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1614 
1615 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1616 extern int wake_up_process(struct task_struct *tsk);
1617 extern void wake_up_new_task(struct task_struct *tsk);
1618 
1619 #ifdef CONFIG_SMP
1620 extern void kick_process(struct task_struct *tsk);
1621 #else
1622 static inline void kick_process(struct task_struct *tsk) { }
1623 #endif
1624 
1625 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1626 
1627 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1628 {
1629         __set_task_comm(tsk, from, false);
1630 }
1631 
1632 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1633 #define get_task_comm(buf, tsk) ({                      \
1634         BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1635         __get_task_comm(buf, sizeof(buf), tsk);         \
1636 })
1637 
1638 #ifdef CONFIG_SMP
1639 void scheduler_ipi(void);
1640 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1641 #else
1642 static inline void scheduler_ipi(void) { }
1643 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1644 {
1645         return 1;
1646 }
1647 #endif
1648 
1649 /*
1650  * Set thread flags in other task's structures.
1651  * See asm/thread_info.h for TIF_xxxx flags available:
1652  */
1653 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1654 {
1655         set_ti_thread_flag(task_thread_info(tsk), flag);
1656 }
1657 
1658 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1659 {
1660         clear_ti_thread_flag(task_thread_info(tsk), flag);
1661 }
1662 
1663 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1664                                           bool value)
1665 {
1666         update_ti_thread_flag(task_thread_info(tsk), flag, value);
1667 }
1668 
1669 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1670 {
1671         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1672 }
1673 
1674 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1675 {
1676         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1677 }
1678 
1679 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1680 {
1681         return test_ti_thread_flag(task_thread_info(tsk), flag);
1682 }
1683 
1684 static inline void set_tsk_need_resched(struct task_struct *tsk)
1685 {
1686         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1687 }
1688 
1689 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1690 {
1691         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1692 }
1693 
1694 static inline int test_tsk_need_resched(struct task_struct *tsk)
1695 {
1696         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1697 }
1698 
1699 /*
1700  * cond_resched() and cond_resched_lock(): latency reduction via
1701  * explicit rescheduling in places that are safe. The return
1702  * value indicates whether a reschedule was done in fact.
1703  * cond_resched_lock() will drop the spinlock before scheduling,
1704  */
1705 #ifndef CONFIG_PREEMPT
1706 extern int _cond_resched(void);
1707 #else
1708 static inline int _cond_resched(void) { return 0; }
1709 #endif
1710 
1711 #define cond_resched() ({                       \
1712         ___might_sleep(__FILE__, __LINE__, 0);  \
1713         _cond_resched();                        \
1714 })
1715 
1716 extern int __cond_resched_lock(spinlock_t *lock);
1717 
1718 #define cond_resched_lock(lock) ({                              \
1719         ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1720         __cond_resched_lock(lock);                              \
1721 })
1722 
1723 static inline void cond_resched_rcu(void)
1724 {
1725 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1726         rcu_read_unlock();
1727         cond_resched();
1728         rcu_read_lock();
1729 #endif
1730 }
1731 
1732 /*
1733  * Does a critical section need to be broken due to another
1734  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1735  * but a general need for low latency)
1736  */
1737 static inline int spin_needbreak(spinlock_t *lock)
1738 {
1739 #ifdef CONFIG_PREEMPT
1740         return spin_is_contended(lock);
1741 #else
1742         return 0;
1743 #endif
1744 }
1745 
1746 static __always_inline bool need_resched(void)
1747 {
1748         return unlikely(tif_need_resched());
1749 }
1750 
1751 /*
1752  * Wrappers for p->thread_info->cpu access. No-op on UP.
1753  */
1754 #ifdef CONFIG_SMP
1755 
1756 static inline unsigned int task_cpu(const struct task_struct *p)
1757 {
1758 #ifdef CONFIG_THREAD_INFO_IN_TASK
1759         return READ_ONCE(p->cpu);
1760 #else
1761         return READ_ONCE(task_thread_info(p)->cpu);
1762 #endif
1763 }
1764 
1765 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1766 
1767 #else
1768 
1769 static inline unsigned int task_cpu(const struct task_struct *p)
1770 {
1771         return 0;
1772 }
1773 
1774 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1775 {
1776 }
1777 
1778 #endif /* CONFIG_SMP */
1779 
1780 /*
1781  * In order to reduce various lock holder preemption latencies provide an
1782  * interface to see if a vCPU is currently running or not.
1783  *
1784  * This allows us to terminate optimistic spin loops and block, analogous to
1785  * the native optimistic spin heuristic of testing if the lock owner task is
1786  * running or not.
1787  */
1788 #ifndef vcpu_is_preempted
1789 # define vcpu_is_preempted(cpu) false
1790 #endif
1791 
1792 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1793 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1794 
1795 #ifndef TASK_SIZE_OF
1796 #define TASK_SIZE_OF(tsk)       TASK_SIZE
1797 #endif
1798 
1799 #ifdef CONFIG_RSEQ
1800 
1801 /*
1802  * Map the event mask on the user-space ABI enum rseq_cs_flags
1803  * for direct mask checks.
1804  */
1805 enum rseq_event_mask_bits {
1806         RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1807         RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1808         RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1809 };
1810 
1811 enum rseq_event_mask {
1812         RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
1813         RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
1814         RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
1815 };
1816 
1817 static inline void rseq_set_notify_resume(struct task_struct *t)
1818 {
1819         if (t->rseq)
1820                 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1821 }
1822 
1823 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1824 
1825 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1826                                              struct pt_regs *regs)
1827 {
1828         if (current->rseq)
1829                 __rseq_handle_notify_resume(ksig, regs);
1830 }
1831 
1832 static inline void rseq_signal_deliver(struct ksignal *ksig,
1833                                        struct pt_regs *regs)
1834 {
1835         preempt_disable();
1836         __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1837         preempt_enable();
1838         rseq_handle_notify_resume(ksig, regs);
1839 }
1840 
1841 /* rseq_preempt() requires preemption to be disabled. */
1842 static inline void rseq_preempt(struct task_struct *t)
1843 {
1844         __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1845         rseq_set_notify_resume(t);
1846 }
1847 
1848 /* rseq_migrate() requires preemption to be disabled. */
1849 static inline void rseq_migrate(struct task_struct *t)
1850 {
1851         __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1852         rseq_set_notify_resume(t);
1853 }
1854 
1855 /*
1856  * If parent process has a registered restartable sequences area, the
1857  * child inherits. Only applies when forking a process, not a thread.
1858  */
1859 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1860 {
1861         if (clone_flags & CLONE_THREAD) {
1862                 t->rseq = NULL;
1863                 t->rseq_len = 0;
1864                 t->rseq_sig = 0;
1865                 t->rseq_event_mask = 0;
1866         } else {
1867                 t->rseq = current->rseq;
1868                 t->rseq_len = current->rseq_len;
1869                 t->rseq_sig = current->rseq_sig;
1870                 t->rseq_event_mask = current->rseq_event_mask;
1871         }
1872 }
1873 
1874 static inline void rseq_execve(struct task_struct *t)
1875 {
1876         t->rseq = NULL;
1877         t->rseq_len = 0;
1878         t->rseq_sig = 0;
1879         t->rseq_event_mask = 0;
1880 }
1881 
1882 #else
1883 
1884 static inline void rseq_set_notify_resume(struct task_struct *t)
1885 {
1886 }
1887 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1888                                              struct pt_regs *regs)
1889 {
1890 }
1891 static inline void rseq_signal_deliver(struct ksignal *ksig,
1892                                        struct pt_regs *regs)
1893 {
1894 }
1895 static inline void rseq_preempt(struct task_struct *t)
1896 {
1897 }
1898 static inline void rseq_migrate(struct task_struct *t)
1899 {
1900 }
1901 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1902 {
1903 }
1904 static inline void rseq_execve(struct task_struct *t)
1905 {
1906 }
1907 
1908 #endif
1909 
1910 void __exit_umh(struct task_struct *tsk);
1911 
1912 static inline void exit_umh(struct task_struct *tsk)
1913 {
1914         if (unlikely(tsk->flags & PF_UMH))
1915                 __exit_umh(tsk);
1916 }
1917 
1918 #ifdef CONFIG_DEBUG_RSEQ
1919 
1920 void rseq_syscall(struct pt_regs *regs);
1921 
1922 #else
1923 
1924 static inline void rseq_syscall(struct pt_regs *regs)
1925 {
1926 }
1927 
1928 #endif
1929 
1930 #endif
1931 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp