~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/sched/signal.h

Version: ~ [ linux-5.14-rc3 ] ~ [ linux-5.13.5 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.53 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.135 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.198 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.240 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.276 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.276 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _LINUX_SCHED_SIGNAL_H
  3 #define _LINUX_SCHED_SIGNAL_H
  4 
  5 #include <linux/rculist.h>
  6 #include <linux/signal.h>
  7 #include <linux/sched.h>
  8 #include <linux/sched/jobctl.h>
  9 #include <linux/sched/task.h>
 10 #include <linux/cred.h>
 11 
 12 /*
 13  * Types defining task->signal and task->sighand and APIs using them:
 14  */
 15 
 16 struct sighand_struct {
 17         atomic_t                count;
 18         struct k_sigaction      action[_NSIG];
 19         spinlock_t              siglock;
 20         wait_queue_head_t       signalfd_wqh;
 21 };
 22 
 23 /*
 24  * Per-process accounting stats:
 25  */
 26 struct pacct_struct {
 27         int                     ac_flag;
 28         long                    ac_exitcode;
 29         unsigned long           ac_mem;
 30         u64                     ac_utime, ac_stime;
 31         unsigned long           ac_minflt, ac_majflt;
 32 };
 33 
 34 struct cpu_itimer {
 35         u64 expires;
 36         u64 incr;
 37 };
 38 
 39 /*
 40  * This is the atomic variant of task_cputime, which can be used for
 41  * storing and updating task_cputime statistics without locking.
 42  */
 43 struct task_cputime_atomic {
 44         atomic64_t utime;
 45         atomic64_t stime;
 46         atomic64_t sum_exec_runtime;
 47 };
 48 
 49 #define INIT_CPUTIME_ATOMIC \
 50         (struct task_cputime_atomic) {                          \
 51                 .utime = ATOMIC64_INIT(0),                      \
 52                 .stime = ATOMIC64_INIT(0),                      \
 53                 .sum_exec_runtime = ATOMIC64_INIT(0),           \
 54         }
 55 /**
 56  * struct thread_group_cputimer - thread group interval timer counts
 57  * @cputime_atomic:     atomic thread group interval timers.
 58  * @running:            true when there are timers running and
 59  *                      @cputime_atomic receives updates.
 60  * @checking_timer:     true when a thread in the group is in the
 61  *                      process of checking for thread group timers.
 62  *
 63  * This structure contains the version of task_cputime, above, that is
 64  * used for thread group CPU timer calculations.
 65  */
 66 struct thread_group_cputimer {
 67         struct task_cputime_atomic cputime_atomic;
 68         bool running;
 69         bool checking_timer;
 70 };
 71 
 72 /*
 73  * NOTE! "signal_struct" does not have its own
 74  * locking, because a shared signal_struct always
 75  * implies a shared sighand_struct, so locking
 76  * sighand_struct is always a proper superset of
 77  * the locking of signal_struct.
 78  */
 79 struct signal_struct {
 80         atomic_t                sigcnt;
 81         atomic_t                live;
 82         int                     nr_threads;
 83         struct list_head        thread_head;
 84 
 85         wait_queue_head_t       wait_chldexit;  /* for wait4() */
 86 
 87         /* current thread group signal load-balancing target: */
 88         struct task_struct      *curr_target;
 89 
 90         /* shared signal handling: */
 91         struct sigpending       shared_pending;
 92 
 93         /* thread group exit support */
 94         int                     group_exit_code;
 95         /* overloaded:
 96          * - notify group_exit_task when ->count is equal to notify_count
 97          * - everyone except group_exit_task is stopped during signal delivery
 98          *   of fatal signals, group_exit_task processes the signal.
 99          */
100         int                     notify_count;
101         struct task_struct      *group_exit_task;
102 
103         /* thread group stop support, overloads group_exit_code too */
104         int                     group_stop_count;
105         unsigned int            flags; /* see SIGNAL_* flags below */
106 
107         /*
108          * PR_SET_CHILD_SUBREAPER marks a process, like a service
109          * manager, to re-parent orphan (double-forking) child processes
110          * to this process instead of 'init'. The service manager is
111          * able to receive SIGCHLD signals and is able to investigate
112          * the process until it calls wait(). All children of this
113          * process will inherit a flag if they should look for a
114          * child_subreaper process at exit.
115          */
116         unsigned int            is_child_subreaper:1;
117         unsigned int            has_child_subreaper:1;
118 
119 #ifdef CONFIG_POSIX_TIMERS
120 
121         /* POSIX.1b Interval Timers */
122         int                     posix_timer_id;
123         struct list_head        posix_timers;
124 
125         /* ITIMER_REAL timer for the process */
126         struct hrtimer real_timer;
127         ktime_t it_real_incr;
128 
129         /*
130          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
131          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
132          * values are defined to 0 and 1 respectively
133          */
134         struct cpu_itimer it[2];
135 
136         /*
137          * Thread group totals for process CPU timers.
138          * See thread_group_cputimer(), et al, for details.
139          */
140         struct thread_group_cputimer cputimer;
141 
142         /* Earliest-expiration cache. */
143         struct task_cputime cputime_expires;
144 
145         struct list_head cpu_timers[3];
146 
147 #endif
148 
149         struct pid *leader_pid;
150 
151 #ifdef CONFIG_NO_HZ_FULL
152         atomic_t tick_dep_mask;
153 #endif
154 
155         struct pid *tty_old_pgrp;
156 
157         /* boolean value for session group leader */
158         int leader;
159 
160         struct tty_struct *tty; /* NULL if no tty */
161 
162 #ifdef CONFIG_SCHED_AUTOGROUP
163         struct autogroup *autogroup;
164 #endif
165         /*
166          * Cumulative resource counters for dead threads in the group,
167          * and for reaped dead child processes forked by this group.
168          * Live threads maintain their own counters and add to these
169          * in __exit_signal, except for the group leader.
170          */
171         seqlock_t stats_lock;
172         u64 utime, stime, cutime, cstime;
173         u64 gtime;
174         u64 cgtime;
175         struct prev_cputime prev_cputime;
176         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
177         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
178         unsigned long inblock, oublock, cinblock, coublock;
179         unsigned long maxrss, cmaxrss;
180         struct task_io_accounting ioac;
181 
182         /*
183          * Cumulative ns of schedule CPU time fo dead threads in the
184          * group, not including a zombie group leader, (This only differs
185          * from jiffies_to_ns(utime + stime) if sched_clock uses something
186          * other than jiffies.)
187          */
188         unsigned long long sum_sched_runtime;
189 
190         /*
191          * We don't bother to synchronize most readers of this at all,
192          * because there is no reader checking a limit that actually needs
193          * to get both rlim_cur and rlim_max atomically, and either one
194          * alone is a single word that can safely be read normally.
195          * getrlimit/setrlimit use task_lock(current->group_leader) to
196          * protect this instead of the siglock, because they really
197          * have no need to disable irqs.
198          */
199         struct rlimit rlim[RLIM_NLIMITS];
200 
201 #ifdef CONFIG_BSD_PROCESS_ACCT
202         struct pacct_struct pacct;      /* per-process accounting information */
203 #endif
204 #ifdef CONFIG_TASKSTATS
205         struct taskstats *stats;
206 #endif
207 #ifdef CONFIG_AUDIT
208         unsigned audit_tty;
209         struct tty_audit_buf *tty_audit_buf;
210 #endif
211 
212         /*
213          * Thread is the potential origin of an oom condition; kill first on
214          * oom
215          */
216         bool oom_flag_origin;
217         short oom_score_adj;            /* OOM kill score adjustment */
218         short oom_score_adj_min;        /* OOM kill score adjustment min value.
219                                          * Only settable by CAP_SYS_RESOURCE. */
220         struct mm_struct *oom_mm;       /* recorded mm when the thread group got
221                                          * killed by the oom killer */
222 
223         struct mutex cred_guard_mutex;  /* guard against foreign influences on
224                                          * credential calculations
225                                          * (notably. ptrace) */
226 } __randomize_layout;
227 
228 /*
229  * Bits in flags field of signal_struct.
230  */
231 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
232 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
233 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
234 #define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
235 /*
236  * Pending notifications to parent.
237  */
238 #define SIGNAL_CLD_STOPPED      0x00000010
239 #define SIGNAL_CLD_CONTINUED    0x00000020
240 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
241 
242 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
243 
244 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
245                           SIGNAL_STOP_CONTINUED)
246 
247 static inline void signal_set_stop_flags(struct signal_struct *sig,
248                                          unsigned int flags)
249 {
250         WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
251         sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
252 }
253 
254 /* If true, all threads except ->group_exit_task have pending SIGKILL */
255 static inline int signal_group_exit(const struct signal_struct *sig)
256 {
257         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
258                 (sig->group_exit_task != NULL);
259 }
260 
261 extern void flush_signals(struct task_struct *);
262 extern void ignore_signals(struct task_struct *);
263 extern void flush_signal_handlers(struct task_struct *, int force_default);
264 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
265 
266 static inline int kernel_dequeue_signal(siginfo_t *info)
267 {
268         struct task_struct *tsk = current;
269         siginfo_t __info;
270         int ret;
271 
272         spin_lock_irq(&tsk->sighand->siglock);
273         ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
274         spin_unlock_irq(&tsk->sighand->siglock);
275 
276         return ret;
277 }
278 
279 static inline void kernel_signal_stop(void)
280 {
281         spin_lock_irq(&current->sighand->siglock);
282         if (current->jobctl & JOBCTL_STOP_DEQUEUED)
283                 set_special_state(TASK_STOPPED);
284         spin_unlock_irq(&current->sighand->siglock);
285 
286         schedule();
287 }
288 #ifdef __ARCH_SI_TRAPNO
289 # define ___ARCH_SI_TRAPNO(_a1) , _a1
290 #else
291 # define ___ARCH_SI_TRAPNO(_a1)
292 #endif
293 #ifdef __ia64__
294 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
295 #else
296 # define ___ARCH_SI_IA64(_a1, _a2, _a3)
297 #endif
298 
299 int force_sig_fault(int sig, int code, void __user *addr
300         ___ARCH_SI_TRAPNO(int trapno)
301         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
302         , struct task_struct *t);
303 int send_sig_fault(int sig, int code, void __user *addr
304         ___ARCH_SI_TRAPNO(int trapno)
305         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
306         , struct task_struct *t);
307 
308 int force_sig_mceerr(int code, void __user *, short, struct task_struct *);
309 int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
310 
311 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
312 int force_sig_pkuerr(void __user *addr, u32 pkey);
313 
314 int force_sig_ptrace_errno_trap(int errno, void __user *addr);
315 
316 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
317 extern int force_sigsegv(int, struct task_struct *);
318 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
319 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
320 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
321 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
322                                 const struct cred *);
323 extern int kill_pgrp(struct pid *pid, int sig, int priv);
324 extern int kill_pid(struct pid *pid, int sig, int priv);
325 extern __must_check bool do_notify_parent(struct task_struct *, int);
326 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
327 extern void force_sig(int, struct task_struct *);
328 extern int send_sig(int, struct task_struct *, int);
329 extern int zap_other_threads(struct task_struct *p);
330 extern struct sigqueue *sigqueue_alloc(void);
331 extern void sigqueue_free(struct sigqueue *);
332 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
333 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
334 
335 static inline int restart_syscall(void)
336 {
337         set_tsk_thread_flag(current, TIF_SIGPENDING);
338         return -ERESTARTNOINTR;
339 }
340 
341 static inline int signal_pending(struct task_struct *p)
342 {
343         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
344 }
345 
346 static inline int __fatal_signal_pending(struct task_struct *p)
347 {
348         return unlikely(sigismember(&p->pending.signal, SIGKILL));
349 }
350 
351 static inline int fatal_signal_pending(struct task_struct *p)
352 {
353         return signal_pending(p) && __fatal_signal_pending(p);
354 }
355 
356 static inline int signal_pending_state(long state, struct task_struct *p)
357 {
358         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
359                 return 0;
360         if (!signal_pending(p))
361                 return 0;
362 
363         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
364 }
365 
366 /*
367  * Reevaluate whether the task has signals pending delivery.
368  * Wake the task if so.
369  * This is required every time the blocked sigset_t changes.
370  * callers must hold sighand->siglock.
371  */
372 extern void recalc_sigpending_and_wake(struct task_struct *t);
373 extern void recalc_sigpending(void);
374 
375 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
376 
377 static inline void signal_wake_up(struct task_struct *t, bool resume)
378 {
379         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
380 }
381 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
382 {
383         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
384 }
385 
386 #ifdef TIF_RESTORE_SIGMASK
387 /*
388  * Legacy restore_sigmask accessors.  These are inefficient on
389  * SMP architectures because they require atomic operations.
390  */
391 
392 /**
393  * set_restore_sigmask() - make sure saved_sigmask processing gets done
394  *
395  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
396  * will run before returning to user mode, to process the flag.  For
397  * all callers, TIF_SIGPENDING is already set or it's no harm to set
398  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
399  * arch code will notice on return to user mode, in case those bits
400  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
401  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
402  */
403 static inline void set_restore_sigmask(void)
404 {
405         set_thread_flag(TIF_RESTORE_SIGMASK);
406         WARN_ON(!test_thread_flag(TIF_SIGPENDING));
407 }
408 static inline void clear_restore_sigmask(void)
409 {
410         clear_thread_flag(TIF_RESTORE_SIGMASK);
411 }
412 static inline bool test_restore_sigmask(void)
413 {
414         return test_thread_flag(TIF_RESTORE_SIGMASK);
415 }
416 static inline bool test_and_clear_restore_sigmask(void)
417 {
418         return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
419 }
420 
421 #else   /* TIF_RESTORE_SIGMASK */
422 
423 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
424 static inline void set_restore_sigmask(void)
425 {
426         current->restore_sigmask = true;
427         WARN_ON(!test_thread_flag(TIF_SIGPENDING));
428 }
429 static inline void clear_restore_sigmask(void)
430 {
431         current->restore_sigmask = false;
432 }
433 static inline bool test_restore_sigmask(void)
434 {
435         return current->restore_sigmask;
436 }
437 static inline bool test_and_clear_restore_sigmask(void)
438 {
439         if (!current->restore_sigmask)
440                 return false;
441         current->restore_sigmask = false;
442         return true;
443 }
444 #endif
445 
446 static inline void restore_saved_sigmask(void)
447 {
448         if (test_and_clear_restore_sigmask())
449                 __set_current_blocked(&current->saved_sigmask);
450 }
451 
452 static inline sigset_t *sigmask_to_save(void)
453 {
454         sigset_t *res = &current->blocked;
455         if (unlikely(test_restore_sigmask()))
456                 res = &current->saved_sigmask;
457         return res;
458 }
459 
460 static inline int kill_cad_pid(int sig, int priv)
461 {
462         return kill_pid(cad_pid, sig, priv);
463 }
464 
465 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
466 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
467 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
468 #define SEND_SIG_FORCED ((struct siginfo *) 2)
469 
470 /*
471  * True if we are on the alternate signal stack.
472  */
473 static inline int on_sig_stack(unsigned long sp)
474 {
475         /*
476          * If the signal stack is SS_AUTODISARM then, by construction, we
477          * can't be on the signal stack unless user code deliberately set
478          * SS_AUTODISARM when we were already on it.
479          *
480          * This improves reliability: if user state gets corrupted such that
481          * the stack pointer points very close to the end of the signal stack,
482          * then this check will enable the signal to be handled anyway.
483          */
484         if (current->sas_ss_flags & SS_AUTODISARM)
485                 return 0;
486 
487 #ifdef CONFIG_STACK_GROWSUP
488         return sp >= current->sas_ss_sp &&
489                 sp - current->sas_ss_sp < current->sas_ss_size;
490 #else
491         return sp > current->sas_ss_sp &&
492                 sp - current->sas_ss_sp <= current->sas_ss_size;
493 #endif
494 }
495 
496 static inline int sas_ss_flags(unsigned long sp)
497 {
498         if (!current->sas_ss_size)
499                 return SS_DISABLE;
500 
501         return on_sig_stack(sp) ? SS_ONSTACK : 0;
502 }
503 
504 static inline void sas_ss_reset(struct task_struct *p)
505 {
506         p->sas_ss_sp = 0;
507         p->sas_ss_size = 0;
508         p->sas_ss_flags = SS_DISABLE;
509 }
510 
511 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
512 {
513         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
514 #ifdef CONFIG_STACK_GROWSUP
515                 return current->sas_ss_sp;
516 #else
517                 return current->sas_ss_sp + current->sas_ss_size;
518 #endif
519         return sp;
520 }
521 
522 extern void __cleanup_sighand(struct sighand_struct *);
523 extern void flush_itimer_signals(void);
524 
525 #define tasklist_empty() \
526         list_empty(&init_task.tasks)
527 
528 #define next_task(p) \
529         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
530 
531 #define for_each_process(p) \
532         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
533 
534 extern bool current_is_single_threaded(void);
535 
536 /*
537  * Careful: do_each_thread/while_each_thread is a double loop so
538  *          'break' will not work as expected - use goto instead.
539  */
540 #define do_each_thread(g, t) \
541         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
542 
543 #define while_each_thread(g, t) \
544         while ((t = next_thread(t)) != g)
545 
546 #define __for_each_thread(signal, t)    \
547         list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
548 
549 #define for_each_thread(p, t)           \
550         __for_each_thread((p)->signal, t)
551 
552 /* Careful: this is a double loop, 'break' won't work as expected. */
553 #define for_each_process_thread(p, t)   \
554         for_each_process(p) for_each_thread(p, t)
555 
556 typedef int (*proc_visitor)(struct task_struct *p, void *data);
557 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
558 
559 static inline int get_nr_threads(struct task_struct *tsk)
560 {
561         return tsk->signal->nr_threads;
562 }
563 
564 static inline bool thread_group_leader(struct task_struct *p)
565 {
566         return p->exit_signal >= 0;
567 }
568 
569 /* Do to the insanities of de_thread it is possible for a process
570  * to have the pid of the thread group leader without actually being
571  * the thread group leader.  For iteration through the pids in proc
572  * all we care about is that we have a task with the appropriate
573  * pid, we don't actually care if we have the right task.
574  */
575 static inline bool has_group_leader_pid(struct task_struct *p)
576 {
577         return task_pid(p) == p->signal->leader_pid;
578 }
579 
580 static inline
581 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
582 {
583         return p1->signal == p2->signal;
584 }
585 
586 static inline struct task_struct *next_thread(const struct task_struct *p)
587 {
588         return list_entry_rcu(p->thread_group.next,
589                               struct task_struct, thread_group);
590 }
591 
592 static inline int thread_group_empty(struct task_struct *p)
593 {
594         return list_empty(&p->thread_group);
595 }
596 
597 #define delay_group_leader(p) \
598                 (thread_group_leader(p) && !thread_group_empty(p))
599 
600 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
601                                                         unsigned long *flags);
602 
603 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
604                                                        unsigned long *flags)
605 {
606         struct sighand_struct *ret;
607 
608         ret = __lock_task_sighand(tsk, flags);
609         (void)__cond_lock(&tsk->sighand->siglock, ret);
610         return ret;
611 }
612 
613 static inline void unlock_task_sighand(struct task_struct *tsk,
614                                                 unsigned long *flags)
615 {
616         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
617 }
618 
619 static inline unsigned long task_rlimit(const struct task_struct *tsk,
620                 unsigned int limit)
621 {
622         return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
623 }
624 
625 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
626                 unsigned int limit)
627 {
628         return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
629 }
630 
631 static inline unsigned long rlimit(unsigned int limit)
632 {
633         return task_rlimit(current, limit);
634 }
635 
636 static inline unsigned long rlimit_max(unsigned int limit)
637 {
638         return task_rlimit_max(current, limit);
639 }
640 
641 #endif /* _LINUX_SCHED_SIGNAL_H */
642 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp