~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/rdma/ib_verbs.h

Version: ~ [ linux-5.14-rc1 ] ~ [ linux-5.13.1 ] ~ [ linux-5.12.16 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.49 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.131 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.197 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.239 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.275 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.275 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
  3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
  4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
  5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
  6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
  7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
  8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
  9  *
 10  * This software is available to you under a choice of one of two
 11  * licenses.  You may choose to be licensed under the terms of the GNU
 12  * General Public License (GPL) Version 2, available from the file
 13  * COPYING in the main directory of this source tree, or the
 14  * OpenIB.org BSD license below:
 15  *
 16  *     Redistribution and use in source and binary forms, with or
 17  *     without modification, are permitted provided that the following
 18  *     conditions are met:
 19  *
 20  *      - Redistributions of source code must retain the above
 21  *        copyright notice, this list of conditions and the following
 22  *        disclaimer.
 23  *
 24  *      - Redistributions in binary form must reproduce the above
 25  *        copyright notice, this list of conditions and the following
 26  *        disclaimer in the documentation and/or other materials
 27  *        provided with the distribution.
 28  *
 29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 36  * SOFTWARE.
 37  */
 38 
 39 #if !defined(IB_VERBS_H)
 40 #define IB_VERBS_H
 41 
 42 #include <linux/types.h>
 43 #include <linux/device.h>
 44 #include <linux/mm.h>
 45 #include <linux/dma-mapping.h>
 46 #include <linux/kref.h>
 47 #include <linux/list.h>
 48 #include <linux/rwsem.h>
 49 #include <linux/scatterlist.h>
 50 #include <linux/workqueue.h>
 51 #include <linux/socket.h>
 52 #include <linux/irq_poll.h>
 53 #include <uapi/linux/if_ether.h>
 54 #include <net/ipv6.h>
 55 #include <net/ip.h>
 56 #include <linux/string.h>
 57 #include <linux/slab.h>
 58 
 59 #include <linux/if_link.h>
 60 #include <linux/atomic.h>
 61 #include <linux/mmu_notifier.h>
 62 #include <asm/uaccess.h>
 63 
 64 extern struct workqueue_struct *ib_wq;
 65 extern struct workqueue_struct *ib_comp_wq;
 66 
 67 union ib_gid {
 68         u8      raw[16];
 69         struct {
 70                 __be64  subnet_prefix;
 71                 __be64  interface_id;
 72         } global;
 73 };
 74 
 75 extern union ib_gid zgid;
 76 
 77 enum ib_gid_type {
 78         /* If link layer is Ethernet, this is RoCE V1 */
 79         IB_GID_TYPE_IB        = 0,
 80         IB_GID_TYPE_ROCE      = 0,
 81         IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
 82         IB_GID_TYPE_SIZE
 83 };
 84 
 85 #define ROCE_V2_UDP_DPORT      4791
 86 struct ib_gid_attr {
 87         enum ib_gid_type        gid_type;
 88         struct net_device       *ndev;
 89 };
 90 
 91 enum rdma_node_type {
 92         /* IB values map to NodeInfo:NodeType. */
 93         RDMA_NODE_IB_CA         = 1,
 94         RDMA_NODE_IB_SWITCH,
 95         RDMA_NODE_IB_ROUTER,
 96         RDMA_NODE_RNIC,
 97         RDMA_NODE_USNIC,
 98         RDMA_NODE_USNIC_UDP,
 99 };
100 
101 enum {
102         /* set the local administered indication */
103         IB_SA_WELL_KNOWN_GUID   = BIT_ULL(57) | 2,
104 };
105 
106 enum rdma_transport_type {
107         RDMA_TRANSPORT_IB,
108         RDMA_TRANSPORT_IWARP,
109         RDMA_TRANSPORT_USNIC,
110         RDMA_TRANSPORT_USNIC_UDP
111 };
112 
113 enum rdma_protocol_type {
114         RDMA_PROTOCOL_IB,
115         RDMA_PROTOCOL_IBOE,
116         RDMA_PROTOCOL_IWARP,
117         RDMA_PROTOCOL_USNIC_UDP
118 };
119 
120 __attribute_const__ enum rdma_transport_type
121 rdma_node_get_transport(enum rdma_node_type node_type);
122 
123 enum rdma_network_type {
124         RDMA_NETWORK_IB,
125         RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126         RDMA_NETWORK_IPV4,
127         RDMA_NETWORK_IPV6
128 };
129 
130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
131 {
132         if (network_type == RDMA_NETWORK_IPV4 ||
133             network_type == RDMA_NETWORK_IPV6)
134                 return IB_GID_TYPE_ROCE_UDP_ENCAP;
135 
136         /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137         return IB_GID_TYPE_IB;
138 }
139 
140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141                                                             union ib_gid *gid)
142 {
143         if (gid_type == IB_GID_TYPE_IB)
144                 return RDMA_NETWORK_IB;
145 
146         if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147                 return RDMA_NETWORK_IPV4;
148         else
149                 return RDMA_NETWORK_IPV6;
150 }
151 
152 enum rdma_link_layer {
153         IB_LINK_LAYER_UNSPECIFIED,
154         IB_LINK_LAYER_INFINIBAND,
155         IB_LINK_LAYER_ETHERNET,
156 };
157 
158 enum ib_device_cap_flags {
159         IB_DEVICE_RESIZE_MAX_WR                 = (1 << 0),
160         IB_DEVICE_BAD_PKEY_CNTR                 = (1 << 1),
161         IB_DEVICE_BAD_QKEY_CNTR                 = (1 << 2),
162         IB_DEVICE_RAW_MULTI                     = (1 << 3),
163         IB_DEVICE_AUTO_PATH_MIG                 = (1 << 4),
164         IB_DEVICE_CHANGE_PHY_PORT               = (1 << 5),
165         IB_DEVICE_UD_AV_PORT_ENFORCE            = (1 << 6),
166         IB_DEVICE_CURR_QP_STATE_MOD             = (1 << 7),
167         IB_DEVICE_SHUTDOWN_PORT                 = (1 << 8),
168         IB_DEVICE_INIT_TYPE                     = (1 << 9),
169         IB_DEVICE_PORT_ACTIVE_EVENT             = (1 << 10),
170         IB_DEVICE_SYS_IMAGE_GUID                = (1 << 11),
171         IB_DEVICE_RC_RNR_NAK_GEN                = (1 << 12),
172         IB_DEVICE_SRQ_RESIZE                    = (1 << 13),
173         IB_DEVICE_N_NOTIFY_CQ                   = (1 << 14),
174 
175         /*
176          * This device supports a per-device lkey or stag that can be
177          * used without performing a memory registration for the local
178          * memory.  Note that ULPs should never check this flag, but
179          * instead of use the local_dma_lkey flag in the ib_pd structure,
180          * which will always contain a usable lkey.
181          */
182         IB_DEVICE_LOCAL_DMA_LKEY                = (1 << 15),
183         IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
184         IB_DEVICE_MEM_WINDOW                    = (1 << 17),
185         /*
186          * Devices should set IB_DEVICE_UD_IP_SUM if they support
187          * insertion of UDP and TCP checksum on outgoing UD IPoIB
188          * messages and can verify the validity of checksum for
189          * incoming messages.  Setting this flag implies that the
190          * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
191          */
192         IB_DEVICE_UD_IP_CSUM                    = (1 << 18),
193         IB_DEVICE_UD_TSO                        = (1 << 19),
194         IB_DEVICE_XRC                           = (1 << 20),
195 
196         /*
197          * This device supports the IB "base memory management extension",
198          * which includes support for fast registrations (IB_WR_REG_MR,
199          * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
200          * also be set by any iWarp device which must support FRs to comply
201          * to the iWarp verbs spec.  iWarp devices also support the
202          * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203          * stag.
204          */
205         IB_DEVICE_MEM_MGT_EXTENSIONS            = (1 << 21),
206         IB_DEVICE_BLOCK_MULTICAST_LOOPBACK      = (1 << 22),
207         IB_DEVICE_MEM_WINDOW_TYPE_2A            = (1 << 23),
208         IB_DEVICE_MEM_WINDOW_TYPE_2B            = (1 << 24),
209         IB_DEVICE_RC_IP_CSUM                    = (1 << 25),
210         IB_DEVICE_RAW_IP_CSUM                   = (1 << 26),
211         /*
212          * Devices should set IB_DEVICE_CROSS_CHANNEL if they
213          * support execution of WQEs that involve synchronization
214          * of I/O operations with single completion queue managed
215          * by hardware.
216          */
217         IB_DEVICE_CROSS_CHANNEL         = (1 << 27),
218         IB_DEVICE_MANAGED_FLOW_STEERING         = (1 << 29),
219         IB_DEVICE_SIGNATURE_HANDOVER            = (1 << 30),
220         IB_DEVICE_ON_DEMAND_PAGING              = (1ULL << 31),
221         IB_DEVICE_SG_GAPS_REG                   = (1ULL << 32),
222         IB_DEVICE_VIRTUAL_FUNCTION              = ((u64)1 << 33),
223 };
224 
225 enum ib_signature_prot_cap {
226         IB_PROT_T10DIF_TYPE_1 = 1,
227         IB_PROT_T10DIF_TYPE_2 = 1 << 1,
228         IB_PROT_T10DIF_TYPE_3 = 1 << 2,
229 };
230 
231 enum ib_signature_guard_cap {
232         IB_GUARD_T10DIF_CRC     = 1,
233         IB_GUARD_T10DIF_CSUM    = 1 << 1,
234 };
235 
236 enum ib_atomic_cap {
237         IB_ATOMIC_NONE,
238         IB_ATOMIC_HCA,
239         IB_ATOMIC_GLOB
240 };
241 
242 enum ib_odp_general_cap_bits {
243         IB_ODP_SUPPORT = 1 << 0,
244 };
245 
246 enum ib_odp_transport_cap_bits {
247         IB_ODP_SUPPORT_SEND     = 1 << 0,
248         IB_ODP_SUPPORT_RECV     = 1 << 1,
249         IB_ODP_SUPPORT_WRITE    = 1 << 2,
250         IB_ODP_SUPPORT_READ     = 1 << 3,
251         IB_ODP_SUPPORT_ATOMIC   = 1 << 4,
252 };
253 
254 struct ib_odp_caps {
255         uint64_t general_caps;
256         struct {
257                 uint32_t  rc_odp_caps;
258                 uint32_t  uc_odp_caps;
259                 uint32_t  ud_odp_caps;
260         } per_transport_caps;
261 };
262 
263 enum ib_cq_creation_flags {
264         IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
265         IB_CQ_FLAGS_IGNORE_OVERRUN         = 1 << 1,
266 };
267 
268 struct ib_cq_init_attr {
269         unsigned int    cqe;
270         int             comp_vector;
271         u32             flags;
272 };
273 
274 struct ib_device_attr {
275         u64                     fw_ver;
276         __be64                  sys_image_guid;
277         u64                     max_mr_size;
278         u64                     page_size_cap;
279         u32                     vendor_id;
280         u32                     vendor_part_id;
281         u32                     hw_ver;
282         int                     max_qp;
283         int                     max_qp_wr;
284         u64                     device_cap_flags;
285         int                     max_sge;
286         int                     max_sge_rd;
287         int                     max_cq;
288         int                     max_cqe;
289         int                     max_mr;
290         int                     max_pd;
291         int                     max_qp_rd_atom;
292         int                     max_ee_rd_atom;
293         int                     max_res_rd_atom;
294         int                     max_qp_init_rd_atom;
295         int                     max_ee_init_rd_atom;
296         enum ib_atomic_cap      atomic_cap;
297         enum ib_atomic_cap      masked_atomic_cap;
298         int                     max_ee;
299         int                     max_rdd;
300         int                     max_mw;
301         int                     max_raw_ipv6_qp;
302         int                     max_raw_ethy_qp;
303         int                     max_mcast_grp;
304         int                     max_mcast_qp_attach;
305         int                     max_total_mcast_qp_attach;
306         int                     max_ah;
307         int                     max_fmr;
308         int                     max_map_per_fmr;
309         int                     max_srq;
310         int                     max_srq_wr;
311         int                     max_srq_sge;
312         unsigned int            max_fast_reg_page_list_len;
313         u16                     max_pkeys;
314         u8                      local_ca_ack_delay;
315         int                     sig_prot_cap;
316         int                     sig_guard_cap;
317         struct ib_odp_caps      odp_caps;
318         uint64_t                timestamp_mask;
319         uint64_t                hca_core_clock; /* in KHZ */
320 };
321 
322 enum ib_mtu {
323         IB_MTU_256  = 1,
324         IB_MTU_512  = 2,
325         IB_MTU_1024 = 3,
326         IB_MTU_2048 = 4,
327         IB_MTU_4096 = 5
328 };
329 
330 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
331 {
332         switch (mtu) {
333         case IB_MTU_256:  return  256;
334         case IB_MTU_512:  return  512;
335         case IB_MTU_1024: return 1024;
336         case IB_MTU_2048: return 2048;
337         case IB_MTU_4096: return 4096;
338         default:          return -1;
339         }
340 }
341 
342 enum ib_port_state {
343         IB_PORT_NOP             = 0,
344         IB_PORT_DOWN            = 1,
345         IB_PORT_INIT            = 2,
346         IB_PORT_ARMED           = 3,
347         IB_PORT_ACTIVE          = 4,
348         IB_PORT_ACTIVE_DEFER    = 5
349 };
350 
351 enum ib_port_cap_flags {
352         IB_PORT_SM                              = 1 <<  1,
353         IB_PORT_NOTICE_SUP                      = 1 <<  2,
354         IB_PORT_TRAP_SUP                        = 1 <<  3,
355         IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
356         IB_PORT_AUTO_MIGR_SUP                   = 1 <<  5,
357         IB_PORT_SL_MAP_SUP                      = 1 <<  6,
358         IB_PORT_MKEY_NVRAM                      = 1 <<  7,
359         IB_PORT_PKEY_NVRAM                      = 1 <<  8,
360         IB_PORT_LED_INFO_SUP                    = 1 <<  9,
361         IB_PORT_SM_DISABLED                     = 1 << 10,
362         IB_PORT_SYS_IMAGE_GUID_SUP              = 1 << 11,
363         IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP       = 1 << 12,
364         IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
365         IB_PORT_CM_SUP                          = 1 << 16,
366         IB_PORT_SNMP_TUNNEL_SUP                 = 1 << 17,
367         IB_PORT_REINIT_SUP                      = 1 << 18,
368         IB_PORT_DEVICE_MGMT_SUP                 = 1 << 19,
369         IB_PORT_VENDOR_CLASS_SUP                = 1 << 20,
370         IB_PORT_DR_NOTICE_SUP                   = 1 << 21,
371         IB_PORT_CAP_MASK_NOTICE_SUP             = 1 << 22,
372         IB_PORT_BOOT_MGMT_SUP                   = 1 << 23,
373         IB_PORT_LINK_LATENCY_SUP                = 1 << 24,
374         IB_PORT_CLIENT_REG_SUP                  = 1 << 25,
375         IB_PORT_IP_BASED_GIDS                   = 1 << 26,
376 };
377 
378 enum ib_port_width {
379         IB_WIDTH_1X     = 1,
380         IB_WIDTH_4X     = 2,
381         IB_WIDTH_8X     = 4,
382         IB_WIDTH_12X    = 8
383 };
384 
385 static inline int ib_width_enum_to_int(enum ib_port_width width)
386 {
387         switch (width) {
388         case IB_WIDTH_1X:  return  1;
389         case IB_WIDTH_4X:  return  4;
390         case IB_WIDTH_8X:  return  8;
391         case IB_WIDTH_12X: return 12;
392         default:          return -1;
393         }
394 }
395 
396 enum ib_port_speed {
397         IB_SPEED_SDR    = 1,
398         IB_SPEED_DDR    = 2,
399         IB_SPEED_QDR    = 4,
400         IB_SPEED_FDR10  = 8,
401         IB_SPEED_FDR    = 16,
402         IB_SPEED_EDR    = 32
403 };
404 
405 struct ib_protocol_stats {
406         /* TBD... */
407 };
408 
409 struct iw_protocol_stats {
410         u64     ipInReceives;
411         u64     ipInHdrErrors;
412         u64     ipInTooBigErrors;
413         u64     ipInNoRoutes;
414         u64     ipInAddrErrors;
415         u64     ipInUnknownProtos;
416         u64     ipInTruncatedPkts;
417         u64     ipInDiscards;
418         u64     ipInDelivers;
419         u64     ipOutForwDatagrams;
420         u64     ipOutRequests;
421         u64     ipOutDiscards;
422         u64     ipOutNoRoutes;
423         u64     ipReasmTimeout;
424         u64     ipReasmReqds;
425         u64     ipReasmOKs;
426         u64     ipReasmFails;
427         u64     ipFragOKs;
428         u64     ipFragFails;
429         u64     ipFragCreates;
430         u64     ipInMcastPkts;
431         u64     ipOutMcastPkts;
432         u64     ipInBcastPkts;
433         u64     ipOutBcastPkts;
434 
435         u64     tcpRtoAlgorithm;
436         u64     tcpRtoMin;
437         u64     tcpRtoMax;
438         u64     tcpMaxConn;
439         u64     tcpActiveOpens;
440         u64     tcpPassiveOpens;
441         u64     tcpAttemptFails;
442         u64     tcpEstabResets;
443         u64     tcpCurrEstab;
444         u64     tcpInSegs;
445         u64     tcpOutSegs;
446         u64     tcpRetransSegs;
447         u64     tcpInErrs;
448         u64     tcpOutRsts;
449 };
450 
451 union rdma_protocol_stats {
452         struct ib_protocol_stats        ib;
453         struct iw_protocol_stats        iw;
454 };
455 
456 /* Define bits for the various functionality this port needs to be supported by
457  * the core.
458  */
459 /* Management                           0x00000FFF */
460 #define RDMA_CORE_CAP_IB_MAD            0x00000001
461 #define RDMA_CORE_CAP_IB_SMI            0x00000002
462 #define RDMA_CORE_CAP_IB_CM             0x00000004
463 #define RDMA_CORE_CAP_IW_CM             0x00000008
464 #define RDMA_CORE_CAP_IB_SA             0x00000010
465 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
466 
467 /* Address format                       0x000FF000 */
468 #define RDMA_CORE_CAP_AF_IB             0x00001000
469 #define RDMA_CORE_CAP_ETH_AH            0x00002000
470 
471 /* Protocol                             0xFFF00000 */
472 #define RDMA_CORE_CAP_PROT_IB           0x00100000
473 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
474 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
475 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
476 
477 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
478                                         | RDMA_CORE_CAP_IB_MAD \
479                                         | RDMA_CORE_CAP_IB_SMI \
480                                         | RDMA_CORE_CAP_IB_CM  \
481                                         | RDMA_CORE_CAP_IB_SA  \
482                                         | RDMA_CORE_CAP_AF_IB)
483 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
484                                         | RDMA_CORE_CAP_IB_MAD  \
485                                         | RDMA_CORE_CAP_IB_CM   \
486                                         | RDMA_CORE_CAP_AF_IB   \
487                                         | RDMA_CORE_CAP_ETH_AH)
488 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP                       \
489                                         (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
490                                         | RDMA_CORE_CAP_IB_MAD  \
491                                         | RDMA_CORE_CAP_IB_CM   \
492                                         | RDMA_CORE_CAP_AF_IB   \
493                                         | RDMA_CORE_CAP_ETH_AH)
494 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
495                                         | RDMA_CORE_CAP_IW_CM)
496 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
497                                         | RDMA_CORE_CAP_OPA_MAD)
498 
499 struct ib_port_attr {
500         u64                     subnet_prefix;
501         enum ib_port_state      state;
502         enum ib_mtu             max_mtu;
503         enum ib_mtu             active_mtu;
504         int                     gid_tbl_len;
505         u32                     port_cap_flags;
506         u32                     max_msg_sz;
507         u32                     bad_pkey_cntr;
508         u32                     qkey_viol_cntr;
509         u16                     pkey_tbl_len;
510         u16                     lid;
511         u16                     sm_lid;
512         u8                      lmc;
513         u8                      max_vl_num;
514         u8                      sm_sl;
515         u8                      subnet_timeout;
516         u8                      init_type_reply;
517         u8                      active_width;
518         u8                      active_speed;
519         u8                      phys_state;
520         bool                    grh_required;
521 };
522 
523 enum ib_device_modify_flags {
524         IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
525         IB_DEVICE_MODIFY_NODE_DESC      = 1 << 1
526 };
527 
528 struct ib_device_modify {
529         u64     sys_image_guid;
530         char    node_desc[64];
531 };
532 
533 enum ib_port_modify_flags {
534         IB_PORT_SHUTDOWN                = 1,
535         IB_PORT_INIT_TYPE               = (1<<2),
536         IB_PORT_RESET_QKEY_CNTR         = (1<<3)
537 };
538 
539 struct ib_port_modify {
540         u32     set_port_cap_mask;
541         u32     clr_port_cap_mask;
542         u8      init_type;
543 };
544 
545 enum ib_event_type {
546         IB_EVENT_CQ_ERR,
547         IB_EVENT_QP_FATAL,
548         IB_EVENT_QP_REQ_ERR,
549         IB_EVENT_QP_ACCESS_ERR,
550         IB_EVENT_COMM_EST,
551         IB_EVENT_SQ_DRAINED,
552         IB_EVENT_PATH_MIG,
553         IB_EVENT_PATH_MIG_ERR,
554         IB_EVENT_DEVICE_FATAL,
555         IB_EVENT_PORT_ACTIVE,
556         IB_EVENT_PORT_ERR,
557         IB_EVENT_LID_CHANGE,
558         IB_EVENT_PKEY_CHANGE,
559         IB_EVENT_SM_CHANGE,
560         IB_EVENT_SRQ_ERR,
561         IB_EVENT_SRQ_LIMIT_REACHED,
562         IB_EVENT_QP_LAST_WQE_REACHED,
563         IB_EVENT_CLIENT_REREGISTER,
564         IB_EVENT_GID_CHANGE,
565 };
566 
567 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
568 
569 struct ib_event {
570         struct ib_device        *device;
571         union {
572                 struct ib_cq    *cq;
573                 struct ib_qp    *qp;
574                 struct ib_srq   *srq;
575                 u8              port_num;
576         } element;
577         enum ib_event_type      event;
578 };
579 
580 struct ib_event_handler {
581         struct ib_device *device;
582         void            (*handler)(struct ib_event_handler *, struct ib_event *);
583         struct list_head  list;
584 };
585 
586 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)          \
587         do {                                                    \
588                 (_ptr)->device  = _device;                      \
589                 (_ptr)->handler = _handler;                     \
590                 INIT_LIST_HEAD(&(_ptr)->list);                  \
591         } while (0)
592 
593 struct ib_global_route {
594         union ib_gid    dgid;
595         u32             flow_label;
596         u8              sgid_index;
597         u8              hop_limit;
598         u8              traffic_class;
599 };
600 
601 struct ib_grh {
602         __be32          version_tclass_flow;
603         __be16          paylen;
604         u8              next_hdr;
605         u8              hop_limit;
606         union ib_gid    sgid;
607         union ib_gid    dgid;
608 };
609 
610 union rdma_network_hdr {
611         struct ib_grh ibgrh;
612         struct {
613                 /* The IB spec states that if it's IPv4, the header
614                  * is located in the last 20 bytes of the header.
615                  */
616                 u8              reserved[20];
617                 struct iphdr    roce4grh;
618         };
619 };
620 
621 enum {
622         IB_MULTICAST_QPN = 0xffffff
623 };
624 
625 #define IB_LID_PERMISSIVE       cpu_to_be16(0xFFFF)
626 #define IB_MULTICAST_LID_BASE   cpu_to_be16(0xC000)
627 
628 enum ib_ah_flags {
629         IB_AH_GRH       = 1
630 };
631 
632 enum ib_rate {
633         IB_RATE_PORT_CURRENT = 0,
634         IB_RATE_2_5_GBPS = 2,
635         IB_RATE_5_GBPS   = 5,
636         IB_RATE_10_GBPS  = 3,
637         IB_RATE_20_GBPS  = 6,
638         IB_RATE_30_GBPS  = 4,
639         IB_RATE_40_GBPS  = 7,
640         IB_RATE_60_GBPS  = 8,
641         IB_RATE_80_GBPS  = 9,
642         IB_RATE_120_GBPS = 10,
643         IB_RATE_14_GBPS  = 11,
644         IB_RATE_56_GBPS  = 12,
645         IB_RATE_112_GBPS = 13,
646         IB_RATE_168_GBPS = 14,
647         IB_RATE_25_GBPS  = 15,
648         IB_RATE_100_GBPS = 16,
649         IB_RATE_200_GBPS = 17,
650         IB_RATE_300_GBPS = 18
651 };
652 
653 /**
654  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
655  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
656  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
657  * @rate: rate to convert.
658  */
659 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
660 
661 /**
662  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
663  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
664  * @rate: rate to convert.
665  */
666 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
667 
668 
669 /**
670  * enum ib_mr_type - memory region type
671  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
672  *                            normal registration
673  * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
674  *                            signature operations (data-integrity
675  *                            capable regions)
676  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
677  *                            register any arbitrary sg lists (without
678  *                            the normal mr constraints - see
679  *                            ib_map_mr_sg)
680  */
681 enum ib_mr_type {
682         IB_MR_TYPE_MEM_REG,
683         IB_MR_TYPE_SIGNATURE,
684         IB_MR_TYPE_SG_GAPS,
685 };
686 
687 /**
688  * Signature types
689  * IB_SIG_TYPE_NONE: Unprotected.
690  * IB_SIG_TYPE_T10_DIF: Type T10-DIF
691  */
692 enum ib_signature_type {
693         IB_SIG_TYPE_NONE,
694         IB_SIG_TYPE_T10_DIF,
695 };
696 
697 /**
698  * Signature T10-DIF block-guard types
699  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
700  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
701  */
702 enum ib_t10_dif_bg_type {
703         IB_T10DIF_CRC,
704         IB_T10DIF_CSUM
705 };
706 
707 /**
708  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
709  *     domain.
710  * @bg_type: T10-DIF block guard type (CRC|CSUM)
711  * @pi_interval: protection information interval.
712  * @bg: seed of guard computation.
713  * @app_tag: application tag of guard block
714  * @ref_tag: initial guard block reference tag.
715  * @ref_remap: Indicate wethear the reftag increments each block
716  * @app_escape: Indicate to skip block check if apptag=0xffff
717  * @ref_escape: Indicate to skip block check if reftag=0xffffffff
718  * @apptag_check_mask: check bitmask of application tag.
719  */
720 struct ib_t10_dif_domain {
721         enum ib_t10_dif_bg_type bg_type;
722         u16                     pi_interval;
723         u16                     bg;
724         u16                     app_tag;
725         u32                     ref_tag;
726         bool                    ref_remap;
727         bool                    app_escape;
728         bool                    ref_escape;
729         u16                     apptag_check_mask;
730 };
731 
732 /**
733  * struct ib_sig_domain - Parameters for signature domain
734  * @sig_type: specific signauture type
735  * @sig: union of all signature domain attributes that may
736  *     be used to set domain layout.
737  */
738 struct ib_sig_domain {
739         enum ib_signature_type sig_type;
740         union {
741                 struct ib_t10_dif_domain dif;
742         } sig;
743 };
744 
745 /**
746  * struct ib_sig_attrs - Parameters for signature handover operation
747  * @check_mask: bitmask for signature byte check (8 bytes)
748  * @mem: memory domain layout desciptor.
749  * @wire: wire domain layout desciptor.
750  */
751 struct ib_sig_attrs {
752         u8                      check_mask;
753         struct ib_sig_domain    mem;
754         struct ib_sig_domain    wire;
755 };
756 
757 enum ib_sig_err_type {
758         IB_SIG_BAD_GUARD,
759         IB_SIG_BAD_REFTAG,
760         IB_SIG_BAD_APPTAG,
761 };
762 
763 /**
764  * struct ib_sig_err - signature error descriptor
765  */
766 struct ib_sig_err {
767         enum ib_sig_err_type    err_type;
768         u32                     expected;
769         u32                     actual;
770         u64                     sig_err_offset;
771         u32                     key;
772 };
773 
774 enum ib_mr_status_check {
775         IB_MR_CHECK_SIG_STATUS = 1,
776 };
777 
778 /**
779  * struct ib_mr_status - Memory region status container
780  *
781  * @fail_status: Bitmask of MR checks status. For each
782  *     failed check a corresponding status bit is set.
783  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
784  *     failure.
785  */
786 struct ib_mr_status {
787         u32                 fail_status;
788         struct ib_sig_err   sig_err;
789 };
790 
791 /**
792  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
793  * enum.
794  * @mult: multiple to convert.
795  */
796 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
797 
798 struct ib_ah_attr {
799         struct ib_global_route  grh;
800         u16                     dlid;
801         u8                      sl;
802         u8                      src_path_bits;
803         u8                      static_rate;
804         u8                      ah_flags;
805         u8                      port_num;
806         u8                      dmac[ETH_ALEN];
807 };
808 
809 enum ib_wc_status {
810         IB_WC_SUCCESS,
811         IB_WC_LOC_LEN_ERR,
812         IB_WC_LOC_QP_OP_ERR,
813         IB_WC_LOC_EEC_OP_ERR,
814         IB_WC_LOC_PROT_ERR,
815         IB_WC_WR_FLUSH_ERR,
816         IB_WC_MW_BIND_ERR,
817         IB_WC_BAD_RESP_ERR,
818         IB_WC_LOC_ACCESS_ERR,
819         IB_WC_REM_INV_REQ_ERR,
820         IB_WC_REM_ACCESS_ERR,
821         IB_WC_REM_OP_ERR,
822         IB_WC_RETRY_EXC_ERR,
823         IB_WC_RNR_RETRY_EXC_ERR,
824         IB_WC_LOC_RDD_VIOL_ERR,
825         IB_WC_REM_INV_RD_REQ_ERR,
826         IB_WC_REM_ABORT_ERR,
827         IB_WC_INV_EECN_ERR,
828         IB_WC_INV_EEC_STATE_ERR,
829         IB_WC_FATAL_ERR,
830         IB_WC_RESP_TIMEOUT_ERR,
831         IB_WC_GENERAL_ERR
832 };
833 
834 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
835 
836 enum ib_wc_opcode {
837         IB_WC_SEND,
838         IB_WC_RDMA_WRITE,
839         IB_WC_RDMA_READ,
840         IB_WC_COMP_SWAP,
841         IB_WC_FETCH_ADD,
842         IB_WC_LSO,
843         IB_WC_LOCAL_INV,
844         IB_WC_REG_MR,
845         IB_WC_MASKED_COMP_SWAP,
846         IB_WC_MASKED_FETCH_ADD,
847 /*
848  * Set value of IB_WC_RECV so consumers can test if a completion is a
849  * receive by testing (opcode & IB_WC_RECV).
850  */
851         IB_WC_RECV                      = 1 << 7,
852         IB_WC_RECV_RDMA_WITH_IMM
853 };
854 
855 enum ib_wc_flags {
856         IB_WC_GRH               = 1,
857         IB_WC_WITH_IMM          = (1<<1),
858         IB_WC_WITH_INVALIDATE   = (1<<2),
859         IB_WC_IP_CSUM_OK        = (1<<3),
860         IB_WC_WITH_SMAC         = (1<<4),
861         IB_WC_WITH_VLAN         = (1<<5),
862         IB_WC_WITH_NETWORK_HDR_TYPE     = (1<<6),
863 };
864 
865 struct ib_wc {
866         union {
867                 u64             wr_id;
868                 struct ib_cqe   *wr_cqe;
869         };
870         enum ib_wc_status       status;
871         enum ib_wc_opcode       opcode;
872         u32                     vendor_err;
873         u32                     byte_len;
874         struct ib_qp           *qp;
875         union {
876                 __be32          imm_data;
877                 u32             invalidate_rkey;
878         } ex;
879         u32                     src_qp;
880         int                     wc_flags;
881         u16                     pkey_index;
882         u16                     slid;
883         u8                      sl;
884         u8                      dlid_path_bits;
885         u8                      port_num;       /* valid only for DR SMPs on switches */
886         u8                      smac[ETH_ALEN];
887         u16                     vlan_id;
888         u8                      network_hdr_type;
889 };
890 
891 enum ib_cq_notify_flags {
892         IB_CQ_SOLICITED                 = 1 << 0,
893         IB_CQ_NEXT_COMP                 = 1 << 1,
894         IB_CQ_SOLICITED_MASK            = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
895         IB_CQ_REPORT_MISSED_EVENTS      = 1 << 2,
896 };
897 
898 enum ib_srq_type {
899         IB_SRQT_BASIC,
900         IB_SRQT_XRC
901 };
902 
903 enum ib_srq_attr_mask {
904         IB_SRQ_MAX_WR   = 1 << 0,
905         IB_SRQ_LIMIT    = 1 << 1,
906 };
907 
908 struct ib_srq_attr {
909         u32     max_wr;
910         u32     max_sge;
911         u32     srq_limit;
912 };
913 
914 struct ib_srq_init_attr {
915         void                  (*event_handler)(struct ib_event *, void *);
916         void                   *srq_context;
917         struct ib_srq_attr      attr;
918         enum ib_srq_type        srq_type;
919 
920         union {
921                 struct {
922                         struct ib_xrcd *xrcd;
923                         struct ib_cq   *cq;
924                 } xrc;
925         } ext;
926 };
927 
928 struct ib_qp_cap {
929         u32     max_send_wr;
930         u32     max_recv_wr;
931         u32     max_send_sge;
932         u32     max_recv_sge;
933         u32     max_inline_data;
934 };
935 
936 enum ib_sig_type {
937         IB_SIGNAL_ALL_WR,
938         IB_SIGNAL_REQ_WR
939 };
940 
941 enum ib_qp_type {
942         /*
943          * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
944          * here (and in that order) since the MAD layer uses them as
945          * indices into a 2-entry table.
946          */
947         IB_QPT_SMI,
948         IB_QPT_GSI,
949 
950         IB_QPT_RC,
951         IB_QPT_UC,
952         IB_QPT_UD,
953         IB_QPT_RAW_IPV6,
954         IB_QPT_RAW_ETHERTYPE,
955         IB_QPT_RAW_PACKET = 8,
956         IB_QPT_XRC_INI = 9,
957         IB_QPT_XRC_TGT,
958         IB_QPT_MAX,
959         /* Reserve a range for qp types internal to the low level driver.
960          * These qp types will not be visible at the IB core layer, so the
961          * IB_QPT_MAX usages should not be affected in the core layer
962          */
963         IB_QPT_RESERVED1 = 0x1000,
964         IB_QPT_RESERVED2,
965         IB_QPT_RESERVED3,
966         IB_QPT_RESERVED4,
967         IB_QPT_RESERVED5,
968         IB_QPT_RESERVED6,
969         IB_QPT_RESERVED7,
970         IB_QPT_RESERVED8,
971         IB_QPT_RESERVED9,
972         IB_QPT_RESERVED10,
973 };
974 
975 enum ib_qp_create_flags {
976         IB_QP_CREATE_IPOIB_UD_LSO               = 1 << 0,
977         IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK   = 1 << 1,
978         IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
979         IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
980         IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
981         IB_QP_CREATE_NETIF_QP                   = 1 << 5,
982         IB_QP_CREATE_SIGNATURE_EN               = 1 << 6,
983         IB_QP_CREATE_USE_GFP_NOIO               = 1 << 7,
984         /* reserve bits 26-31 for low level drivers' internal use */
985         IB_QP_CREATE_RESERVED_START             = 1 << 26,
986         IB_QP_CREATE_RESERVED_END               = 1 << 31,
987 };
988 
989 /*
990  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
991  * callback to destroy the passed in QP.
992  */
993 
994 struct ib_qp_init_attr {
995         void                  (*event_handler)(struct ib_event *, void *);
996         void                   *qp_context;
997         struct ib_cq           *send_cq;
998         struct ib_cq           *recv_cq;
999         struct ib_srq          *srq;
1000         struct ib_xrcd         *xrcd;     /* XRC TGT QPs only */
1001         struct ib_qp_cap        cap;
1002         enum ib_sig_type        sq_sig_type;
1003         enum ib_qp_type         qp_type;
1004         enum ib_qp_create_flags create_flags;
1005         u8                      port_num; /* special QP types only */
1006 };
1007 
1008 struct ib_qp_open_attr {
1009         void                  (*event_handler)(struct ib_event *, void *);
1010         void                   *qp_context;
1011         u32                     qp_num;
1012         enum ib_qp_type         qp_type;
1013 };
1014 
1015 enum ib_rnr_timeout {
1016         IB_RNR_TIMER_655_36 =  0,
1017         IB_RNR_TIMER_000_01 =  1,
1018         IB_RNR_TIMER_000_02 =  2,
1019         IB_RNR_TIMER_000_03 =  3,
1020         IB_RNR_TIMER_000_04 =  4,
1021         IB_RNR_TIMER_000_06 =  5,
1022         IB_RNR_TIMER_000_08 =  6,
1023         IB_RNR_TIMER_000_12 =  7,
1024         IB_RNR_TIMER_000_16 =  8,
1025         IB_RNR_TIMER_000_24 =  9,
1026         IB_RNR_TIMER_000_32 = 10,
1027         IB_RNR_TIMER_000_48 = 11,
1028         IB_RNR_TIMER_000_64 = 12,
1029         IB_RNR_TIMER_000_96 = 13,
1030         IB_RNR_TIMER_001_28 = 14,
1031         IB_RNR_TIMER_001_92 = 15,
1032         IB_RNR_TIMER_002_56 = 16,
1033         IB_RNR_TIMER_003_84 = 17,
1034         IB_RNR_TIMER_005_12 = 18,
1035         IB_RNR_TIMER_007_68 = 19,
1036         IB_RNR_TIMER_010_24 = 20,
1037         IB_RNR_TIMER_015_36 = 21,
1038         IB_RNR_TIMER_020_48 = 22,
1039         IB_RNR_TIMER_030_72 = 23,
1040         IB_RNR_TIMER_040_96 = 24,
1041         IB_RNR_TIMER_061_44 = 25,
1042         IB_RNR_TIMER_081_92 = 26,
1043         IB_RNR_TIMER_122_88 = 27,
1044         IB_RNR_TIMER_163_84 = 28,
1045         IB_RNR_TIMER_245_76 = 29,
1046         IB_RNR_TIMER_327_68 = 30,
1047         IB_RNR_TIMER_491_52 = 31
1048 };
1049 
1050 enum ib_qp_attr_mask {
1051         IB_QP_STATE                     = 1,
1052         IB_QP_CUR_STATE                 = (1<<1),
1053         IB_QP_EN_SQD_ASYNC_NOTIFY       = (1<<2),
1054         IB_QP_ACCESS_FLAGS              = (1<<3),
1055         IB_QP_PKEY_INDEX                = (1<<4),
1056         IB_QP_PORT                      = (1<<5),
1057         IB_QP_QKEY                      = (1<<6),
1058         IB_QP_AV                        = (1<<7),
1059         IB_QP_PATH_MTU                  = (1<<8),
1060         IB_QP_TIMEOUT                   = (1<<9),
1061         IB_QP_RETRY_CNT                 = (1<<10),
1062         IB_QP_RNR_RETRY                 = (1<<11),
1063         IB_QP_RQ_PSN                    = (1<<12),
1064         IB_QP_MAX_QP_RD_ATOMIC          = (1<<13),
1065         IB_QP_ALT_PATH                  = (1<<14),
1066         IB_QP_MIN_RNR_TIMER             = (1<<15),
1067         IB_QP_SQ_PSN                    = (1<<16),
1068         IB_QP_MAX_DEST_RD_ATOMIC        = (1<<17),
1069         IB_QP_PATH_MIG_STATE            = (1<<18),
1070         IB_QP_CAP                       = (1<<19),
1071         IB_QP_DEST_QPN                  = (1<<20),
1072         IB_QP_RESERVED1                 = (1<<21),
1073         IB_QP_RESERVED2                 = (1<<22),
1074         IB_QP_RESERVED3                 = (1<<23),
1075         IB_QP_RESERVED4                 = (1<<24),
1076 };
1077 
1078 enum ib_qp_state {
1079         IB_QPS_RESET,
1080         IB_QPS_INIT,
1081         IB_QPS_RTR,
1082         IB_QPS_RTS,
1083         IB_QPS_SQD,
1084         IB_QPS_SQE,
1085         IB_QPS_ERR
1086 };
1087 
1088 enum ib_mig_state {
1089         IB_MIG_MIGRATED,
1090         IB_MIG_REARM,
1091         IB_MIG_ARMED
1092 };
1093 
1094 enum ib_mw_type {
1095         IB_MW_TYPE_1 = 1,
1096         IB_MW_TYPE_2 = 2
1097 };
1098 
1099 struct ib_qp_attr {
1100         enum ib_qp_state        qp_state;
1101         enum ib_qp_state        cur_qp_state;
1102         enum ib_mtu             path_mtu;
1103         enum ib_mig_state       path_mig_state;
1104         u32                     qkey;
1105         u32                     rq_psn;
1106         u32                     sq_psn;
1107         u32                     dest_qp_num;
1108         int                     qp_access_flags;
1109         struct ib_qp_cap        cap;
1110         struct ib_ah_attr       ah_attr;
1111         struct ib_ah_attr       alt_ah_attr;
1112         u16                     pkey_index;
1113         u16                     alt_pkey_index;
1114         u8                      en_sqd_async_notify;
1115         u8                      sq_draining;
1116         u8                      max_rd_atomic;
1117         u8                      max_dest_rd_atomic;
1118         u8                      min_rnr_timer;
1119         u8                      port_num;
1120         u8                      timeout;
1121         u8                      retry_cnt;
1122         u8                      rnr_retry;
1123         u8                      alt_port_num;
1124         u8                      alt_timeout;
1125 };
1126 
1127 enum ib_wr_opcode {
1128         IB_WR_RDMA_WRITE,
1129         IB_WR_RDMA_WRITE_WITH_IMM,
1130         IB_WR_SEND,
1131         IB_WR_SEND_WITH_IMM,
1132         IB_WR_RDMA_READ,
1133         IB_WR_ATOMIC_CMP_AND_SWP,
1134         IB_WR_ATOMIC_FETCH_AND_ADD,
1135         IB_WR_LSO,
1136         IB_WR_SEND_WITH_INV,
1137         IB_WR_RDMA_READ_WITH_INV,
1138         IB_WR_LOCAL_INV,
1139         IB_WR_REG_MR,
1140         IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1141         IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1142         IB_WR_REG_SIG_MR,
1143         /* reserve values for low level drivers' internal use.
1144          * These values will not be used at all in the ib core layer.
1145          */
1146         IB_WR_RESERVED1 = 0xf0,
1147         IB_WR_RESERVED2,
1148         IB_WR_RESERVED3,
1149         IB_WR_RESERVED4,
1150         IB_WR_RESERVED5,
1151         IB_WR_RESERVED6,
1152         IB_WR_RESERVED7,
1153         IB_WR_RESERVED8,
1154         IB_WR_RESERVED9,
1155         IB_WR_RESERVED10,
1156 };
1157 
1158 enum ib_send_flags {
1159         IB_SEND_FENCE           = 1,
1160         IB_SEND_SIGNALED        = (1<<1),
1161         IB_SEND_SOLICITED       = (1<<2),
1162         IB_SEND_INLINE          = (1<<3),
1163         IB_SEND_IP_CSUM         = (1<<4),
1164 
1165         /* reserve bits 26-31 for low level drivers' internal use */
1166         IB_SEND_RESERVED_START  = (1 << 26),
1167         IB_SEND_RESERVED_END    = (1 << 31),
1168 };
1169 
1170 struct ib_sge {
1171         u64     addr;
1172         u32     length;
1173         u32     lkey;
1174 };
1175 
1176 struct ib_cqe {
1177         void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1178 };
1179 
1180 struct ib_send_wr {
1181         struct ib_send_wr      *next;
1182         union {
1183                 u64             wr_id;
1184                 struct ib_cqe   *wr_cqe;
1185         };
1186         struct ib_sge          *sg_list;
1187         int                     num_sge;
1188         enum ib_wr_opcode       opcode;
1189         int                     send_flags;
1190         union {
1191                 __be32          imm_data;
1192                 u32             invalidate_rkey;
1193         } ex;
1194 };
1195 
1196 struct ib_rdma_wr {
1197         struct ib_send_wr       wr;
1198         u64                     remote_addr;
1199         u32                     rkey;
1200 };
1201 
1202 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1203 {
1204         return container_of(wr, struct ib_rdma_wr, wr);
1205 }
1206 
1207 struct ib_atomic_wr {
1208         struct ib_send_wr       wr;
1209         u64                     remote_addr;
1210         u64                     compare_add;
1211         u64                     swap;
1212         u64                     compare_add_mask;
1213         u64                     swap_mask;
1214         u32                     rkey;
1215 };
1216 
1217 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1218 {
1219         return container_of(wr, struct ib_atomic_wr, wr);
1220 }
1221 
1222 struct ib_ud_wr {
1223         struct ib_send_wr       wr;
1224         struct ib_ah            *ah;
1225         void                    *header;
1226         int                     hlen;
1227         int                     mss;
1228         u32                     remote_qpn;
1229         u32                     remote_qkey;
1230         u16                     pkey_index; /* valid for GSI only */
1231         u8                      port_num;   /* valid for DR SMPs on switch only */
1232 };
1233 
1234 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1235 {
1236         return container_of(wr, struct ib_ud_wr, wr);
1237 }
1238 
1239 struct ib_reg_wr {
1240         struct ib_send_wr       wr;
1241         struct ib_mr            *mr;
1242         u32                     key;
1243         int                     access;
1244 };
1245 
1246 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1247 {
1248         return container_of(wr, struct ib_reg_wr, wr);
1249 }
1250 
1251 struct ib_sig_handover_wr {
1252         struct ib_send_wr       wr;
1253         struct ib_sig_attrs    *sig_attrs;
1254         struct ib_mr           *sig_mr;
1255         int                     access_flags;
1256         struct ib_sge          *prot;
1257 };
1258 
1259 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1260 {
1261         return container_of(wr, struct ib_sig_handover_wr, wr);
1262 }
1263 
1264 struct ib_recv_wr {
1265         struct ib_recv_wr      *next;
1266         union {
1267                 u64             wr_id;
1268                 struct ib_cqe   *wr_cqe;
1269         };
1270         struct ib_sge          *sg_list;
1271         int                     num_sge;
1272 };
1273 
1274 enum ib_access_flags {
1275         IB_ACCESS_LOCAL_WRITE   = 1,
1276         IB_ACCESS_REMOTE_WRITE  = (1<<1),
1277         IB_ACCESS_REMOTE_READ   = (1<<2),
1278         IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1279         IB_ACCESS_MW_BIND       = (1<<4),
1280         IB_ZERO_BASED           = (1<<5),
1281         IB_ACCESS_ON_DEMAND     = (1<<6),
1282 };
1283 
1284 /*
1285  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1286  * are hidden here instead of a uapi header!
1287  */
1288 enum ib_mr_rereg_flags {
1289         IB_MR_REREG_TRANS       = 1,
1290         IB_MR_REREG_PD          = (1<<1),
1291         IB_MR_REREG_ACCESS      = (1<<2),
1292         IB_MR_REREG_SUPPORTED   = ((IB_MR_REREG_ACCESS << 1) - 1)
1293 };
1294 
1295 struct ib_fmr_attr {
1296         int     max_pages;
1297         int     max_maps;
1298         u8      page_shift;
1299 };
1300 
1301 struct ib_umem;
1302 
1303 struct ib_ucontext {
1304         struct ib_device       *device;
1305         struct list_head        pd_list;
1306         struct list_head        mr_list;
1307         struct list_head        mw_list;
1308         struct list_head        cq_list;
1309         struct list_head        qp_list;
1310         struct list_head        srq_list;
1311         struct list_head        ah_list;
1312         struct list_head        xrcd_list;
1313         struct list_head        rule_list;
1314         int                     closing;
1315 
1316         struct pid             *tgid;
1317 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1318         struct rb_root      umem_tree;
1319         /*
1320          * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1321          * mmu notifiers registration.
1322          */
1323         struct rw_semaphore     umem_rwsem;
1324         void (*invalidate_range)(struct ib_umem *umem,
1325                                  unsigned long start, unsigned long end);
1326 
1327         struct mmu_notifier     mn;
1328         atomic_t                notifier_count;
1329         /* A list of umems that don't have private mmu notifier counters yet. */
1330         struct list_head        no_private_counters;
1331         int                     odp_mrs_count;
1332 #endif
1333 };
1334 
1335 struct ib_uobject {
1336         u64                     user_handle;    /* handle given to us by userspace */
1337         struct ib_ucontext     *context;        /* associated user context */
1338         void                   *object;         /* containing object */
1339         struct list_head        list;           /* link to context's list */
1340         int                     id;             /* index into kernel idr */
1341         struct kref             ref;
1342         struct rw_semaphore     mutex;          /* protects .live */
1343         struct rcu_head         rcu;            /* kfree_rcu() overhead */
1344         int                     live;
1345 };
1346 
1347 struct ib_udata {
1348         const void __user *inbuf;
1349         void __user *outbuf;
1350         size_t       inlen;
1351         size_t       outlen;
1352 };
1353 
1354 struct ib_pd {
1355         u32                     local_dma_lkey;
1356         struct ib_device       *device;
1357         struct ib_uobject      *uobject;
1358         atomic_t                usecnt; /* count all resources */
1359         struct ib_mr           *local_mr;
1360 };
1361 
1362 struct ib_xrcd {
1363         struct ib_device       *device;
1364         atomic_t                usecnt; /* count all exposed resources */
1365         struct inode           *inode;
1366 
1367         struct mutex            tgt_qp_mutex;
1368         struct list_head        tgt_qp_list;
1369 };
1370 
1371 struct ib_ah {
1372         struct ib_device        *device;
1373         struct ib_pd            *pd;
1374         struct ib_uobject       *uobject;
1375 };
1376 
1377 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1378 
1379 enum ib_poll_context {
1380         IB_POLL_DIRECT,         /* caller context, no hw completions */
1381         IB_POLL_SOFTIRQ,        /* poll from softirq context */
1382         IB_POLL_WORKQUEUE,      /* poll from workqueue */
1383 };
1384 
1385 struct ib_cq {
1386         struct ib_device       *device;
1387         struct ib_uobject      *uobject;
1388         ib_comp_handler         comp_handler;
1389         void                  (*event_handler)(struct ib_event *, void *);
1390         void                   *cq_context;
1391         int                     cqe;
1392         atomic_t                usecnt; /* count number of work queues */
1393         enum ib_poll_context    poll_ctx;
1394         struct ib_wc            *wc;
1395         union {
1396                 struct irq_poll         iop;
1397                 struct work_struct      work;
1398         };
1399 };
1400 
1401 struct ib_srq {
1402         struct ib_device       *device;
1403         struct ib_pd           *pd;
1404         struct ib_uobject      *uobject;
1405         void                  (*event_handler)(struct ib_event *, void *);
1406         void                   *srq_context;
1407         enum ib_srq_type        srq_type;
1408         atomic_t                usecnt;
1409 
1410         union {
1411                 struct {
1412                         struct ib_xrcd *xrcd;
1413                         struct ib_cq   *cq;
1414                         u32             srq_num;
1415                 } xrc;
1416         } ext;
1417 };
1418 
1419 struct ib_qp {
1420         struct ib_device       *device;
1421         struct ib_pd           *pd;
1422         struct ib_cq           *send_cq;
1423         struct ib_cq           *recv_cq;
1424         struct ib_srq          *srq;
1425         struct ib_xrcd         *xrcd; /* XRC TGT QPs only */
1426         struct list_head        xrcd_list;
1427         /* count times opened, mcast attaches, flow attaches */
1428         atomic_t                usecnt;
1429         struct list_head        open_list;
1430         struct ib_qp           *real_qp;
1431         struct ib_uobject      *uobject;
1432         void                  (*event_handler)(struct ib_event *, void *);
1433         void                   *qp_context;
1434         u32                     qp_num;
1435         enum ib_qp_type         qp_type;
1436 };
1437 
1438 struct ib_mr {
1439         struct ib_device  *device;
1440         struct ib_pd      *pd;
1441         struct ib_uobject *uobject;
1442         u32                lkey;
1443         u32                rkey;
1444         u64                iova;
1445         u32                length;
1446         unsigned int       page_size;
1447 };
1448 
1449 struct ib_mw {
1450         struct ib_device        *device;
1451         struct ib_pd            *pd;
1452         struct ib_uobject       *uobject;
1453         u32                     rkey;
1454         enum ib_mw_type         type;
1455 };
1456 
1457 struct ib_fmr {
1458         struct ib_device        *device;
1459         struct ib_pd            *pd;
1460         struct list_head        list;
1461         u32                     lkey;
1462         u32                     rkey;
1463 };
1464 
1465 /* Supported steering options */
1466 enum ib_flow_attr_type {
1467         /* steering according to rule specifications */
1468         IB_FLOW_ATTR_NORMAL             = 0x0,
1469         /* default unicast and multicast rule -
1470          * receive all Eth traffic which isn't steered to any QP
1471          */
1472         IB_FLOW_ATTR_ALL_DEFAULT        = 0x1,
1473         /* default multicast rule -
1474          * receive all Eth multicast traffic which isn't steered to any QP
1475          */
1476         IB_FLOW_ATTR_MC_DEFAULT         = 0x2,
1477         /* sniffer rule - receive all port traffic */
1478         IB_FLOW_ATTR_SNIFFER            = 0x3
1479 };
1480 
1481 /* Supported steering header types */
1482 enum ib_flow_spec_type {
1483         /* L2 headers*/
1484         IB_FLOW_SPEC_ETH        = 0x20,
1485         IB_FLOW_SPEC_IB         = 0x22,
1486         /* L3 header*/
1487         IB_FLOW_SPEC_IPV4       = 0x30,
1488         /* L4 headers*/
1489         IB_FLOW_SPEC_TCP        = 0x40,
1490         IB_FLOW_SPEC_UDP        = 0x41
1491 };
1492 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1493 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1494 
1495 /* Flow steering rule priority is set according to it's domain.
1496  * Lower domain value means higher priority.
1497  */
1498 enum ib_flow_domain {
1499         IB_FLOW_DOMAIN_USER,
1500         IB_FLOW_DOMAIN_ETHTOOL,
1501         IB_FLOW_DOMAIN_RFS,
1502         IB_FLOW_DOMAIN_NIC,
1503         IB_FLOW_DOMAIN_NUM /* Must be last */
1504 };
1505 
1506 enum ib_flow_flags {
1507         IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1508         IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 2  /* Must be last */
1509 };
1510 
1511 struct ib_flow_eth_filter {
1512         u8      dst_mac[6];
1513         u8      src_mac[6];
1514         __be16  ether_type;
1515         __be16  vlan_tag;
1516 };
1517 
1518 struct ib_flow_spec_eth {
1519         enum ib_flow_spec_type    type;
1520         u16                       size;
1521         struct ib_flow_eth_filter val;
1522         struct ib_flow_eth_filter mask;
1523 };
1524 
1525 struct ib_flow_ib_filter {
1526         __be16 dlid;
1527         __u8   sl;
1528 };
1529 
1530 struct ib_flow_spec_ib {
1531         enum ib_flow_spec_type   type;
1532         u16                      size;
1533         struct ib_flow_ib_filter val;
1534         struct ib_flow_ib_filter mask;
1535 };
1536 
1537 struct ib_flow_ipv4_filter {
1538         __be32  src_ip;
1539         __be32  dst_ip;
1540 };
1541 
1542 struct ib_flow_spec_ipv4 {
1543         enum ib_flow_spec_type     type;
1544         u16                        size;
1545         struct ib_flow_ipv4_filter val;
1546         struct ib_flow_ipv4_filter mask;
1547 };
1548 
1549 struct ib_flow_tcp_udp_filter {
1550         __be16  dst_port;
1551         __be16  src_port;
1552 };
1553 
1554 struct ib_flow_spec_tcp_udp {
1555         enum ib_flow_spec_type        type;
1556         u16                           size;
1557         struct ib_flow_tcp_udp_filter val;
1558         struct ib_flow_tcp_udp_filter mask;
1559 };
1560 
1561 union ib_flow_spec {
1562         struct {
1563                 enum ib_flow_spec_type  type;
1564                 u16                     size;
1565         };
1566         struct ib_flow_spec_eth         eth;
1567         struct ib_flow_spec_ib          ib;
1568         struct ib_flow_spec_ipv4        ipv4;
1569         struct ib_flow_spec_tcp_udp     tcp_udp;
1570 };
1571 
1572 struct ib_flow_attr {
1573         enum ib_flow_attr_type type;
1574         u16          size;
1575         u16          priority;
1576         u32          flags;
1577         u8           num_of_specs;
1578         u8           port;
1579         /* Following are the optional layers according to user request
1580          * struct ib_flow_spec_xxx
1581          * struct ib_flow_spec_yyy
1582          */
1583 };
1584 
1585 struct ib_flow {
1586         struct ib_qp            *qp;
1587         struct ib_uobject       *uobject;
1588 };
1589 
1590 struct ib_mad_hdr;
1591 struct ib_grh;
1592 
1593 enum ib_process_mad_flags {
1594         IB_MAD_IGNORE_MKEY      = 1,
1595         IB_MAD_IGNORE_BKEY      = 2,
1596         IB_MAD_IGNORE_ALL       = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1597 };
1598 
1599 enum ib_mad_result {
1600         IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1601         IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1602         IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1603         IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1604 };
1605 
1606 #define IB_DEVICE_NAME_MAX 64
1607 
1608 struct ib_cache {
1609         rwlock_t                lock;
1610         struct ib_event_handler event_handler;
1611         struct ib_pkey_cache  **pkey_cache;
1612         struct ib_gid_table   **gid_cache;
1613         u8                     *lmc_cache;
1614 };
1615 
1616 struct ib_dma_mapping_ops {
1617         int             (*mapping_error)(struct ib_device *dev,
1618                                          u64 dma_addr);
1619         u64             (*map_single)(struct ib_device *dev,
1620                                       void *ptr, size_t size,
1621                                       enum dma_data_direction direction);
1622         void            (*unmap_single)(struct ib_device *dev,
1623                                         u64 addr, size_t size,
1624                                         enum dma_data_direction direction);
1625         u64             (*map_page)(struct ib_device *dev,
1626                                     struct page *page, unsigned long offset,
1627                                     size_t size,
1628                                     enum dma_data_direction direction);
1629         void            (*unmap_page)(struct ib_device *dev,
1630                                       u64 addr, size_t size,
1631                                       enum dma_data_direction direction);
1632         int             (*map_sg)(struct ib_device *dev,
1633                                   struct scatterlist *sg, int nents,
1634                                   enum dma_data_direction direction);
1635         void            (*unmap_sg)(struct ib_device *dev,
1636                                     struct scatterlist *sg, int nents,
1637                                     enum dma_data_direction direction);
1638         void            (*sync_single_for_cpu)(struct ib_device *dev,
1639                                                u64 dma_handle,
1640                                                size_t size,
1641                                                enum dma_data_direction dir);
1642         void            (*sync_single_for_device)(struct ib_device *dev,
1643                                                   u64 dma_handle,
1644                                                   size_t size,
1645                                                   enum dma_data_direction dir);
1646         void            *(*alloc_coherent)(struct ib_device *dev,
1647                                            size_t size,
1648                                            u64 *dma_handle,
1649                                            gfp_t flag);
1650         void            (*free_coherent)(struct ib_device *dev,
1651                                          size_t size, void *cpu_addr,
1652                                          u64 dma_handle);
1653 };
1654 
1655 struct iw_cm_verbs;
1656 
1657 struct ib_port_immutable {
1658         int                           pkey_tbl_len;
1659         int                           gid_tbl_len;
1660         u32                           core_cap_flags;
1661         u32                           max_mad_size;
1662 };
1663 
1664 struct ib_device {
1665         struct device                *dma_device;
1666 
1667         char                          name[IB_DEVICE_NAME_MAX];
1668 
1669         struct list_head              event_handler_list;
1670         spinlock_t                    event_handler_lock;
1671 
1672         spinlock_t                    client_data_lock;
1673         struct list_head              core_list;
1674         /* Access to the client_data_list is protected by the client_data_lock
1675          * spinlock and the lists_rwsem read-write semaphore */
1676         struct list_head              client_data_list;
1677 
1678         struct ib_cache               cache;
1679         /**
1680          * port_immutable is indexed by port number
1681          */
1682         struct ib_port_immutable     *port_immutable;
1683 
1684         int                           num_comp_vectors;
1685 
1686         struct iw_cm_verbs           *iwcm;
1687 
1688         int                        (*get_protocol_stats)(struct ib_device *device,
1689                                                          union rdma_protocol_stats *stats);
1690         int                        (*query_device)(struct ib_device *device,
1691                                                    struct ib_device_attr *device_attr,
1692                                                    struct ib_udata *udata);
1693         int                        (*query_port)(struct ib_device *device,
1694                                                  u8 port_num,
1695                                                  struct ib_port_attr *port_attr);
1696         enum rdma_link_layer       (*get_link_layer)(struct ib_device *device,
1697                                                      u8 port_num);
1698         /* When calling get_netdev, the HW vendor's driver should return the
1699          * net device of device @device at port @port_num or NULL if such
1700          * a net device doesn't exist. The vendor driver should call dev_hold
1701          * on this net device. The HW vendor's device driver must guarantee
1702          * that this function returns NULL before the net device reaches
1703          * NETDEV_UNREGISTER_FINAL state.
1704          */
1705         struct net_device         *(*get_netdev)(struct ib_device *device,
1706                                                  u8 port_num);
1707         int                        (*query_gid)(struct ib_device *device,
1708                                                 u8 port_num, int index,
1709                                                 union ib_gid *gid);
1710         /* When calling add_gid, the HW vendor's driver should
1711          * add the gid of device @device at gid index @index of
1712          * port @port_num to be @gid. Meta-info of that gid (for example,
1713          * the network device related to this gid is available
1714          * at @attr. @context allows the HW vendor driver to store extra
1715          * information together with a GID entry. The HW vendor may allocate
1716          * memory to contain this information and store it in @context when a
1717          * new GID entry is written to. Params are consistent until the next
1718          * call of add_gid or delete_gid. The function should return 0 on
1719          * success or error otherwise. The function could be called
1720          * concurrently for different ports. This function is only called
1721          * when roce_gid_table is used.
1722          */
1723         int                        (*add_gid)(struct ib_device *device,
1724                                               u8 port_num,
1725                                               unsigned int index,
1726                                               const union ib_gid *gid,
1727                                               const struct ib_gid_attr *attr,
1728                                               void **context);
1729         /* When calling del_gid, the HW vendor's driver should delete the
1730          * gid of device @device at gid index @index of port @port_num.
1731          * Upon the deletion of a GID entry, the HW vendor must free any
1732          * allocated memory. The caller will clear @context afterwards.
1733          * This function is only called when roce_gid_table is used.
1734          */
1735         int                        (*del_gid)(struct ib_device *device,
1736                                               u8 port_num,
1737                                               unsigned int index,
1738                                               void **context);
1739         int                        (*query_pkey)(struct ib_device *device,
1740                                                  u8 port_num, u16 index, u16 *pkey);
1741         int                        (*modify_device)(struct ib_device *device,
1742                                                     int device_modify_mask,
1743                                                     struct ib_device_modify *device_modify);
1744         int                        (*modify_port)(struct ib_device *device,
1745                                                   u8 port_num, int port_modify_mask,
1746                                                   struct ib_port_modify *port_modify);
1747         struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1748                                                      struct ib_udata *udata);
1749         int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1750         int                        (*mmap)(struct ib_ucontext *context,
1751                                            struct vm_area_struct *vma);
1752         struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1753                                                struct ib_ucontext *context,
1754                                                struct ib_udata *udata);
1755         int                        (*dealloc_pd)(struct ib_pd *pd);
1756         struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1757                                                 struct ib_ah_attr *ah_attr);
1758         int                        (*modify_ah)(struct ib_ah *ah,
1759                                                 struct ib_ah_attr *ah_attr);
1760         int                        (*query_ah)(struct ib_ah *ah,
1761                                                struct ib_ah_attr *ah_attr);
1762         int                        (*destroy_ah)(struct ib_ah *ah);
1763         struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1764                                                  struct ib_srq_init_attr *srq_init_attr,
1765                                                  struct ib_udata *udata);
1766         int                        (*modify_srq)(struct ib_srq *srq,
1767                                                  struct ib_srq_attr *srq_attr,
1768                                                  enum ib_srq_attr_mask srq_attr_mask,
1769                                                  struct ib_udata *udata);
1770         int                        (*query_srq)(struct ib_srq *srq,
1771                                                 struct ib_srq_attr *srq_attr);
1772         int                        (*destroy_srq)(struct ib_srq *srq);
1773         int                        (*post_srq_recv)(struct ib_srq *srq,
1774                                                     struct ib_recv_wr *recv_wr,
1775                                                     struct ib_recv_wr **bad_recv_wr);
1776         struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1777                                                 struct ib_qp_init_attr *qp_init_attr,
1778                                                 struct ib_udata *udata);
1779         int                        (*modify_qp)(struct ib_qp *qp,
1780                                                 struct ib_qp_attr *qp_attr,
1781                                                 int qp_attr_mask,
1782                                                 struct ib_udata *udata);
1783         int                        (*query_qp)(struct ib_qp *qp,
1784                                                struct ib_qp_attr *qp_attr,
1785                                                int qp_attr_mask,
1786                                                struct ib_qp_init_attr *qp_init_attr);
1787         int                        (*destroy_qp)(struct ib_qp *qp);
1788         int                        (*post_send)(struct ib_qp *qp,
1789                                                 struct ib_send_wr *send_wr,
1790                                                 struct ib_send_wr **bad_send_wr);
1791         int                        (*post_recv)(struct ib_qp *qp,
1792                                                 struct ib_recv_wr *recv_wr,
1793                                                 struct ib_recv_wr **bad_recv_wr);
1794         struct ib_cq *             (*create_cq)(struct ib_device *device,
1795                                                 const struct ib_cq_init_attr *attr,
1796                                                 struct ib_ucontext *context,
1797                                                 struct ib_udata *udata);
1798         int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1799                                                 u16 cq_period);
1800         int                        (*destroy_cq)(struct ib_cq *cq);
1801         int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1802                                                 struct ib_udata *udata);
1803         int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1804                                               struct ib_wc *wc);
1805         int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1806         int                        (*req_notify_cq)(struct ib_cq *cq,
1807                                                     enum ib_cq_notify_flags flags);
1808         int                        (*req_ncomp_notif)(struct ib_cq *cq,
1809                                                       int wc_cnt);
1810         struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1811                                                  int mr_access_flags);
1812         struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1813                                                   u64 start, u64 length,
1814                                                   u64 virt_addr,
1815                                                   int mr_access_flags,
1816                                                   struct ib_udata *udata);
1817         int                        (*rereg_user_mr)(struct ib_mr *mr,
1818                                                     int flags,
1819                                                     u64 start, u64 length,
1820                                                     u64 virt_addr,
1821                                                     int mr_access_flags,
1822                                                     struct ib_pd *pd,
1823                                                     struct ib_udata *udata);
1824         int                        (*dereg_mr)(struct ib_mr *mr);
1825         struct ib_mr *             (*alloc_mr)(struct ib_pd *pd,
1826                                                enum ib_mr_type mr_type,
1827                                                u32 max_num_sg);
1828         int                        (*map_mr_sg)(struct ib_mr *mr,
1829                                                 struct scatterlist *sg,
1830                                                 int sg_nents);
1831         struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
1832                                                enum ib_mw_type type,
1833                                                struct ib_udata *udata);
1834         int                        (*dealloc_mw)(struct ib_mw *mw);
1835         struct ib_fmr *            (*alloc_fmr)(struct ib_pd *pd,
1836                                                 int mr_access_flags,
1837                                                 struct ib_fmr_attr *fmr_attr);
1838         int                        (*map_phys_fmr)(struct ib_fmr *fmr,
1839                                                    u64 *page_list, int list_len,
1840                                                    u64 iova);
1841         int                        (*unmap_fmr)(struct list_head *fmr_list);
1842         int                        (*dealloc_fmr)(struct ib_fmr *fmr);
1843         int                        (*attach_mcast)(struct ib_qp *qp,
1844                                                    union ib_gid *gid,
1845                                                    u16 lid);
1846         int                        (*detach_mcast)(struct ib_qp *qp,
1847                                                    union ib_gid *gid,
1848                                                    u16 lid);
1849         int                        (*process_mad)(struct ib_device *device,
1850                                                   int process_mad_flags,
1851                                                   u8 port_num,
1852                                                   const struct ib_wc *in_wc,
1853                                                   const struct ib_grh *in_grh,
1854                                                   const struct ib_mad_hdr *in_mad,
1855                                                   size_t in_mad_size,
1856                                                   struct ib_mad_hdr *out_mad,
1857                                                   size_t *out_mad_size,
1858                                                   u16 *out_mad_pkey_index);
1859         struct ib_xrcd *           (*alloc_xrcd)(struct ib_device *device,
1860                                                  struct ib_ucontext *ucontext,
1861                                                  struct ib_udata *udata);
1862         int                        (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1863         struct ib_flow *           (*create_flow)(struct ib_qp *qp,
1864                                                   struct ib_flow_attr
1865                                                   *flow_attr,
1866                                                   int domain);
1867         int                        (*destroy_flow)(struct ib_flow *flow_id);
1868         int                        (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1869                                                       struct ib_mr_status *mr_status);
1870         void                       (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1871         void                       (*drain_rq)(struct ib_qp *qp);
1872         void                       (*drain_sq)(struct ib_qp *qp);
1873         int                        (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
1874                                                         int state);
1875         int                        (*get_vf_config)(struct ib_device *device, int vf, u8 port,
1876                                                    struct ifla_vf_info *ivf);
1877         int                        (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
1878                                                    struct ifla_vf_stats *stats);
1879         int                        (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
1880                                                   int type);
1881 
1882         struct ib_dma_mapping_ops   *dma_ops;
1883 
1884         struct module               *owner;
1885         struct device                dev;
1886         struct kobject               *ports_parent;
1887         struct list_head             port_list;
1888 
1889         enum {
1890                 IB_DEV_UNINITIALIZED,
1891                 IB_DEV_REGISTERED,
1892                 IB_DEV_UNREGISTERED
1893         }                            reg_state;
1894 
1895         int                          uverbs_abi_ver;
1896         u64                          uverbs_cmd_mask;
1897         u64                          uverbs_ex_cmd_mask;
1898 
1899         char                         node_desc[64];
1900         __be64                       node_guid;
1901         u32                          local_dma_lkey;
1902         u16                          is_switch:1;
1903         u8                           node_type;
1904         u8                           phys_port_cnt;
1905         struct ib_device_attr        attrs;
1906 
1907         /**
1908          * The following mandatory functions are used only at device
1909          * registration.  Keep functions such as these at the end of this
1910          * structure to avoid cache line misses when accessing struct ib_device
1911          * in fast paths.
1912          */
1913         int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1914 };
1915 
1916 struct ib_client {
1917         char  *name;
1918         void (*add)   (struct ib_device *);
1919         void (*remove)(struct ib_device *, void *client_data);
1920 
1921         /* Returns the net_dev belonging to this ib_client and matching the
1922          * given parameters.
1923          * @dev:         An RDMA device that the net_dev use for communication.
1924          * @port:        A physical port number on the RDMA device.
1925          * @pkey:        P_Key that the net_dev uses if applicable.
1926          * @gid:         A GID that the net_dev uses to communicate.
1927          * @addr:        An IP address the net_dev is configured with.
1928          * @client_data: The device's client data set by ib_set_client_data().
1929          *
1930          * An ib_client that implements a net_dev on top of RDMA devices
1931          * (such as IP over IB) should implement this callback, allowing the
1932          * rdma_cm module to find the right net_dev for a given request.
1933          *
1934          * The caller is responsible for calling dev_put on the returned
1935          * netdev. */
1936         struct net_device *(*get_net_dev_by_params)(
1937                         struct ib_device *dev,
1938                         u8 port,
1939                         u16 pkey,
1940                         const union ib_gid *gid,
1941                         const struct sockaddr *addr,
1942                         void *client_data);
1943         struct list_head list;
1944 };
1945 
1946 struct ib_device *ib_alloc_device(size_t size);
1947 void ib_dealloc_device(struct ib_device *device);
1948 
1949 int ib_register_device(struct ib_device *device,
1950                        int (*port_callback)(struct ib_device *,
1951                                             u8, struct kobject *));
1952 void ib_unregister_device(struct ib_device *device);
1953 
1954 int ib_register_client   (struct ib_client *client);
1955 void ib_unregister_client(struct ib_client *client);
1956 
1957 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1958 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1959                          void *data);
1960 
1961 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1962 {
1963         return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1964 }
1965 
1966 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1967 {
1968         return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1969 }
1970 
1971 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
1972                                        size_t offset,
1973                                        size_t len)
1974 {
1975         const void __user *p = udata->inbuf + offset;
1976         bool ret = false;
1977         u8 *buf;
1978 
1979         if (len > USHRT_MAX)
1980                 return false;
1981 
1982         buf = kmalloc(len, GFP_KERNEL);
1983         if (!buf)
1984                 return false;
1985 
1986         if (copy_from_user(buf, p, len))
1987                 goto free;
1988 
1989         ret = !memchr_inv(buf, 0, len);
1990 
1991 free:
1992         kfree(buf);
1993         return ret;
1994 }
1995 
1996 /**
1997  * ib_modify_qp_is_ok - Check that the supplied attribute mask
1998  * contains all required attributes and no attributes not allowed for
1999  * the given QP state transition.
2000  * @cur_state: Current QP state
2001  * @next_state: Next QP state
2002  * @type: QP type
2003  * @mask: Mask of supplied QP attributes
2004  * @ll : link layer of port
2005  *
2006  * This function is a helper function that a low-level driver's
2007  * modify_qp method can use to validate the consumer's input.  It
2008  * checks that cur_state and next_state are valid QP states, that a
2009  * transition from cur_state to next_state is allowed by the IB spec,
2010  * and that the attribute mask supplied is allowed for the transition.
2011  */
2012 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2013                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
2014                        enum rdma_link_layer ll);
2015 
2016 int ib_register_event_handler  (struct ib_event_handler *event_handler);
2017 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2018 void ib_dispatch_event(struct ib_event *event);
2019 
2020 int ib_query_port(struct ib_device *device,
2021                   u8 port_num, struct ib_port_attr *port_attr);
2022 
2023 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2024                                                u8 port_num);
2025 
2026 /**
2027  * rdma_cap_ib_switch - Check if the device is IB switch
2028  * @device: Device to check
2029  *
2030  * Device driver is responsible for setting is_switch bit on
2031  * in ib_device structure at init time.
2032  *
2033  * Return: true if the device is IB switch.
2034  */
2035 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2036 {
2037         return device->is_switch;
2038 }
2039 
2040 /**
2041  * rdma_start_port - Return the first valid port number for the device
2042  * specified
2043  *
2044  * @device: Device to be checked
2045  *
2046  * Return start port number
2047  */
2048 static inline u8 rdma_start_port(const struct ib_device *device)
2049 {
2050         return rdma_cap_ib_switch(device) ? 0 : 1;
2051 }
2052 
2053 /**
2054  * rdma_end_port - Return the last valid port number for the device
2055  * specified
2056  *
2057  * @device: Device to be checked
2058  *
2059  * Return last port number
2060  */
2061 static inline u8 rdma_end_port(const struct ib_device *device)
2062 {
2063         return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2064 }
2065 
2066 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2067 {
2068         return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2069 }
2070 
2071 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2072 {
2073         return device->port_immutable[port_num].core_cap_flags &
2074                 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2075 }
2076 
2077 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2078 {
2079         return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2080 }
2081 
2082 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2083 {
2084         return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2085 }
2086 
2087 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2088 {
2089         return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2090 }
2091 
2092 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2093 {
2094         return rdma_protocol_ib(device, port_num) ||
2095                 rdma_protocol_roce(device, port_num);
2096 }
2097 
2098 /**
2099  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2100  * Management Datagrams.
2101  * @device: Device to check
2102  * @port_num: Port number to check
2103  *
2104  * Management Datagrams (MAD) are a required part of the InfiniBand
2105  * specification and are supported on all InfiniBand devices.  A slightly
2106  * extended version are also supported on OPA interfaces.
2107  *
2108  * Return: true if the port supports sending/receiving of MAD packets.
2109  */
2110 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2111 {
2112         return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2113 }
2114 
2115 /**
2116  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2117  * Management Datagrams.
2118  * @device: Device to check
2119  * @port_num: Port number to check
2120  *
2121  * Intel OmniPath devices extend and/or replace the InfiniBand Management
2122  * datagrams with their own versions.  These OPA MADs share many but not all of
2123  * the characteristics of InfiniBand MADs.
2124  *
2125  * OPA MADs differ in the following ways:
2126  *
2127  *    1) MADs are variable size up to 2K
2128  *       IBTA defined MADs remain fixed at 256 bytes
2129  *    2) OPA SMPs must carry valid PKeys
2130  *    3) OPA SMP packets are a different format
2131  *
2132  * Return: true if the port supports OPA MAD packet formats.
2133  */
2134 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2135 {
2136         return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2137                 == RDMA_CORE_CAP_OPA_MAD;
2138 }
2139 
2140 /**
2141  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2142  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2143  * @device: Device to check
2144  * @port_num: Port number to check
2145  *
2146  * Each InfiniBand node is required to provide a Subnet Management Agent
2147  * that the subnet manager can access.  Prior to the fabric being fully
2148  * configured by the subnet manager, the SMA is accessed via a well known
2149  * interface called the Subnet Management Interface (SMI).  This interface
2150  * uses directed route packets to communicate with the SM to get around the
2151  * chicken and egg problem of the SM needing to know what's on the fabric
2152  * in order to configure the fabric, and needing to configure the fabric in
2153  * order to send packets to the devices on the fabric.  These directed
2154  * route packets do not need the fabric fully configured in order to reach
2155  * their destination.  The SMI is the only method allowed to send
2156  * directed route packets on an InfiniBand fabric.
2157  *
2158  * Return: true if the port provides an SMI.
2159  */
2160 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2161 {
2162         return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2163 }
2164 
2165 /**
2166  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2167  * Communication Manager.
2168  * @device: Device to check
2169  * @port_num: Port number to check
2170  *
2171  * The InfiniBand Communication Manager is one of many pre-defined General
2172  * Service Agents (GSA) that are accessed via the General Service
2173  * Interface (GSI).  It's role is to facilitate establishment of connections
2174  * between nodes as well as other management related tasks for established
2175  * connections.
2176  *
2177  * Return: true if the port supports an IB CM (this does not guarantee that
2178  * a CM is actually running however).
2179  */
2180 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2181 {
2182         return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2183 }
2184 
2185 /**
2186  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2187  * Communication Manager.
2188  * @device: Device to check
2189  * @port_num: Port number to check
2190  *
2191  * Similar to above, but specific to iWARP connections which have a different
2192  * managment protocol than InfiniBand.
2193  *
2194  * Return: true if the port supports an iWARP CM (this does not guarantee that
2195  * a CM is actually running however).
2196  */
2197 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2198 {
2199         return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2200 }
2201 
2202 /**
2203  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2204  * Subnet Administration.
2205  * @device: Device to check
2206  * @port_num: Port number to check
2207  *
2208  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2209  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2210  * fabrics, devices should resolve routes to other hosts by contacting the
2211  * SA to query the proper route.
2212  *
2213  * Return: true if the port should act as a client to the fabric Subnet
2214  * Administration interface.  This does not imply that the SA service is
2215  * running locally.
2216  */
2217 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2218 {
2219         return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2220 }
2221 
2222 /**
2223  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2224  * Multicast.
2225  * @device: Device to check
2226  * @port_num: Port number to check
2227  *
2228  * InfiniBand multicast registration is more complex than normal IPv4 or
2229  * IPv6 multicast registration.  Each Host Channel Adapter must register
2230  * with the Subnet Manager when it wishes to join a multicast group.  It
2231  * should do so only once regardless of how many queue pairs it subscribes
2232  * to this group.  And it should leave the group only after all queue pairs
2233  * attached to the group have been detached.
2234  *
2235  * Return: true if the port must undertake the additional adminstrative
2236  * overhead of registering/unregistering with the SM and tracking of the
2237  * total number of queue pairs attached to the multicast group.
2238  */
2239 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2240 {
2241         return rdma_cap_ib_sa(device, port_num);
2242 }
2243 
2244 /**
2245  * rdma_cap_af_ib - Check if the port of device has the capability
2246  * Native Infiniband Address.
2247  * @device: Device to check
2248  * @port_num: Port number to check
2249  *
2250  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2251  * GID.  RoCE uses a different mechanism, but still generates a GID via
2252  * a prescribed mechanism and port specific data.
2253  *
2254  * Return: true if the port uses a GID address to identify devices on the
2255  * network.
2256  */
2257 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2258 {
2259         return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2260 }
2261 
2262 /**
2263  * rdma_cap_eth_ah - Check if the port of device has the capability
2264  * Ethernet Address Handle.
2265  * @device: Device to check
2266  * @port_num: Port number to check
2267  *
2268  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2269  * to fabricate GIDs over Ethernet/IP specific addresses native to the
2270  * port.  Normally, packet headers are generated by the sending host
2271  * adapter, but when sending connectionless datagrams, we must manually
2272  * inject the proper headers for the fabric we are communicating over.
2273  *
2274  * Return: true if we are running as a RoCE port and must force the
2275  * addition of a Global Route Header built from our Ethernet Address
2276  * Handle into our header list for connectionless packets.
2277  */
2278 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2279 {
2280         return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2281 }
2282 
2283 /**
2284  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2285  *
2286  * @device: Device
2287  * @port_num: Port number
2288  *
2289  * This MAD size includes the MAD headers and MAD payload.  No other headers
2290  * are included.
2291  *
2292  * Return the max MAD size required by the Port.  Will return 0 if the port
2293  * does not support MADs
2294  */
2295 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2296 {
2297         return device->port_immutable[port_num].max_mad_size;
2298 }
2299 
2300 /**
2301  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2302  * @device: Device to check
2303  * @port_num: Port number to check
2304  *
2305  * RoCE GID table mechanism manages the various GIDs for a device.
2306  *
2307  * NOTE: if allocating the port's GID table has failed, this call will still
2308  * return true, but any RoCE GID table API will fail.
2309  *
2310  * Return: true if the port uses RoCE GID table mechanism in order to manage
2311  * its GIDs.
2312  */
2313 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2314                                            u8 port_num)
2315 {
2316         return rdma_protocol_roce(device, port_num) &&
2317                 device->add_gid && device->del_gid;
2318 }
2319 
2320 int ib_query_gid(struct ib_device *device,
2321                  u8 port_num, int index, union ib_gid *gid,
2322                  struct ib_gid_attr *attr);
2323 
2324 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2325                          int state);
2326 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2327                      struct ifla_vf_info *info);
2328 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2329                     struct ifla_vf_stats *stats);
2330 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2331                    int type);
2332 
2333 int ib_query_pkey(struct ib_device *device,
2334                   u8 port_num, u16 index, u16 *pkey);
2335 
2336 int ib_modify_device(struct ib_device *device,
2337                      int device_modify_mask,
2338                      struct ib_device_modify *device_modify);
2339 
2340 int ib_modify_port(struct ib_device *device,
2341                    u8 port_num, int port_modify_mask,
2342                    struct ib_port_modify *port_modify);
2343 
2344 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2345                 enum ib_gid_type gid_type, struct net_device *ndev,
2346                 u8 *port_num, u16 *index);
2347 
2348 int ib_find_pkey(struct ib_device *device,
2349                  u8 port_num, u16 pkey, u16 *index);
2350 
2351 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2352 
2353 void ib_dealloc_pd(struct ib_pd *pd);
2354 
2355 /**
2356  * ib_create_ah - Creates an address handle for the given address vector.
2357  * @pd: The protection domain associated with the address handle.
2358  * @ah_attr: The attributes of the address vector.
2359  *
2360  * The address handle is used to reference a local or global destination
2361  * in all UD QP post sends.
2362  */
2363 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2364 
2365 /**
2366  * ib_init_ah_from_wc - Initializes address handle attributes from a
2367  *   work completion.
2368  * @device: Device on which the received message arrived.
2369  * @port_num: Port on which the received message arrived.
2370  * @wc: Work completion associated with the received message.
2371  * @grh: References the received global route header.  This parameter is
2372  *   ignored unless the work completion indicates that the GRH is valid.
2373  * @ah_attr: Returned attributes that can be used when creating an address
2374  *   handle for replying to the message.
2375  */
2376 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2377                        const struct ib_wc *wc, const struct ib_grh *grh,
2378                        struct ib_ah_attr *ah_attr);
2379 
2380 /**
2381  * ib_create_ah_from_wc - Creates an address handle associated with the
2382  *   sender of the specified work completion.
2383  * @pd: The protection domain associated with the address handle.
2384  * @wc: Work completion information associated with a received message.
2385  * @grh: References the received global route header.  This parameter is
2386  *   ignored unless the work completion indicates that the GRH is valid.
2387  * @port_num: The outbound port number to associate with the address.
2388  *
2389  * The address handle is used to reference a local or global destination
2390  * in all UD QP post sends.
2391  */
2392 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2393                                    const struct ib_grh *grh, u8 port_num);
2394 
2395 /**
2396  * ib_modify_ah - Modifies the address vector associated with an address
2397  *   handle.
2398  * @ah: The address handle to modify.
2399  * @ah_attr: The new address vector attributes to associate with the
2400  *   address handle.
2401  */
2402 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2403 
2404 /**
2405  * ib_query_ah - Queries the address vector associated with an address
2406  *   handle.
2407  * @ah: The address handle to query.
2408  * @ah_attr: The address vector attributes associated with the address
2409  *   handle.
2410  */
2411 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2412 
2413 /**
2414  * ib_destroy_ah - Destroys an address handle.
2415  * @ah: The address handle to destroy.
2416  */
2417 int ib_destroy_ah(struct ib_ah *ah);
2418 
2419 /**
2420  * ib_create_srq - Creates a SRQ associated with the specified protection
2421  *   domain.
2422  * @pd: The protection domain associated with the SRQ.
2423  * @srq_init_attr: A list of initial attributes required to create the
2424  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
2425  *   the actual capabilities of the created SRQ.
2426  *
2427  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2428  * requested size of the SRQ, and set to the actual values allocated
2429  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
2430  * will always be at least as large as the requested values.
2431  */
2432 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2433                              struct ib_srq_init_attr *srq_init_attr);
2434 
2435 /**
2436  * ib_modify_srq - Modifies the attributes for the specified SRQ.
2437  * @srq: The SRQ to modify.
2438  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
2439  *   the current values of selected SRQ attributes are returned.
2440  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2441  *   are being modified.
2442  *
2443  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2444  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2445  * the number of receives queued drops below the limit.
2446  */
2447 int ib_modify_srq(struct ib_srq *srq,
2448                   struct ib_srq_attr *srq_attr,
2449                   enum ib_srq_attr_mask srq_attr_mask);
2450 
2451 /**
2452  * ib_query_srq - Returns the attribute list and current values for the
2453  *   specified SRQ.
2454  * @srq: The SRQ to query.
2455  * @srq_attr: The attributes of the specified SRQ.
2456  */
2457 int ib_query_srq(struct ib_srq *srq,
2458                  struct ib_srq_attr *srq_attr);
2459 
2460 /**
2461  * ib_destroy_srq - Destroys the specified SRQ.
2462  * @srq: The SRQ to destroy.
2463  */
2464 int ib_destroy_srq(struct ib_srq *srq);
2465 
2466 /**
2467  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2468  * @srq: The SRQ to post the work request on.
2469  * @recv_wr: A list of work requests to post on the receive queue.
2470  * @bad_recv_wr: On an immediate failure, this parameter will reference
2471  *   the work request that failed to be posted on the QP.
2472  */
2473 static inline int ib_post_srq_recv(struct ib_srq *srq,
2474                                    struct ib_recv_wr *recv_wr,
2475                                    struct ib_recv_wr **bad_recv_wr)
2476 {
2477         return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2478 }
2479 
2480 /**
2481  * ib_create_qp - Creates a QP associated with the specified protection
2482  *   domain.
2483  * @pd: The protection domain associated with the QP.
2484  * @qp_init_attr: A list of initial attributes required to create the
2485  *   QP.  If QP creation succeeds, then the attributes are updated to
2486  *   the actual capabilities of the created QP.
2487  */
2488 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2489                            struct ib_qp_init_attr *qp_init_attr);
2490 
2491 /**
2492  * ib_modify_qp - Modifies the attributes for the specified QP and then
2493  *   transitions the QP to the given state.
2494  * @qp: The QP to modify.
2495  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
2496  *   the current values of selected QP attributes are returned.
2497  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2498  *   are being modified.
2499  */
2500 int ib_modify_qp(struct ib_qp *qp,
2501                  struct ib_qp_attr *qp_attr,
2502                  int qp_attr_mask);
2503 
2504 /**
2505  * ib_query_qp - Returns the attribute list and current values for the
2506  *   specified QP.
2507  * @qp: The QP to query.
2508  * @qp_attr: The attributes of the specified QP.
2509  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2510  * @qp_init_attr: Additional attributes of the selected QP.
2511  *
2512  * The qp_attr_mask may be used to limit the query to gathering only the
2513  * selected attributes.
2514  */
2515 int ib_query_qp(struct ib_qp *qp,
2516                 struct ib_qp_attr *qp_attr,
2517                 int qp_attr_mask,
2518                 struct ib_qp_init_attr *qp_init_attr);
2519 
2520 /**
2521  * ib_destroy_qp - Destroys the specified QP.
2522  * @qp: The QP to destroy.
2523  */
2524 int ib_destroy_qp(struct ib_qp *qp);
2525 
2526 /**
2527  * ib_open_qp - Obtain a reference to an existing sharable QP.
2528  * @xrcd - XRC domain
2529  * @qp_open_attr: Attributes identifying the QP to open.
2530  *
2531  * Returns a reference to a sharable QP.
2532  */
2533 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2534                          struct ib_qp_open_attr *qp_open_attr);
2535 
2536 /**
2537  * ib_close_qp - Release an external reference to a QP.
2538  * @qp: The QP handle to release
2539  *
2540  * The opened QP handle is released by the caller.  The underlying
2541  * shared QP is not destroyed until all internal references are released.
2542  */
2543 int ib_close_qp(struct ib_qp *qp);
2544 
2545 /**
2546  * ib_post_send - Posts a list of work requests to the send queue of
2547  *   the specified QP.
2548  * @qp: The QP to post the work request on.
2549  * @send_wr: A list of work requests to post on the send queue.
2550  * @bad_send_wr: On an immediate failure, this parameter will reference
2551  *   the work request that failed to be posted on the QP.
2552  *
2553  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2554  * error is returned, the QP state shall not be affected,
2555  * ib_post_send() will return an immediate error after queueing any
2556  * earlier work requests in the list.
2557  */
2558 static inline int ib_post_send(struct ib_qp *qp,
2559                                struct ib_send_wr *send_wr,
2560                                struct ib_send_wr **bad_send_wr)
2561 {
2562         return qp->device->post_send(qp, send_wr, bad_send_wr);
2563 }
2564 
2565 /**
2566  * ib_post_recv - Posts a list of work requests to the receive queue of
2567  *   the specified QP.
2568  * @qp: The QP to post the work request on.
2569  * @recv_wr: A list of work requests to post on the receive queue.
2570  * @bad_recv_wr: On an immediate failure, this parameter will reference
2571  *   the work request that failed to be posted on the QP.
2572  */
2573 static inline int ib_post_recv(struct ib_qp *qp,
2574                                struct ib_recv_wr *recv_wr,
2575                                struct ib_recv_wr **bad_recv_wr)
2576 {
2577         return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2578 }
2579 
2580 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2581                 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2582 void ib_free_cq(struct ib_cq *cq);
2583 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2584 
2585 /**
2586  * ib_create_cq - Creates a CQ on the specified device.
2587  * @device: The device on which to create the CQ.
2588  * @comp_handler: A user-specified callback that is invoked when a
2589  *   completion event occurs on the CQ.
2590  * @event_handler: A user-specified callback that is invoked when an
2591  *   asynchronous event not associated with a completion occurs on the CQ.
2592  * @cq_context: Context associated with the CQ returned to the user via
2593  *   the associated completion and event handlers.
2594  * @cq_attr: The attributes the CQ should be created upon.
2595  *
2596  * Users can examine the cq structure to determine the actual CQ size.
2597  */
2598 struct ib_cq *ib_create_cq(struct ib_device *device,
2599                            ib_comp_handler comp_handler,
2600                            void (*event_handler)(struct ib_event *, void *),
2601                            void *cq_context,
2602                            const struct ib_cq_init_attr *cq_attr);
2603 
2604 /**
2605  * ib_resize_cq - Modifies the capacity of the CQ.
2606  * @cq: The CQ to resize.
2607  * @cqe: The minimum size of the CQ.
2608  *
2609  * Users can examine the cq structure to determine the actual CQ size.
2610  */
2611 int ib_resize_cq(struct ib_cq *cq, int cqe);
2612 
2613 /**
2614  * ib_modify_cq - Modifies moderation params of the CQ
2615  * @cq: The CQ to modify.
2616  * @cq_count: number of CQEs that will trigger an event
2617  * @cq_period: max period of time in usec before triggering an event
2618  *
2619  */
2620 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2621 
2622 /**
2623  * ib_destroy_cq - Destroys the specified CQ.
2624  * @cq: The CQ to destroy.
2625  */
2626 int ib_destroy_cq(struct ib_cq *cq);
2627 
2628 /**
2629  * ib_poll_cq - poll a CQ for completion(s)
2630  * @cq:the CQ being polled
2631  * @num_entries:maximum number of completions to return
2632  * @wc:array of at least @num_entries &struct ib_wc where completions
2633  *   will be returned
2634  *
2635  * Poll a CQ for (possibly multiple) completions.  If the return value
2636  * is < 0, an error occurred.  If the return value is >= 0, it is the
2637  * number of completions returned.  If the return value is
2638  * non-negative and < num_entries, then the CQ was emptied.
2639  */
2640 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2641                              struct ib_wc *wc)
2642 {
2643         return cq->device->poll_cq(cq, num_entries, wc);
2644 }
2645 
2646 /**
2647  * ib_peek_cq - Returns the number of unreaped completions currently
2648  *   on the specified CQ.
2649  * @cq: The CQ to peek.
2650  * @wc_cnt: A minimum number of unreaped completions to check for.
2651  *
2652  * If the number of unreaped completions is greater than or equal to wc_cnt,
2653  * this function returns wc_cnt, otherwise, it returns the actual number of
2654  * unreaped completions.
2655  */
2656 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2657 
2658 /**
2659  * ib_req_notify_cq - Request completion notification on a CQ.
2660  * @cq: The CQ to generate an event for.
2661  * @flags:
2662  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2663  *   to request an event on the next solicited event or next work
2664  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2665  *   may also be |ed in to request a hint about missed events, as
2666  *   described below.
2667  *
2668  * Return Value:
2669  *    < 0 means an error occurred while requesting notification
2670  *   == 0 means notification was requested successfully, and if
2671  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2672  *        were missed and it is safe to wait for another event.  In
2673  *        this case is it guaranteed that any work completions added
2674  *        to the CQ since the last CQ poll will trigger a completion
2675  *        notification event.
2676  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2677  *        in.  It means that the consumer must poll the CQ again to
2678  *        make sure it is empty to avoid missing an event because of a
2679  *        race between requesting notification and an entry being
2680  *        added to the CQ.  This return value means it is possible
2681  *        (but not guaranteed) that a work completion has been added
2682  *        to the CQ since the last poll without triggering a
2683  *        completion notification event.
2684  */
2685 static inline int ib_req_notify_cq(struct ib_cq *cq,
2686                                    enum ib_cq_notify_flags flags)
2687 {
2688         return cq->device->req_notify_cq(cq, flags);
2689 }
2690 
2691 /**
2692  * ib_req_ncomp_notif - Request completion notification when there are
2693  *   at least the specified number of unreaped completions on the CQ.
2694  * @cq: The CQ to generate an event for.
2695  * @wc_cnt: The number of unreaped completions that should be on the
2696  *   CQ before an event is generated.
2697  */
2698 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2699 {
2700         return cq->device->req_ncomp_notif ?
2701                 cq->device->req_ncomp_notif(cq, wc_cnt) :
2702                 -ENOSYS;
2703 }
2704 
2705 /**
2706  * ib_get_dma_mr - Returns a memory region for system memory that is
2707  *   usable for DMA.
2708  * @pd: The protection domain associated with the memory region.
2709  * @mr_access_flags: Specifies the memory access rights.
2710  *
2711  * Note that the ib_dma_*() functions defined below must be used
2712  * to create/destroy addresses used with the Lkey or Rkey returned
2713  * by ib_get_dma_mr().
2714  */
2715 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2716 
2717 /**
2718  * ib_dma_mapping_error - check a DMA addr for error
2719  * @dev: The device for which the dma_addr was created
2720  * @dma_addr: The DMA address to check
2721  */
2722 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2723 {
2724         if (dev->dma_ops)
2725                 return dev->dma_ops->mapping_error(dev, dma_addr);
2726         return dma_mapping_error(dev->dma_device, dma_addr);
2727 }
2728 
2729 /**
2730  * ib_dma_map_single - Map a kernel virtual address to DMA address
2731  * @dev: The device for which the dma_addr is to be created
2732  * @cpu_addr: The kernel virtual address
2733  * @size: The size of the region in bytes
2734  * @direction: The direction of the DMA
2735  */
2736 static inline u64 ib_dma_map_single(struct ib_device *dev,
2737                                     void *cpu_addr, size_t size,
2738                                     enum dma_data_direction direction)
2739 {
2740         if (dev->dma_ops)
2741                 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2742         return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2743 }
2744 
2745 /**
2746  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2747  * @dev: The device for which the DMA address was created
2748  * @addr: The DMA address
2749  * @size: The size of the region in bytes
2750  * @direction: The direction of the DMA
2751  */
2752 static inline void ib_dma_unmap_single(struct ib_device *dev,
2753                                        u64 addr, size_t size,
2754                                        enum dma_data_direction direction)
2755 {
2756         if (dev->dma_ops)
2757                 dev->dma_ops->unmap_single(dev, addr, size, direction);
2758         else
2759                 dma_unmap_single(dev->dma_device, addr, size, direction);
2760 }
2761 
2762 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2763                                           void *cpu_addr, size_t size,
2764                                           enum dma_data_direction direction,
2765                                           struct dma_attrs *attrs)
2766 {
2767         return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2768                                     direction, attrs);
2769 }
2770 
2771 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2772                                              u64 addr, size_t size,
2773                                              enum dma_data_direction direction,
2774                                              struct dma_attrs *attrs)
2775 {
2776         return dma_unmap_single_attrs(dev->dma_device, addr, size,
2777                                       direction, attrs);
2778 }
2779 
2780 /**
2781  * ib_dma_map_page - Map a physical page to DMA address
2782  * @dev: The device for which the dma_addr is to be created
2783  * @page: The page to be mapped
2784  * @offset: The offset within the page
2785  * @size: The size of the region in bytes
2786  * @direction: The direction of the DMA
2787  */
2788 static inline u64 ib_dma_map_page(struct ib_device *dev,
2789                                   struct page *page,
2790                                   unsigned long offset,
2791                                   size_t size,
2792                                          enum dma_data_direction direction)
2793 {
2794         if (dev->dma_ops)
2795                 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2796         return dma_map_page(dev->dma_device, page, offset, size, direction);
2797 }
2798 
2799 /**
2800  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2801  * @dev: The device for which the DMA address was created
2802  * @addr: The DMA address
2803  * @size: The size of the region in bytes
2804  * @direction: The direction of the DMA
2805  */
2806 static inline void ib_dma_unmap_page(struct ib_device *dev,
2807                                      u64 addr, size_t size,
2808                                      enum dma_data_direction direction)
2809 {
2810         if (dev->dma_ops)
2811                 dev->dma_ops->unmap_page(dev, addr, size, direction);
2812         else
2813                 dma_unmap_page(dev->dma_device, addr, size, direction);
2814 }
2815 
2816 /**
2817  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2818  * @dev: The device for which the DMA addresses are to be created
2819  * @sg: The array of scatter/gather entries
2820  * @nents: The number of scatter/gather entries
2821  * @direction: The direction of the DMA
2822  */
2823 static inline int ib_dma_map_sg(struct ib_device *dev,
2824                                 struct scatterlist *sg, int nents,
2825                                 enum dma_data_direction direction)
2826 {
2827         if (dev->dma_ops)
2828                 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2829         return dma_map_sg(dev->dma_device, sg, nents, direction);
2830 }
2831 
2832 /**
2833  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2834  * @dev: The device for which the DMA addresses were created
2835  * @sg: The array of scatter/gather entries
2836  * @nents: The number of scatter/gather entries
2837  * @direction: The direction of the DMA
2838  */
2839 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2840                                    struct scatterlist *sg, int nents,
2841                                    enum dma_data_direction direction)
2842 {
2843         if (dev->dma_ops)
2844                 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2845         else
2846                 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2847 }
2848 
2849 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2850                                       struct scatterlist *sg, int nents,
2851                                       enum dma_data_direction direction,
2852                                       struct dma_attrs *attrs)
2853 {
2854         return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2855 }
2856 
2857 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2858                                          struct scatterlist *sg, int nents,
2859                                          enum dma_data_direction direction,
2860                                          struct dma_attrs *attrs)
2861 {
2862         dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2863 }
2864 /**
2865  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2866  * @dev: The device for which the DMA addresses were created
2867  * @sg: The scatter/gather entry
2868  *
2869  * Note: this function is obsolete. To do: change all occurrences of
2870  * ib_sg_dma_address() into sg_dma_address().
2871  */
2872 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2873                                     struct scatterlist *sg)
2874 {
2875         return sg_dma_address(sg);
2876 }
2877 
2878 /**
2879  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2880  * @dev: The device for which the DMA addresses were created
2881  * @sg: The scatter/gather entry
2882  *
2883  * Note: this function is obsolete. To do: change all occurrences of
2884  * ib_sg_dma_len() into sg_dma_len().
2885  */
2886 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2887                                          struct scatterlist *sg)
2888 {
2889         return sg_dma_len(sg);
2890 }
2891 
2892 /**
2893  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2894  * @dev: The device for which the DMA address was created
2895  * @addr: The DMA address
2896  * @size: The size of the region in bytes
2897  * @dir: The direction of the DMA
2898  */
2899 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2900                                               u64 addr,
2901                                               size_t size,
2902                                               enum dma_data_direction dir)
2903 {
2904         if (dev->dma_ops)
2905                 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2906         else
2907                 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2908 }
2909 
2910 /**
2911  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2912  * @dev: The device for which the DMA address was created
2913  * @addr: The DMA address
2914  * @size: The size of the region in bytes
2915  * @dir: The direction of the DMA
2916  */
2917 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2918                                                  u64 addr,
2919                                                  size_t size,
2920                                                  enum dma_data_direction dir)
2921 {
2922         if (dev->dma_ops)
2923                 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2924         else
2925                 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2926 }
2927 
2928 /**
2929  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2930  * @dev: The device for which the DMA address is requested
2931  * @size: The size of the region to allocate in bytes
2932  * @dma_handle: A pointer for returning the DMA address of the region
2933  * @flag: memory allocator flags
2934  */
2935 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2936                                            size_t size,
2937                                            u64 *dma_handle,
2938                                            gfp_t flag)
2939 {
2940         if (dev->dma_ops)
2941                 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2942         else {
2943                 dma_addr_t handle;
2944                 void *ret;
2945 
2946                 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2947                 *dma_handle = handle;
2948                 return ret;
2949         }
2950 }
2951 
2952 /**
2953  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2954  * @dev: The device for which the DMA addresses were allocated
2955  * @size: The size of the region
2956  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2957  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2958  */
2959 static inline void ib_dma_free_coherent(struct ib_device *dev,
2960                                         size_t size, void *cpu_addr,
2961                                         u64 dma_handle)
2962 {
2963         if (dev->dma_ops)
2964                 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2965         else
2966                 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2967 }
2968 
2969 /**
2970  * ib_dereg_mr - Deregisters a memory region and removes it from the
2971  *   HCA translation table.
2972  * @mr: The memory region to deregister.
2973  *
2974  * This function can fail, if the memory region has memory windows bound to it.
2975  */
2976 int ib_dereg_mr(struct ib_mr *mr);
2977 
2978 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2979                           enum ib_mr_type mr_type,
2980                           u32 max_num_sg);
2981 
2982 /**
2983  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2984  *   R_Key and L_Key.
2985  * @mr - struct ib_mr pointer to be updated.
2986  * @newkey - new key to be used.
2987  */
2988 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2989 {
2990         mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2991         mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2992 }
2993 
2994 /**
2995  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2996  * for calculating a new rkey for type 2 memory windows.
2997  * @rkey - the rkey to increment.
2998  */
2999 static inline u32 ib_inc_rkey(u32 rkey)
3000 {
3001         const u32 mask = 0x000000ff;
3002         return ((rkey + 1) & mask) | (rkey & ~mask);
3003 }
3004 
3005 /**
3006  * ib_alloc_fmr - Allocates a unmapped fast memory region.
3007  * @pd: The protection domain associated with the unmapped region.
3008  * @mr_access_flags: Specifies the memory access rights.
3009  * @fmr_attr: Attributes of the unmapped region.
3010  *
3011  * A fast memory region must be mapped before it can be used as part of
3012  * a work request.
3013  */
3014 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3015                             int mr_access_flags,
3016                             struct ib_fmr_attr *fmr_attr);
3017 
3018 /**
3019  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3020  * @fmr: The fast memory region to associate with the pages.
3021  * @page_list: An array of physical pages to map to the fast memory region.
3022  * @list_len: The number of pages in page_list.
3023  * @iova: The I/O virtual address to use with the mapped region.
3024  */
3025 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3026                                   u64 *page_list, int list_len,
3027                                   u64 iova)
3028 {
3029         return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3030 }
3031 
3032 /**
3033  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3034  * @fmr_list: A linked list of fast memory regions to unmap.
3035  */
3036 int ib_unmap_fmr(struct list_head *fmr_list);
3037 
3038 /**
3039  * ib_dealloc_fmr - Deallocates a fast memory region.
3040  * @fmr: The fast memory region to deallocate.
3041  */
3042 int ib_dealloc_fmr(struct ib_fmr *fmr);
3043 
3044 /**
3045  * ib_attach_mcast - Attaches the specified QP to a multicast group.
3046  * @qp: QP to attach to the multicast group.  The QP must be type
3047  *   IB_QPT_UD.
3048  * @gid: Multicast group GID.
3049  * @lid: Multicast group LID in host byte order.
3050  *
3051  * In order to send and receive multicast packets, subnet
3052  * administration must have created the multicast group and configured
3053  * the fabric appropriately.  The port associated with the specified
3054  * QP must also be a member of the multicast group.
3055  */
3056 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3057 
3058 /**
3059  * ib_detach_mcast - Detaches the specified QP from a multicast group.
3060  * @qp: QP to detach from the multicast group.
3061  * @gid: Multicast group GID.
3062  * @lid: Multicast group LID in host byte order.
3063  */
3064 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3065 
3066 /**
3067  * ib_alloc_xrcd - Allocates an XRC domain.
3068  * @device: The device on which to allocate the XRC domain.
3069  */
3070 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3071 
3072 /**
3073  * ib_dealloc_xrcd - Deallocates an XRC domain.
3074  * @xrcd: The XRC domain to deallocate.
3075  */
3076 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3077 
3078 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3079                                struct ib_flow_attr *flow_attr, int domain);
3080 int ib_destroy_flow(struct ib_flow *flow_id);
3081 
3082 static inline int ib_check_mr_access(int flags)
3083 {
3084         /*
3085          * Local write permission is required if remote write or
3086          * remote atomic permission is also requested.
3087          */
3088         if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3089             !(flags & IB_ACCESS_LOCAL_WRITE))
3090                 return -EINVAL;
3091 
3092         return 0;
3093 }
3094 
3095 /**
3096  * ib_check_mr_status: lightweight check of MR status.
3097  *     This routine may provide status checks on a selected
3098  *     ib_mr. first use is for signature status check.
3099  *
3100  * @mr: A memory region.
3101  * @check_mask: Bitmask of which checks to perform from
3102  *     ib_mr_status_check enumeration.
3103  * @mr_status: The container of relevant status checks.
3104  *     failed checks will be indicated in the status bitmask
3105  *     and the relevant info shall be in the error item.
3106  */
3107 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3108                        struct ib_mr_status *mr_status);
3109 
3110 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3111                                             u16 pkey, const union ib_gid *gid,
3112                                             const struct sockaddr *addr);
3113 
3114 int ib_map_mr_sg(struct ib_mr *mr,
3115                  struct scatterlist *sg,
3116                  int sg_nents,
3117                  unsigned int page_size);
3118 
3119 static inline int
3120 ib_map_mr_sg_zbva(struct ib_mr *mr,
3121                   struct scatterlist *sg,
3122                   int sg_nents,
3123                   unsigned int page_size)
3124 {
3125         int n;
3126 
3127         n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3128         mr->iova = 0;
3129 
3130         return n;
3131 }
3132 
3133 int ib_sg_to_pages(struct ib_mr *mr,
3134                    struct scatterlist *sgl,
3135                    int sg_nents,
3136                    int (*set_page)(struct ib_mr *, u64));
3137 
3138 void ib_drain_rq(struct ib_qp *qp);
3139 void ib_drain_sq(struct ib_qp *qp);
3140 void ib_drain_qp(struct ib_qp *qp);
3141 #endif /* IB_VERBS_H */
3142 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp