~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/openvswitch/actions.c

Version: ~ [ linux-5.14-rc1 ] ~ [ linux-5.13.1 ] ~ [ linux-5.12.16 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.49 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.131 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.197 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.239 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.275 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.275 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (c) 2007-2017 Nicira, Inc.
  4  */
  5 
  6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7 
  8 #include <linux/skbuff.h>
  9 #include <linux/in.h>
 10 #include <linux/ip.h>
 11 #include <linux/openvswitch.h>
 12 #include <linux/netfilter_ipv6.h>
 13 #include <linux/sctp.h>
 14 #include <linux/tcp.h>
 15 #include <linux/udp.h>
 16 #include <linux/in6.h>
 17 #include <linux/if_arp.h>
 18 #include <linux/if_vlan.h>
 19 
 20 #include <net/dst.h>
 21 #include <net/ip.h>
 22 #include <net/ipv6.h>
 23 #include <net/ip6_fib.h>
 24 #include <net/checksum.h>
 25 #include <net/dsfield.h>
 26 #include <net/mpls.h>
 27 #include <net/sctp/checksum.h>
 28 
 29 #include "datapath.h"
 30 #include "flow.h"
 31 #include "conntrack.h"
 32 #include "vport.h"
 33 #include "flow_netlink.h"
 34 
 35 struct deferred_action {
 36         struct sk_buff *skb;
 37         const struct nlattr *actions;
 38         int actions_len;
 39 
 40         /* Store pkt_key clone when creating deferred action. */
 41         struct sw_flow_key pkt_key;
 42 };
 43 
 44 #define MAX_L2_LEN      (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
 45 struct ovs_frag_data {
 46         unsigned long dst;
 47         struct vport *vport;
 48         struct ovs_skb_cb cb;
 49         __be16 inner_protocol;
 50         u16 network_offset;     /* valid only for MPLS */
 51         u16 vlan_tci;
 52         __be16 vlan_proto;
 53         unsigned int l2_len;
 54         u8 mac_proto;
 55         u8 l2_data[MAX_L2_LEN];
 56 };
 57 
 58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
 59 
 60 #define DEFERRED_ACTION_FIFO_SIZE 10
 61 #define OVS_RECURSION_LIMIT 5
 62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
 63 struct action_fifo {
 64         int head;
 65         int tail;
 66         /* Deferred action fifo queue storage. */
 67         struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
 68 };
 69 
 70 struct action_flow_keys {
 71         struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
 72 };
 73 
 74 static struct action_fifo __percpu *action_fifos;
 75 static struct action_flow_keys __percpu *flow_keys;
 76 static DEFINE_PER_CPU(int, exec_actions_level);
 77 
 78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
 79  * space. Return NULL if out of key spaces.
 80  */
 81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
 82 {
 83         struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
 84         int level = this_cpu_read(exec_actions_level);
 85         struct sw_flow_key *key = NULL;
 86 
 87         if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
 88                 key = &keys->key[level - 1];
 89                 *key = *key_;
 90         }
 91 
 92         return key;
 93 }
 94 
 95 static void action_fifo_init(struct action_fifo *fifo)
 96 {
 97         fifo->head = 0;
 98         fifo->tail = 0;
 99 }
100 
101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
102 {
103         return (fifo->head == fifo->tail);
104 }
105 
106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
107 {
108         if (action_fifo_is_empty(fifo))
109                 return NULL;
110 
111         return &fifo->fifo[fifo->tail++];
112 }
113 
114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
115 {
116         if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117                 return NULL;
118 
119         return &fifo->fifo[fifo->head++];
120 }
121 
122 /* Return true if fifo is not full */
123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124                                     const struct sw_flow_key *key,
125                                     const struct nlattr *actions,
126                                     const int actions_len)
127 {
128         struct action_fifo *fifo;
129         struct deferred_action *da;
130 
131         fifo = this_cpu_ptr(action_fifos);
132         da = action_fifo_put(fifo);
133         if (da) {
134                 da->skb = skb;
135                 da->actions = actions;
136                 da->actions_len = actions_len;
137                 da->pkt_key = *key;
138         }
139 
140         return da;
141 }
142 
143 static void invalidate_flow_key(struct sw_flow_key *key)
144 {
145         key->mac_proto |= SW_FLOW_KEY_INVALID;
146 }
147 
148 static bool is_flow_key_valid(const struct sw_flow_key *key)
149 {
150         return !(key->mac_proto & SW_FLOW_KEY_INVALID);
151 }
152 
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154                          struct sw_flow_key *key,
155                          u32 recirc_id,
156                          const struct nlattr *actions, int len,
157                          bool last, bool clone_flow_key);
158 
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160                               struct sw_flow_key *key,
161                               const struct nlattr *attr, int len);
162 
163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164                      const struct ovs_action_push_mpls *mpls)
165 {
166         int err;
167 
168         err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype,
169                             skb->mac_len,
170                             ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
171         if (err)
172                 return err;
173 
174         invalidate_flow_key(key);
175         return 0;
176 }
177 
178 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
179                     const __be16 ethertype)
180 {
181         int err;
182 
183         err = skb_mpls_pop(skb, ethertype, skb->mac_len,
184                            ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
185         if (err)
186                 return err;
187 
188         invalidate_flow_key(key);
189         return 0;
190 }
191 
192 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
193                     const __be32 *mpls_lse, const __be32 *mask)
194 {
195         struct mpls_shim_hdr *stack;
196         __be32 lse;
197         int err;
198 
199         stack = mpls_hdr(skb);
200         lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
201         err = skb_mpls_update_lse(skb, lse);
202         if (err)
203                 return err;
204 
205         flow_key->mpls.top_lse = lse;
206         return 0;
207 }
208 
209 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
210 {
211         int err;
212 
213         err = skb_vlan_pop(skb);
214         if (skb_vlan_tag_present(skb)) {
215                 invalidate_flow_key(key);
216         } else {
217                 key->eth.vlan.tci = 0;
218                 key->eth.vlan.tpid = 0;
219         }
220         return err;
221 }
222 
223 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
224                      const struct ovs_action_push_vlan *vlan)
225 {
226         if (skb_vlan_tag_present(skb)) {
227                 invalidate_flow_key(key);
228         } else {
229                 key->eth.vlan.tci = vlan->vlan_tci;
230                 key->eth.vlan.tpid = vlan->vlan_tpid;
231         }
232         return skb_vlan_push(skb, vlan->vlan_tpid,
233                              ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
234 }
235 
236 /* 'src' is already properly masked. */
237 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
238 {
239         u16 *dst = (u16 *)dst_;
240         const u16 *src = (const u16 *)src_;
241         const u16 *mask = (const u16 *)mask_;
242 
243         OVS_SET_MASKED(dst[0], src[0], mask[0]);
244         OVS_SET_MASKED(dst[1], src[1], mask[1]);
245         OVS_SET_MASKED(dst[2], src[2], mask[2]);
246 }
247 
248 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
249                         const struct ovs_key_ethernet *key,
250                         const struct ovs_key_ethernet *mask)
251 {
252         int err;
253 
254         err = skb_ensure_writable(skb, ETH_HLEN);
255         if (unlikely(err))
256                 return err;
257 
258         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
259 
260         ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
261                                mask->eth_src);
262         ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
263                                mask->eth_dst);
264 
265         skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
266 
267         ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
268         ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
269         return 0;
270 }
271 
272 /* pop_eth does not support VLAN packets as this action is never called
273  * for them.
274  */
275 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
276 {
277         skb_pull_rcsum(skb, ETH_HLEN);
278         skb_reset_mac_header(skb);
279         skb_reset_mac_len(skb);
280 
281         /* safe right before invalidate_flow_key */
282         key->mac_proto = MAC_PROTO_NONE;
283         invalidate_flow_key(key);
284         return 0;
285 }
286 
287 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
288                     const struct ovs_action_push_eth *ethh)
289 {
290         struct ethhdr *hdr;
291 
292         /* Add the new Ethernet header */
293         if (skb_cow_head(skb, ETH_HLEN) < 0)
294                 return -ENOMEM;
295 
296         skb_push(skb, ETH_HLEN);
297         skb_reset_mac_header(skb);
298         skb_reset_mac_len(skb);
299 
300         hdr = eth_hdr(skb);
301         ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
302         ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
303         hdr->h_proto = skb->protocol;
304 
305         skb_postpush_rcsum(skb, hdr, ETH_HLEN);
306 
307         /* safe right before invalidate_flow_key */
308         key->mac_proto = MAC_PROTO_ETHERNET;
309         invalidate_flow_key(key);
310         return 0;
311 }
312 
313 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
314                     const struct nshhdr *nh)
315 {
316         int err;
317 
318         err = nsh_push(skb, nh);
319         if (err)
320                 return err;
321 
322         /* safe right before invalidate_flow_key */
323         key->mac_proto = MAC_PROTO_NONE;
324         invalidate_flow_key(key);
325         return 0;
326 }
327 
328 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
329 {
330         int err;
331 
332         err = nsh_pop(skb);
333         if (err)
334                 return err;
335 
336         /* safe right before invalidate_flow_key */
337         if (skb->protocol == htons(ETH_P_TEB))
338                 key->mac_proto = MAC_PROTO_ETHERNET;
339         else
340                 key->mac_proto = MAC_PROTO_NONE;
341         invalidate_flow_key(key);
342         return 0;
343 }
344 
345 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
346                                   __be32 addr, __be32 new_addr)
347 {
348         int transport_len = skb->len - skb_transport_offset(skb);
349 
350         if (nh->frag_off & htons(IP_OFFSET))
351                 return;
352 
353         if (nh->protocol == IPPROTO_TCP) {
354                 if (likely(transport_len >= sizeof(struct tcphdr)))
355                         inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
356                                                  addr, new_addr, true);
357         } else if (nh->protocol == IPPROTO_UDP) {
358                 if (likely(transport_len >= sizeof(struct udphdr))) {
359                         struct udphdr *uh = udp_hdr(skb);
360 
361                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
362                                 inet_proto_csum_replace4(&uh->check, skb,
363                                                          addr, new_addr, true);
364                                 if (!uh->check)
365                                         uh->check = CSUM_MANGLED_0;
366                         }
367                 }
368         }
369 }
370 
371 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
372                         __be32 *addr, __be32 new_addr)
373 {
374         update_ip_l4_checksum(skb, nh, *addr, new_addr);
375         csum_replace4(&nh->check, *addr, new_addr);
376         skb_clear_hash(skb);
377         *addr = new_addr;
378 }
379 
380 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
381                                  __be32 addr[4], const __be32 new_addr[4])
382 {
383         int transport_len = skb->len - skb_transport_offset(skb);
384 
385         if (l4_proto == NEXTHDR_TCP) {
386                 if (likely(transport_len >= sizeof(struct tcphdr)))
387                         inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
388                                                   addr, new_addr, true);
389         } else if (l4_proto == NEXTHDR_UDP) {
390                 if (likely(transport_len >= sizeof(struct udphdr))) {
391                         struct udphdr *uh = udp_hdr(skb);
392 
393                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
394                                 inet_proto_csum_replace16(&uh->check, skb,
395                                                           addr, new_addr, true);
396                                 if (!uh->check)
397                                         uh->check = CSUM_MANGLED_0;
398                         }
399                 }
400         } else if (l4_proto == NEXTHDR_ICMP) {
401                 if (likely(transport_len >= sizeof(struct icmp6hdr)))
402                         inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
403                                                   skb, addr, new_addr, true);
404         }
405 }
406 
407 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
408                            const __be32 mask[4], __be32 masked[4])
409 {
410         masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
411         masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
412         masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
413         masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
414 }
415 
416 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
417                           __be32 addr[4], const __be32 new_addr[4],
418                           bool recalculate_csum)
419 {
420         if (recalculate_csum)
421                 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
422 
423         skb_clear_hash(skb);
424         memcpy(addr, new_addr, sizeof(__be32[4]));
425 }
426 
427 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
428 {
429         /* Bits 21-24 are always unmasked, so this retains their values. */
430         OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
431         OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
432         OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
433 }
434 
435 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
436                        u8 mask)
437 {
438         new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
439 
440         csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
441         nh->ttl = new_ttl;
442 }
443 
444 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
445                     const struct ovs_key_ipv4 *key,
446                     const struct ovs_key_ipv4 *mask)
447 {
448         struct iphdr *nh;
449         __be32 new_addr;
450         int err;
451 
452         err = skb_ensure_writable(skb, skb_network_offset(skb) +
453                                   sizeof(struct iphdr));
454         if (unlikely(err))
455                 return err;
456 
457         nh = ip_hdr(skb);
458 
459         /* Setting an IP addresses is typically only a side effect of
460          * matching on them in the current userspace implementation, so it
461          * makes sense to check if the value actually changed.
462          */
463         if (mask->ipv4_src) {
464                 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
465 
466                 if (unlikely(new_addr != nh->saddr)) {
467                         set_ip_addr(skb, nh, &nh->saddr, new_addr);
468                         flow_key->ipv4.addr.src = new_addr;
469                 }
470         }
471         if (mask->ipv4_dst) {
472                 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
473 
474                 if (unlikely(new_addr != nh->daddr)) {
475                         set_ip_addr(skb, nh, &nh->daddr, new_addr);
476                         flow_key->ipv4.addr.dst = new_addr;
477                 }
478         }
479         if (mask->ipv4_tos) {
480                 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
481                 flow_key->ip.tos = nh->tos;
482         }
483         if (mask->ipv4_ttl) {
484                 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
485                 flow_key->ip.ttl = nh->ttl;
486         }
487 
488         return 0;
489 }
490 
491 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
492 {
493         return !!(addr[0] | addr[1] | addr[2] | addr[3]);
494 }
495 
496 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
497                     const struct ovs_key_ipv6 *key,
498                     const struct ovs_key_ipv6 *mask)
499 {
500         struct ipv6hdr *nh;
501         int err;
502 
503         err = skb_ensure_writable(skb, skb_network_offset(skb) +
504                                   sizeof(struct ipv6hdr));
505         if (unlikely(err))
506                 return err;
507 
508         nh = ipv6_hdr(skb);
509 
510         /* Setting an IP addresses is typically only a side effect of
511          * matching on them in the current userspace implementation, so it
512          * makes sense to check if the value actually changed.
513          */
514         if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
515                 __be32 *saddr = (__be32 *)&nh->saddr;
516                 __be32 masked[4];
517 
518                 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
519 
520                 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
521                         set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
522                                       true);
523                         memcpy(&flow_key->ipv6.addr.src, masked,
524                                sizeof(flow_key->ipv6.addr.src));
525                 }
526         }
527         if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
528                 unsigned int offset = 0;
529                 int flags = IP6_FH_F_SKIP_RH;
530                 bool recalc_csum = true;
531                 __be32 *daddr = (__be32 *)&nh->daddr;
532                 __be32 masked[4];
533 
534                 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
535 
536                 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
537                         if (ipv6_ext_hdr(nh->nexthdr))
538                                 recalc_csum = (ipv6_find_hdr(skb, &offset,
539                                                              NEXTHDR_ROUTING,
540                                                              NULL, &flags)
541                                                != NEXTHDR_ROUTING);
542 
543                         set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
544                                       recalc_csum);
545                         memcpy(&flow_key->ipv6.addr.dst, masked,
546                                sizeof(flow_key->ipv6.addr.dst));
547                 }
548         }
549         if (mask->ipv6_tclass) {
550                 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
551                 flow_key->ip.tos = ipv6_get_dsfield(nh);
552         }
553         if (mask->ipv6_label) {
554                 set_ipv6_fl(nh, ntohl(key->ipv6_label),
555                             ntohl(mask->ipv6_label));
556                 flow_key->ipv6.label =
557                     *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
558         }
559         if (mask->ipv6_hlimit) {
560                 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
561                                mask->ipv6_hlimit);
562                 flow_key->ip.ttl = nh->hop_limit;
563         }
564         return 0;
565 }
566 
567 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
568                    const struct nlattr *a)
569 {
570         struct nshhdr *nh;
571         size_t length;
572         int err;
573         u8 flags;
574         u8 ttl;
575         int i;
576 
577         struct ovs_key_nsh key;
578         struct ovs_key_nsh mask;
579 
580         err = nsh_key_from_nlattr(a, &key, &mask);
581         if (err)
582                 return err;
583 
584         /* Make sure the NSH base header is there */
585         if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
586                 return -ENOMEM;
587 
588         nh = nsh_hdr(skb);
589         length = nsh_hdr_len(nh);
590 
591         /* Make sure the whole NSH header is there */
592         err = skb_ensure_writable(skb, skb_network_offset(skb) +
593                                        length);
594         if (unlikely(err))
595                 return err;
596 
597         nh = nsh_hdr(skb);
598         skb_postpull_rcsum(skb, nh, length);
599         flags = nsh_get_flags(nh);
600         flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
601         flow_key->nsh.base.flags = flags;
602         ttl = nsh_get_ttl(nh);
603         ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
604         flow_key->nsh.base.ttl = ttl;
605         nsh_set_flags_and_ttl(nh, flags, ttl);
606         nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
607                                   mask.base.path_hdr);
608         flow_key->nsh.base.path_hdr = nh->path_hdr;
609         switch (nh->mdtype) {
610         case NSH_M_TYPE1:
611                 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
612                         nh->md1.context[i] =
613                             OVS_MASKED(nh->md1.context[i], key.context[i],
614                                        mask.context[i]);
615                 }
616                 memcpy(flow_key->nsh.context, nh->md1.context,
617                        sizeof(nh->md1.context));
618                 break;
619         case NSH_M_TYPE2:
620                 memset(flow_key->nsh.context, 0,
621                        sizeof(flow_key->nsh.context));
622                 break;
623         default:
624                 return -EINVAL;
625         }
626         skb_postpush_rcsum(skb, nh, length);
627         return 0;
628 }
629 
630 /* Must follow skb_ensure_writable() since that can move the skb data. */
631 static void set_tp_port(struct sk_buff *skb, __be16 *port,
632                         __be16 new_port, __sum16 *check)
633 {
634         inet_proto_csum_replace2(check, skb, *port, new_port, false);
635         *port = new_port;
636 }
637 
638 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
639                    const struct ovs_key_udp *key,
640                    const struct ovs_key_udp *mask)
641 {
642         struct udphdr *uh;
643         __be16 src, dst;
644         int err;
645 
646         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
647                                   sizeof(struct udphdr));
648         if (unlikely(err))
649                 return err;
650 
651         uh = udp_hdr(skb);
652         /* Either of the masks is non-zero, so do not bother checking them. */
653         src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
654         dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
655 
656         if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
657                 if (likely(src != uh->source)) {
658                         set_tp_port(skb, &uh->source, src, &uh->check);
659                         flow_key->tp.src = src;
660                 }
661                 if (likely(dst != uh->dest)) {
662                         set_tp_port(skb, &uh->dest, dst, &uh->check);
663                         flow_key->tp.dst = dst;
664                 }
665 
666                 if (unlikely(!uh->check))
667                         uh->check = CSUM_MANGLED_0;
668         } else {
669                 uh->source = src;
670                 uh->dest = dst;
671                 flow_key->tp.src = src;
672                 flow_key->tp.dst = dst;
673         }
674 
675         skb_clear_hash(skb);
676 
677         return 0;
678 }
679 
680 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
681                    const struct ovs_key_tcp *key,
682                    const struct ovs_key_tcp *mask)
683 {
684         struct tcphdr *th;
685         __be16 src, dst;
686         int err;
687 
688         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
689                                   sizeof(struct tcphdr));
690         if (unlikely(err))
691                 return err;
692 
693         th = tcp_hdr(skb);
694         src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
695         if (likely(src != th->source)) {
696                 set_tp_port(skb, &th->source, src, &th->check);
697                 flow_key->tp.src = src;
698         }
699         dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
700         if (likely(dst != th->dest)) {
701                 set_tp_port(skb, &th->dest, dst, &th->check);
702                 flow_key->tp.dst = dst;
703         }
704         skb_clear_hash(skb);
705 
706         return 0;
707 }
708 
709 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
710                     const struct ovs_key_sctp *key,
711                     const struct ovs_key_sctp *mask)
712 {
713         unsigned int sctphoff = skb_transport_offset(skb);
714         struct sctphdr *sh;
715         __le32 old_correct_csum, new_csum, old_csum;
716         int err;
717 
718         err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
719         if (unlikely(err))
720                 return err;
721 
722         sh = sctp_hdr(skb);
723         old_csum = sh->checksum;
724         old_correct_csum = sctp_compute_cksum(skb, sctphoff);
725 
726         sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
727         sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
728 
729         new_csum = sctp_compute_cksum(skb, sctphoff);
730 
731         /* Carry any checksum errors through. */
732         sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
733 
734         skb_clear_hash(skb);
735         flow_key->tp.src = sh->source;
736         flow_key->tp.dst = sh->dest;
737 
738         return 0;
739 }
740 
741 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
742 {
743         struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
744         struct vport *vport = data->vport;
745 
746         if (skb_cow_head(skb, data->l2_len) < 0) {
747                 kfree_skb(skb);
748                 return -ENOMEM;
749         }
750 
751         __skb_dst_copy(skb, data->dst);
752         *OVS_CB(skb) = data->cb;
753         skb->inner_protocol = data->inner_protocol;
754         if (data->vlan_tci & VLAN_CFI_MASK)
755                 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
756         else
757                 __vlan_hwaccel_clear_tag(skb);
758 
759         /* Reconstruct the MAC header.  */
760         skb_push(skb, data->l2_len);
761         memcpy(skb->data, &data->l2_data, data->l2_len);
762         skb_postpush_rcsum(skb, skb->data, data->l2_len);
763         skb_reset_mac_header(skb);
764 
765         if (eth_p_mpls(skb->protocol)) {
766                 skb->inner_network_header = skb->network_header;
767                 skb_set_network_header(skb, data->network_offset);
768                 skb_reset_mac_len(skb);
769         }
770 
771         ovs_vport_send(vport, skb, data->mac_proto);
772         return 0;
773 }
774 
775 static unsigned int
776 ovs_dst_get_mtu(const struct dst_entry *dst)
777 {
778         return dst->dev->mtu;
779 }
780 
781 static struct dst_ops ovs_dst_ops = {
782         .family = AF_UNSPEC,
783         .mtu = ovs_dst_get_mtu,
784 };
785 
786 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
787  * ovs_vport_output(), which is called once per fragmented packet.
788  */
789 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
790                          u16 orig_network_offset, u8 mac_proto)
791 {
792         unsigned int hlen = skb_network_offset(skb);
793         struct ovs_frag_data *data;
794 
795         data = this_cpu_ptr(&ovs_frag_data_storage);
796         data->dst = skb->_skb_refdst;
797         data->vport = vport;
798         data->cb = *OVS_CB(skb);
799         data->inner_protocol = skb->inner_protocol;
800         data->network_offset = orig_network_offset;
801         if (skb_vlan_tag_present(skb))
802                 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
803         else
804                 data->vlan_tci = 0;
805         data->vlan_proto = skb->vlan_proto;
806         data->mac_proto = mac_proto;
807         data->l2_len = hlen;
808         memcpy(&data->l2_data, skb->data, hlen);
809 
810         memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
811         skb_pull(skb, hlen);
812 }
813 
814 static void ovs_fragment(struct net *net, struct vport *vport,
815                          struct sk_buff *skb, u16 mru,
816                          struct sw_flow_key *key)
817 {
818         u16 orig_network_offset = 0;
819 
820         if (eth_p_mpls(skb->protocol)) {
821                 orig_network_offset = skb_network_offset(skb);
822                 skb->network_header = skb->inner_network_header;
823         }
824 
825         if (skb_network_offset(skb) > MAX_L2_LEN) {
826                 OVS_NLERR(1, "L2 header too long to fragment");
827                 goto err;
828         }
829 
830         if (key->eth.type == htons(ETH_P_IP)) {
831                 struct dst_entry ovs_dst;
832                 unsigned long orig_dst;
833 
834                 prepare_frag(vport, skb, orig_network_offset,
835                              ovs_key_mac_proto(key));
836                 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
837                          DST_OBSOLETE_NONE, DST_NOCOUNT);
838                 ovs_dst.dev = vport->dev;
839 
840                 orig_dst = skb->_skb_refdst;
841                 skb_dst_set_noref(skb, &ovs_dst);
842                 IPCB(skb)->frag_max_size = mru;
843 
844                 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
845                 refdst_drop(orig_dst);
846         } else if (key->eth.type == htons(ETH_P_IPV6)) {
847                 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
848                 unsigned long orig_dst;
849                 struct rt6_info ovs_rt;
850 
851                 if (!v6ops)
852                         goto err;
853 
854                 prepare_frag(vport, skb, orig_network_offset,
855                              ovs_key_mac_proto(key));
856                 memset(&ovs_rt, 0, sizeof(ovs_rt));
857                 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
858                          DST_OBSOLETE_NONE, DST_NOCOUNT);
859                 ovs_rt.dst.dev = vport->dev;
860 
861                 orig_dst = skb->_skb_refdst;
862                 skb_dst_set_noref(skb, &ovs_rt.dst);
863                 IP6CB(skb)->frag_max_size = mru;
864 
865                 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
866                 refdst_drop(orig_dst);
867         } else {
868                 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
869                           ovs_vport_name(vport), ntohs(key->eth.type), mru,
870                           vport->dev->mtu);
871                 goto err;
872         }
873 
874         return;
875 err:
876         kfree_skb(skb);
877 }
878 
879 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
880                       struct sw_flow_key *key)
881 {
882         struct vport *vport = ovs_vport_rcu(dp, out_port);
883 
884         if (likely(vport)) {
885                 u16 mru = OVS_CB(skb)->mru;
886                 u32 cutlen = OVS_CB(skb)->cutlen;
887 
888                 if (unlikely(cutlen > 0)) {
889                         if (skb->len - cutlen > ovs_mac_header_len(key))
890                                 pskb_trim(skb, skb->len - cutlen);
891                         else
892                                 pskb_trim(skb, ovs_mac_header_len(key));
893                 }
894 
895                 if (likely(!mru ||
896                            (skb->len <= mru + vport->dev->hard_header_len))) {
897                         ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
898                 } else if (mru <= vport->dev->mtu) {
899                         struct net *net = read_pnet(&dp->net);
900 
901                         ovs_fragment(net, vport, skb, mru, key);
902                 } else {
903                         kfree_skb(skb);
904                 }
905         } else {
906                 kfree_skb(skb);
907         }
908 }
909 
910 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
911                             struct sw_flow_key *key, const struct nlattr *attr,
912                             const struct nlattr *actions, int actions_len,
913                             uint32_t cutlen)
914 {
915         struct dp_upcall_info upcall;
916         const struct nlattr *a;
917         int rem;
918 
919         memset(&upcall, 0, sizeof(upcall));
920         upcall.cmd = OVS_PACKET_CMD_ACTION;
921         upcall.mru = OVS_CB(skb)->mru;
922 
923         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
924                  a = nla_next(a, &rem)) {
925                 switch (nla_type(a)) {
926                 case OVS_USERSPACE_ATTR_USERDATA:
927                         upcall.userdata = a;
928                         break;
929 
930                 case OVS_USERSPACE_ATTR_PID:
931                         upcall.portid = nla_get_u32(a);
932                         break;
933 
934                 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
935                         /* Get out tunnel info. */
936                         struct vport *vport;
937 
938                         vport = ovs_vport_rcu(dp, nla_get_u32(a));
939                         if (vport) {
940                                 int err;
941 
942                                 err = dev_fill_metadata_dst(vport->dev, skb);
943                                 if (!err)
944                                         upcall.egress_tun_info = skb_tunnel_info(skb);
945                         }
946 
947                         break;
948                 }
949 
950                 case OVS_USERSPACE_ATTR_ACTIONS: {
951                         /* Include actions. */
952                         upcall.actions = actions;
953                         upcall.actions_len = actions_len;
954                         break;
955                 }
956 
957                 } /* End of switch. */
958         }
959 
960         return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
961 }
962 
963 /* When 'last' is true, sample() should always consume the 'skb'.
964  * Otherwise, sample() should keep 'skb' intact regardless what
965  * actions are executed within sample().
966  */
967 static int sample(struct datapath *dp, struct sk_buff *skb,
968                   struct sw_flow_key *key, const struct nlattr *attr,
969                   bool last)
970 {
971         struct nlattr *actions;
972         struct nlattr *sample_arg;
973         int rem = nla_len(attr);
974         const struct sample_arg *arg;
975         bool clone_flow_key;
976 
977         /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
978         sample_arg = nla_data(attr);
979         arg = nla_data(sample_arg);
980         actions = nla_next(sample_arg, &rem);
981 
982         if ((arg->probability != U32_MAX) &&
983             (!arg->probability || prandom_u32() > arg->probability)) {
984                 if (last)
985                         consume_skb(skb);
986                 return 0;
987         }
988 
989         clone_flow_key = !arg->exec;
990         return clone_execute(dp, skb, key, 0, actions, rem, last,
991                              clone_flow_key);
992 }
993 
994 /* When 'last' is true, clone() should always consume the 'skb'.
995  * Otherwise, clone() should keep 'skb' intact regardless what
996  * actions are executed within clone().
997  */
998 static int clone(struct datapath *dp, struct sk_buff *skb,
999                  struct sw_flow_key *key, const struct nlattr *attr,
1000                  bool last)
1001 {
1002         struct nlattr *actions;
1003         struct nlattr *clone_arg;
1004         int rem = nla_len(attr);
1005         bool dont_clone_flow_key;
1006 
1007         /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1008         clone_arg = nla_data(attr);
1009         dont_clone_flow_key = nla_get_u32(clone_arg);
1010         actions = nla_next(clone_arg, &rem);
1011 
1012         return clone_execute(dp, skb, key, 0, actions, rem, last,
1013                              !dont_clone_flow_key);
1014 }
1015 
1016 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1017                          const struct nlattr *attr)
1018 {
1019         struct ovs_action_hash *hash_act = nla_data(attr);
1020         u32 hash = 0;
1021 
1022         /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1023         hash = skb_get_hash(skb);
1024         hash = jhash_1word(hash, hash_act->hash_basis);
1025         if (!hash)
1026                 hash = 0x1;
1027 
1028         key->ovs_flow_hash = hash;
1029 }
1030 
1031 static int execute_set_action(struct sk_buff *skb,
1032                               struct sw_flow_key *flow_key,
1033                               const struct nlattr *a)
1034 {
1035         /* Only tunnel set execution is supported without a mask. */
1036         if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1037                 struct ovs_tunnel_info *tun = nla_data(a);
1038 
1039                 skb_dst_drop(skb);
1040                 dst_hold((struct dst_entry *)tun->tun_dst);
1041                 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1042                 return 0;
1043         }
1044 
1045         return -EINVAL;
1046 }
1047 
1048 /* Mask is at the midpoint of the data. */
1049 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1050 
1051 static int execute_masked_set_action(struct sk_buff *skb,
1052                                      struct sw_flow_key *flow_key,
1053                                      const struct nlattr *a)
1054 {
1055         int err = 0;
1056 
1057         switch (nla_type(a)) {
1058         case OVS_KEY_ATTR_PRIORITY:
1059                 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1060                                *get_mask(a, u32 *));
1061                 flow_key->phy.priority = skb->priority;
1062                 break;
1063 
1064         case OVS_KEY_ATTR_SKB_MARK:
1065                 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1066                 flow_key->phy.skb_mark = skb->mark;
1067                 break;
1068 
1069         case OVS_KEY_ATTR_TUNNEL_INFO:
1070                 /* Masked data not supported for tunnel. */
1071                 err = -EINVAL;
1072                 break;
1073 
1074         case OVS_KEY_ATTR_ETHERNET:
1075                 err = set_eth_addr(skb, flow_key, nla_data(a),
1076                                    get_mask(a, struct ovs_key_ethernet *));
1077                 break;
1078 
1079         case OVS_KEY_ATTR_NSH:
1080                 err = set_nsh(skb, flow_key, a);
1081                 break;
1082 
1083         case OVS_KEY_ATTR_IPV4:
1084                 err = set_ipv4(skb, flow_key, nla_data(a),
1085                                get_mask(a, struct ovs_key_ipv4 *));
1086                 break;
1087 
1088         case OVS_KEY_ATTR_IPV6:
1089                 err = set_ipv6(skb, flow_key, nla_data(a),
1090                                get_mask(a, struct ovs_key_ipv6 *));
1091                 break;
1092 
1093         case OVS_KEY_ATTR_TCP:
1094                 err = set_tcp(skb, flow_key, nla_data(a),
1095                               get_mask(a, struct ovs_key_tcp *));
1096                 break;
1097 
1098         case OVS_KEY_ATTR_UDP:
1099                 err = set_udp(skb, flow_key, nla_data(a),
1100                               get_mask(a, struct ovs_key_udp *));
1101                 break;
1102 
1103         case OVS_KEY_ATTR_SCTP:
1104                 err = set_sctp(skb, flow_key, nla_data(a),
1105                                get_mask(a, struct ovs_key_sctp *));
1106                 break;
1107 
1108         case OVS_KEY_ATTR_MPLS:
1109                 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1110                                                                     __be32 *));
1111                 break;
1112 
1113         case OVS_KEY_ATTR_CT_STATE:
1114         case OVS_KEY_ATTR_CT_ZONE:
1115         case OVS_KEY_ATTR_CT_MARK:
1116         case OVS_KEY_ATTR_CT_LABELS:
1117         case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1118         case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1119                 err = -EINVAL;
1120                 break;
1121         }
1122 
1123         return err;
1124 }
1125 
1126 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1127                           struct sw_flow_key *key,
1128                           const struct nlattr *a, bool last)
1129 {
1130         u32 recirc_id;
1131 
1132         if (!is_flow_key_valid(key)) {
1133                 int err;
1134 
1135                 err = ovs_flow_key_update(skb, key);
1136                 if (err)
1137                         return err;
1138         }
1139         BUG_ON(!is_flow_key_valid(key));
1140 
1141         recirc_id = nla_get_u32(a);
1142         return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1143 }
1144 
1145 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1146                                  struct sw_flow_key *key,
1147                                  const struct nlattr *attr, bool last)
1148 {
1149         const struct nlattr *actions, *cpl_arg;
1150         const struct check_pkt_len_arg *arg;
1151         int rem = nla_len(attr);
1152         bool clone_flow_key;
1153 
1154         /* The first netlink attribute in 'attr' is always
1155          * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1156          */
1157         cpl_arg = nla_data(attr);
1158         arg = nla_data(cpl_arg);
1159 
1160         if (skb->len <= arg->pkt_len) {
1161                 /* Second netlink attribute in 'attr' is always
1162                  * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1163                  */
1164                 actions = nla_next(cpl_arg, &rem);
1165                 clone_flow_key = !arg->exec_for_lesser_equal;
1166         } else {
1167                 /* Third netlink attribute in 'attr' is always
1168                  * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1169                  */
1170                 actions = nla_next(cpl_arg, &rem);
1171                 actions = nla_next(actions, &rem);
1172                 clone_flow_key = !arg->exec_for_greater;
1173         }
1174 
1175         return clone_execute(dp, skb, key, 0, nla_data(actions),
1176                              nla_len(actions), last, clone_flow_key);
1177 }
1178 
1179 /* Execute a list of actions against 'skb'. */
1180 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1181                               struct sw_flow_key *key,
1182                               const struct nlattr *attr, int len)
1183 {
1184         const struct nlattr *a;
1185         int rem;
1186 
1187         for (a = attr, rem = len; rem > 0;
1188              a = nla_next(a, &rem)) {
1189                 int err = 0;
1190 
1191                 switch (nla_type(a)) {
1192                 case OVS_ACTION_ATTR_OUTPUT: {
1193                         int port = nla_get_u32(a);
1194                         struct sk_buff *clone;
1195 
1196                         /* Every output action needs a separate clone
1197                          * of 'skb', In case the output action is the
1198                          * last action, cloning can be avoided.
1199                          */
1200                         if (nla_is_last(a, rem)) {
1201                                 do_output(dp, skb, port, key);
1202                                 /* 'skb' has been used for output.
1203                                  */
1204                                 return 0;
1205                         }
1206 
1207                         clone = skb_clone(skb, GFP_ATOMIC);
1208                         if (clone)
1209                                 do_output(dp, clone, port, key);
1210                         OVS_CB(skb)->cutlen = 0;
1211                         break;
1212                 }
1213 
1214                 case OVS_ACTION_ATTR_TRUNC: {
1215                         struct ovs_action_trunc *trunc = nla_data(a);
1216 
1217                         if (skb->len > trunc->max_len)
1218                                 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1219                         break;
1220                 }
1221 
1222                 case OVS_ACTION_ATTR_USERSPACE:
1223                         output_userspace(dp, skb, key, a, attr,
1224                                                      len, OVS_CB(skb)->cutlen);
1225                         OVS_CB(skb)->cutlen = 0;
1226                         break;
1227 
1228                 case OVS_ACTION_ATTR_HASH:
1229                         execute_hash(skb, key, a);
1230                         break;
1231 
1232                 case OVS_ACTION_ATTR_PUSH_MPLS:
1233                         err = push_mpls(skb, key, nla_data(a));
1234                         break;
1235 
1236                 case OVS_ACTION_ATTR_POP_MPLS:
1237                         err = pop_mpls(skb, key, nla_get_be16(a));
1238                         break;
1239 
1240                 case OVS_ACTION_ATTR_PUSH_VLAN:
1241                         err = push_vlan(skb, key, nla_data(a));
1242                         break;
1243 
1244                 case OVS_ACTION_ATTR_POP_VLAN:
1245                         err = pop_vlan(skb, key);
1246                         break;
1247 
1248                 case OVS_ACTION_ATTR_RECIRC: {
1249                         bool last = nla_is_last(a, rem);
1250 
1251                         err = execute_recirc(dp, skb, key, a, last);
1252                         if (last) {
1253                                 /* If this is the last action, the skb has
1254                                  * been consumed or freed.
1255                                  * Return immediately.
1256                                  */
1257                                 return err;
1258                         }
1259                         break;
1260                 }
1261 
1262                 case OVS_ACTION_ATTR_SET:
1263                         err = execute_set_action(skb, key, nla_data(a));
1264                         break;
1265 
1266                 case OVS_ACTION_ATTR_SET_MASKED:
1267                 case OVS_ACTION_ATTR_SET_TO_MASKED:
1268                         err = execute_masked_set_action(skb, key, nla_data(a));
1269                         break;
1270 
1271                 case OVS_ACTION_ATTR_SAMPLE: {
1272                         bool last = nla_is_last(a, rem);
1273 
1274                         err = sample(dp, skb, key, a, last);
1275                         if (last)
1276                                 return err;
1277 
1278                         break;
1279                 }
1280 
1281                 case OVS_ACTION_ATTR_CT:
1282                         if (!is_flow_key_valid(key)) {
1283                                 err = ovs_flow_key_update(skb, key);
1284                                 if (err)
1285                                         return err;
1286                         }
1287 
1288                         err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1289                                              nla_data(a));
1290 
1291                         /* Hide stolen IP fragments from user space. */
1292                         if (err)
1293                                 return err == -EINPROGRESS ? 0 : err;
1294                         break;
1295 
1296                 case OVS_ACTION_ATTR_CT_CLEAR:
1297                         err = ovs_ct_clear(skb, key);
1298                         break;
1299 
1300                 case OVS_ACTION_ATTR_PUSH_ETH:
1301                         err = push_eth(skb, key, nla_data(a));
1302                         break;
1303 
1304                 case OVS_ACTION_ATTR_POP_ETH:
1305                         err = pop_eth(skb, key);
1306                         break;
1307 
1308                 case OVS_ACTION_ATTR_PUSH_NSH: {
1309                         u8 buffer[NSH_HDR_MAX_LEN];
1310                         struct nshhdr *nh = (struct nshhdr *)buffer;
1311 
1312                         err = nsh_hdr_from_nlattr(nla_data(a), nh,
1313                                                   NSH_HDR_MAX_LEN);
1314                         if (unlikely(err))
1315                                 break;
1316                         err = push_nsh(skb, key, nh);
1317                         break;
1318                 }
1319 
1320                 case OVS_ACTION_ATTR_POP_NSH:
1321                         err = pop_nsh(skb, key);
1322                         break;
1323 
1324                 case OVS_ACTION_ATTR_METER:
1325                         if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1326                                 consume_skb(skb);
1327                                 return 0;
1328                         }
1329                         break;
1330 
1331                 case OVS_ACTION_ATTR_CLONE: {
1332                         bool last = nla_is_last(a, rem);
1333 
1334                         err = clone(dp, skb, key, a, last);
1335                         if (last)
1336                                 return err;
1337 
1338                         break;
1339                 }
1340 
1341                 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1342                         bool last = nla_is_last(a, rem);
1343 
1344                         err = execute_check_pkt_len(dp, skb, key, a, last);
1345                         if (last)
1346                                 return err;
1347 
1348                         break;
1349                 }
1350                 }
1351 
1352                 if (unlikely(err)) {
1353                         kfree_skb(skb);
1354                         return err;
1355                 }
1356         }
1357 
1358         consume_skb(skb);
1359         return 0;
1360 }
1361 
1362 /* Execute the actions on the clone of the packet. The effect of the
1363  * execution does not affect the original 'skb' nor the original 'key'.
1364  *
1365  * The execution may be deferred in case the actions can not be executed
1366  * immediately.
1367  */
1368 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1369                          struct sw_flow_key *key, u32 recirc_id,
1370                          const struct nlattr *actions, int len,
1371                          bool last, bool clone_flow_key)
1372 {
1373         struct deferred_action *da;
1374         struct sw_flow_key *clone;
1375 
1376         skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1377         if (!skb) {
1378                 /* Out of memory, skip this action.
1379                  */
1380                 return 0;
1381         }
1382 
1383         /* When clone_flow_key is false, the 'key' will not be change
1384          * by the actions, then the 'key' can be used directly.
1385          * Otherwise, try to clone key from the next recursion level of
1386          * 'flow_keys'. If clone is successful, execute the actions
1387          * without deferring.
1388          */
1389         clone = clone_flow_key ? clone_key(key) : key;
1390         if (clone) {
1391                 int err = 0;
1392 
1393                 if (actions) { /* Sample action */
1394                         if (clone_flow_key)
1395                                 __this_cpu_inc(exec_actions_level);
1396 
1397                         err = do_execute_actions(dp, skb, clone,
1398                                                  actions, len);
1399 
1400                         if (clone_flow_key)
1401                                 __this_cpu_dec(exec_actions_level);
1402                 } else { /* Recirc action */
1403                         clone->recirc_id = recirc_id;
1404                         ovs_dp_process_packet(skb, clone);
1405                 }
1406                 return err;
1407         }
1408 
1409         /* Out of 'flow_keys' space. Defer actions */
1410         da = add_deferred_actions(skb, key, actions, len);
1411         if (da) {
1412                 if (!actions) { /* Recirc action */
1413                         key = &da->pkt_key;
1414                         key->recirc_id = recirc_id;
1415                 }
1416         } else {
1417                 /* Out of per CPU action FIFO space. Drop the 'skb' and
1418                  * log an error.
1419                  */
1420                 kfree_skb(skb);
1421 
1422                 if (net_ratelimit()) {
1423                         if (actions) { /* Sample action */
1424                                 pr_warn("%s: deferred action limit reached, drop sample action\n",
1425                                         ovs_dp_name(dp));
1426                         } else {  /* Recirc action */
1427                                 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1428                                         ovs_dp_name(dp));
1429                         }
1430                 }
1431         }
1432         return 0;
1433 }
1434 
1435 static void process_deferred_actions(struct datapath *dp)
1436 {
1437         struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1438 
1439         /* Do not touch the FIFO in case there is no deferred actions. */
1440         if (action_fifo_is_empty(fifo))
1441                 return;
1442 
1443         /* Finishing executing all deferred actions. */
1444         do {
1445                 struct deferred_action *da = action_fifo_get(fifo);
1446                 struct sk_buff *skb = da->skb;
1447                 struct sw_flow_key *key = &da->pkt_key;
1448                 const struct nlattr *actions = da->actions;
1449                 int actions_len = da->actions_len;
1450 
1451                 if (actions)
1452                         do_execute_actions(dp, skb, key, actions, actions_len);
1453                 else
1454                         ovs_dp_process_packet(skb, key);
1455         } while (!action_fifo_is_empty(fifo));
1456 
1457         /* Reset FIFO for the next packet.  */
1458         action_fifo_init(fifo);
1459 }
1460 
1461 /* Execute a list of actions against 'skb'. */
1462 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1463                         const struct sw_flow_actions *acts,
1464                         struct sw_flow_key *key)
1465 {
1466         int err, level;
1467 
1468         level = __this_cpu_inc_return(exec_actions_level);
1469         if (unlikely(level > OVS_RECURSION_LIMIT)) {
1470                 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1471                                      ovs_dp_name(dp));
1472                 kfree_skb(skb);
1473                 err = -ENETDOWN;
1474                 goto out;
1475         }
1476 
1477         OVS_CB(skb)->acts_origlen = acts->orig_len;
1478         err = do_execute_actions(dp, skb, key,
1479                                  acts->actions, acts->actions_len);
1480 
1481         if (level == 1)
1482                 process_deferred_actions(dp);
1483 
1484 out:
1485         __this_cpu_dec(exec_actions_level);
1486         return err;
1487 }
1488 
1489 int action_fifos_init(void)
1490 {
1491         action_fifos = alloc_percpu(struct action_fifo);
1492         if (!action_fifos)
1493                 return -ENOMEM;
1494 
1495         flow_keys = alloc_percpu(struct action_flow_keys);
1496         if (!flow_keys) {
1497                 free_percpu(action_fifos);
1498                 return -ENOMEM;
1499         }
1500 
1501         return 0;
1502 }
1503 
1504 void action_fifos_exit(void)
1505 {
1506         free_percpu(action_fifos);
1507         free_percpu(flow_keys);
1508 }
1509 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp