~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/openvswitch/flow_netlink.c

Version: ~ [ linux-5.13-rc5 ] ~ [ linux-5.12.9 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.42 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.124 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.193 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.235 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.271 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.271 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (c) 2007-2014 Nicira, Inc.
  3  *
  4  * This program is free software; you can redistribute it and/or
  5  * modify it under the terms of version 2 of the GNU General Public
  6  * License as published by the Free Software Foundation.
  7  *
  8  * This program is distributed in the hope that it will be useful, but
  9  * WITHOUT ANY WARRANTY; without even the implied warranty of
 10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 11  * General Public License for more details.
 12  *
 13  * You should have received a copy of the GNU General Public License
 14  * along with this program; if not, write to the Free Software
 15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 16  * 02110-1301, USA
 17  */
 18 
 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 20 
 21 #include "flow.h"
 22 #include "datapath.h"
 23 #include <linux/uaccess.h>
 24 #include <linux/netdevice.h>
 25 #include <linux/etherdevice.h>
 26 #include <linux/if_ether.h>
 27 #include <linux/if_vlan.h>
 28 #include <net/llc_pdu.h>
 29 #include <linux/kernel.h>
 30 #include <linux/jhash.h>
 31 #include <linux/jiffies.h>
 32 #include <linux/llc.h>
 33 #include <linux/module.h>
 34 #include <linux/in.h>
 35 #include <linux/rcupdate.h>
 36 #include <linux/if_arp.h>
 37 #include <linux/ip.h>
 38 #include <linux/ipv6.h>
 39 #include <linux/sctp.h>
 40 #include <linux/tcp.h>
 41 #include <linux/udp.h>
 42 #include <linux/icmp.h>
 43 #include <linux/icmpv6.h>
 44 #include <linux/rculist.h>
 45 #include <net/geneve.h>
 46 #include <net/ip.h>
 47 #include <net/ipv6.h>
 48 #include <net/ndisc.h>
 49 #include <net/mpls.h>
 50 #include <net/vxlan.h>
 51 
 52 #include "flow_netlink.h"
 53 
 54 struct ovs_len_tbl {
 55         int len;
 56         const struct ovs_len_tbl *next;
 57 };
 58 
 59 #define OVS_ATTR_NESTED -1
 60 #define OVS_ATTR_VARIABLE -2
 61 
 62 static void update_range(struct sw_flow_match *match,
 63                          size_t offset, size_t size, bool is_mask)
 64 {
 65         struct sw_flow_key_range *range;
 66         size_t start = rounddown(offset, sizeof(long));
 67         size_t end = roundup(offset + size, sizeof(long));
 68 
 69         if (!is_mask)
 70                 range = &match->range;
 71         else
 72                 range = &match->mask->range;
 73 
 74         if (range->start == range->end) {
 75                 range->start = start;
 76                 range->end = end;
 77                 return;
 78         }
 79 
 80         if (range->start > start)
 81                 range->start = start;
 82 
 83         if (range->end < end)
 84                 range->end = end;
 85 }
 86 
 87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
 88         do { \
 89                 update_range(match, offsetof(struct sw_flow_key, field),    \
 90                              sizeof((match)->key->field), is_mask);         \
 91                 if (is_mask)                                                \
 92                         (match)->mask->key.field = value;                   \
 93                 else                                                        \
 94                         (match)->key->field = value;                        \
 95         } while (0)
 96 
 97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
 98         do {                                                                \
 99                 update_range(match, offset, len, is_mask);                  \
100                 if (is_mask)                                                \
101                         memcpy((u8 *)&(match)->mask->key + offset, value_p, \
102                                len);                                       \
103                 else                                                        \
104                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
105         } while (0)
106 
107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
108         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
109                                   value_p, len, is_mask)
110 
111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)              \
112         do {                                                                \
113                 update_range(match, offsetof(struct sw_flow_key, field),    \
114                              sizeof((match)->key->field), is_mask);         \
115                 if (is_mask)                                                \
116                         memset((u8 *)&(match)->mask->key.field, value,      \
117                                sizeof((match)->mask->key.field));           \
118                 else                                                        \
119                         memset((u8 *)&(match)->key->field, value,           \
120                                sizeof((match)->key->field));                \
121         } while (0)
122 
123 static bool match_validate(const struct sw_flow_match *match,
124                            u64 key_attrs, u64 mask_attrs, bool log)
125 {
126         u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
127         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
128 
129         /* The following mask attributes allowed only if they
130          * pass the validation tests. */
131         mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
132                         | (1 << OVS_KEY_ATTR_IPV6)
133                         | (1 << OVS_KEY_ATTR_TCP)
134                         | (1 << OVS_KEY_ATTR_TCP_FLAGS)
135                         | (1 << OVS_KEY_ATTR_UDP)
136                         | (1 << OVS_KEY_ATTR_SCTP)
137                         | (1 << OVS_KEY_ATTR_ICMP)
138                         | (1 << OVS_KEY_ATTR_ICMPV6)
139                         | (1 << OVS_KEY_ATTR_ARP)
140                         | (1 << OVS_KEY_ATTR_ND)
141                         | (1 << OVS_KEY_ATTR_MPLS));
142 
143         /* Always allowed mask fields. */
144         mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
145                        | (1 << OVS_KEY_ATTR_IN_PORT)
146                        | (1 << OVS_KEY_ATTR_ETHERTYPE));
147 
148         /* Check key attributes. */
149         if (match->key->eth.type == htons(ETH_P_ARP)
150                         || match->key->eth.type == htons(ETH_P_RARP)) {
151                 key_expected |= 1 << OVS_KEY_ATTR_ARP;
152                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
153                         mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
154         }
155 
156         if (eth_p_mpls(match->key->eth.type)) {
157                 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
158                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
159                         mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
160         }
161 
162         if (match->key->eth.type == htons(ETH_P_IP)) {
163                 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
164                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
165                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
166 
167                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
168                         if (match->key->ip.proto == IPPROTO_UDP) {
169                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
170                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
171                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
172                         }
173 
174                         if (match->key->ip.proto == IPPROTO_SCTP) {
175                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
176                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
177                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
178                         }
179 
180                         if (match->key->ip.proto == IPPROTO_TCP) {
181                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
182                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
183                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
184                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
185                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
186                                 }
187                         }
188 
189                         if (match->key->ip.proto == IPPROTO_ICMP) {
190                                 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
191                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
192                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
193                         }
194                 }
195         }
196 
197         if (match->key->eth.type == htons(ETH_P_IPV6)) {
198                 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
199                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
200                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
201 
202                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
203                         if (match->key->ip.proto == IPPROTO_UDP) {
204                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
205                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
206                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
207                         }
208 
209                         if (match->key->ip.proto == IPPROTO_SCTP) {
210                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
211                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
212                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
213                         }
214 
215                         if (match->key->ip.proto == IPPROTO_TCP) {
216                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
217                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
218                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
219                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
220                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
221                                 }
222                         }
223 
224                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
225                                 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
226                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
227                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
228 
229                                 if (match->key->tp.src ==
230                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
231                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
232                                         key_expected |= 1 << OVS_KEY_ATTR_ND;
233                                         if (match->mask && (match->mask->key.tp.src == htons(0xff)))
234                                                 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
235                                 }
236                         }
237                 }
238         }
239 
240         if ((key_attrs & key_expected) != key_expected) {
241                 /* Key attributes check failed. */
242                 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
243                           (unsigned long long)key_attrs,
244                           (unsigned long long)key_expected);
245                 return false;
246         }
247 
248         if ((mask_attrs & mask_allowed) != mask_attrs) {
249                 /* Mask attributes check failed. */
250                 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
251                           (unsigned long long)mask_attrs,
252                           (unsigned long long)mask_allowed);
253                 return false;
254         }
255 
256         return true;
257 }
258 
259 size_t ovs_tun_key_attr_size(void)
260 {
261         /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
262          * updating this function.
263          */
264         return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
265                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
266                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
267                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
268                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
269                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
270                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
271                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
272                 + nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
273                 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
274                  * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
275                  */
276                 + nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
277                 + nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
278 }
279 
280 size_t ovs_key_attr_size(void)
281 {
282         /* Whenever adding new OVS_KEY_ FIELDS, we should consider
283          * updating this function.
284          */
285         BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
286 
287         return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
288                 + nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
289                   + ovs_tun_key_attr_size()
290                 + nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
291                 + nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
292                 + nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
293                 + nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
294                 + nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
295                 + nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
296                 + nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
297                 + nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
298                 + nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
299                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
300                 + nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
301                 + nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
302                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
303                 + nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
304                 + nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
305                 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
306 }
307 
308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
309         [OVS_VXLAN_EXT_GBP]         = { .len = sizeof(u32) },
310 };
311 
312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
313         [OVS_TUNNEL_KEY_ATTR_ID]            = { .len = sizeof(u64) },
314         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC]      = { .len = sizeof(u32) },
315         [OVS_TUNNEL_KEY_ATTR_IPV4_DST]      = { .len = sizeof(u32) },
316         [OVS_TUNNEL_KEY_ATTR_TOS]           = { .len = 1 },
317         [OVS_TUNNEL_KEY_ATTR_TTL]           = { .len = 1 },
318         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
319         [OVS_TUNNEL_KEY_ATTR_CSUM]          = { .len = 0 },
320         [OVS_TUNNEL_KEY_ATTR_TP_SRC]        = { .len = sizeof(u16) },
321         [OVS_TUNNEL_KEY_ATTR_TP_DST]        = { .len = sizeof(u16) },
322         [OVS_TUNNEL_KEY_ATTR_OAM]           = { .len = 0 },
323         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
324         [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
325                                                 .next = ovs_vxlan_ext_key_lens },
326 };
327 
328 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
329 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
330         [OVS_KEY_ATTR_ENCAP]     = { .len = OVS_ATTR_NESTED },
331         [OVS_KEY_ATTR_PRIORITY]  = { .len = sizeof(u32) },
332         [OVS_KEY_ATTR_IN_PORT]   = { .len = sizeof(u32) },
333         [OVS_KEY_ATTR_SKB_MARK]  = { .len = sizeof(u32) },
334         [OVS_KEY_ATTR_ETHERNET]  = { .len = sizeof(struct ovs_key_ethernet) },
335         [OVS_KEY_ATTR_VLAN]      = { .len = sizeof(__be16) },
336         [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
337         [OVS_KEY_ATTR_IPV4]      = { .len = sizeof(struct ovs_key_ipv4) },
338         [OVS_KEY_ATTR_IPV6]      = { .len = sizeof(struct ovs_key_ipv6) },
339         [OVS_KEY_ATTR_TCP]       = { .len = sizeof(struct ovs_key_tcp) },
340         [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
341         [OVS_KEY_ATTR_UDP]       = { .len = sizeof(struct ovs_key_udp) },
342         [OVS_KEY_ATTR_SCTP]      = { .len = sizeof(struct ovs_key_sctp) },
343         [OVS_KEY_ATTR_ICMP]      = { .len = sizeof(struct ovs_key_icmp) },
344         [OVS_KEY_ATTR_ICMPV6]    = { .len = sizeof(struct ovs_key_icmpv6) },
345         [OVS_KEY_ATTR_ARP]       = { .len = sizeof(struct ovs_key_arp) },
346         [OVS_KEY_ATTR_ND]        = { .len = sizeof(struct ovs_key_nd) },
347         [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
348         [OVS_KEY_ATTR_DP_HASH]   = { .len = sizeof(u32) },
349         [OVS_KEY_ATTR_TUNNEL]    = { .len = OVS_ATTR_NESTED,
350                                      .next = ovs_tunnel_key_lens, },
351         [OVS_KEY_ATTR_MPLS]      = { .len = sizeof(struct ovs_key_mpls) },
352         [OVS_KEY_ATTR_CT_STATE]  = { .len = sizeof(u32) },
353         [OVS_KEY_ATTR_CT_ZONE]   = { .len = sizeof(u16) },
354         [OVS_KEY_ATTR_CT_MARK]   = { .len = sizeof(u32) },
355         [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
356 };
357 
358 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
359 {
360         return expected_len == attr_len ||
361                expected_len == OVS_ATTR_NESTED ||
362                expected_len == OVS_ATTR_VARIABLE;
363 }
364 
365 static bool is_all_zero(const u8 *fp, size_t size)
366 {
367         int i;
368 
369         if (!fp)
370                 return false;
371 
372         for (i = 0; i < size; i++)
373                 if (fp[i])
374                         return false;
375 
376         return true;
377 }
378 
379 static int __parse_flow_nlattrs(const struct nlattr *attr,
380                                 const struct nlattr *a[],
381                                 u64 *attrsp, bool log, bool nz)
382 {
383         const struct nlattr *nla;
384         u64 attrs;
385         int rem;
386 
387         attrs = *attrsp;
388         nla_for_each_nested(nla, attr, rem) {
389                 u16 type = nla_type(nla);
390                 int expected_len;
391 
392                 if (type > OVS_KEY_ATTR_MAX) {
393                         OVS_NLERR(log, "Key type %d is out of range max %d",
394                                   type, OVS_KEY_ATTR_MAX);
395                         return -EINVAL;
396                 }
397 
398                 if (attrs & (1 << type)) {
399                         OVS_NLERR(log, "Duplicate key (type %d).", type);
400                         return -EINVAL;
401                 }
402 
403                 expected_len = ovs_key_lens[type].len;
404                 if (!check_attr_len(nla_len(nla), expected_len)) {
405                         OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
406                                   type, nla_len(nla), expected_len);
407                         return -EINVAL;
408                 }
409 
410                 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
411                         attrs |= 1 << type;
412                         a[type] = nla;
413                 }
414         }
415         if (rem) {
416                 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
417                 return -EINVAL;
418         }
419 
420         *attrsp = attrs;
421         return 0;
422 }
423 
424 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
425                                    const struct nlattr *a[], u64 *attrsp,
426                                    bool log)
427 {
428         return __parse_flow_nlattrs(attr, a, attrsp, log, true);
429 }
430 
431 static int parse_flow_nlattrs(const struct nlattr *attr,
432                               const struct nlattr *a[], u64 *attrsp,
433                               bool log)
434 {
435         return __parse_flow_nlattrs(attr, a, attrsp, log, false);
436 }
437 
438 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
439                                      struct sw_flow_match *match, bool is_mask,
440                                      bool log)
441 {
442         unsigned long opt_key_offset;
443 
444         if (nla_len(a) > sizeof(match->key->tun_opts)) {
445                 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
446                           nla_len(a), sizeof(match->key->tun_opts));
447                 return -EINVAL;
448         }
449 
450         if (nla_len(a) % 4 != 0) {
451                 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
452                           nla_len(a));
453                 return -EINVAL;
454         }
455 
456         /* We need to record the length of the options passed
457          * down, otherwise packets with the same format but
458          * additional options will be silently matched.
459          */
460         if (!is_mask) {
461                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
462                                 false);
463         } else {
464                 /* This is somewhat unusual because it looks at
465                  * both the key and mask while parsing the
466                  * attributes (and by extension assumes the key
467                  * is parsed first). Normally, we would verify
468                  * that each is the correct length and that the
469                  * attributes line up in the validate function.
470                  * However, that is difficult because this is
471                  * variable length and we won't have the
472                  * information later.
473                  */
474                 if (match->key->tun_opts_len != nla_len(a)) {
475                         OVS_NLERR(log, "Geneve option len %d != mask len %d",
476                                   match->key->tun_opts_len, nla_len(a));
477                         return -EINVAL;
478                 }
479 
480                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
481         }
482 
483         opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
484         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
485                                   nla_len(a), is_mask);
486         return 0;
487 }
488 
489 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
490                                      struct sw_flow_match *match, bool is_mask,
491                                      bool log)
492 {
493         struct nlattr *a;
494         int rem;
495         unsigned long opt_key_offset;
496         struct vxlan_metadata opts;
497 
498         BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
499 
500         memset(&opts, 0, sizeof(opts));
501         nla_for_each_nested(a, attr, rem) {
502                 int type = nla_type(a);
503 
504                 if (type > OVS_VXLAN_EXT_MAX) {
505                         OVS_NLERR(log, "VXLAN extension %d out of range max %d",
506                                   type, OVS_VXLAN_EXT_MAX);
507                         return -EINVAL;
508                 }
509 
510                 if (!check_attr_len(nla_len(a),
511                                     ovs_vxlan_ext_key_lens[type].len)) {
512                         OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
513                                   type, nla_len(a),
514                                   ovs_vxlan_ext_key_lens[type].len);
515                         return -EINVAL;
516                 }
517 
518                 switch (type) {
519                 case OVS_VXLAN_EXT_GBP:
520                         opts.gbp = nla_get_u32(a);
521                         break;
522                 default:
523                         OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
524                                   type);
525                         return -EINVAL;
526                 }
527         }
528         if (rem) {
529                 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
530                           rem);
531                 return -EINVAL;
532         }
533 
534         if (!is_mask)
535                 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
536         else
537                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
538 
539         opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
540         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
541                                   is_mask);
542         return 0;
543 }
544 
545 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
546                                 struct sw_flow_match *match, bool is_mask,
547                                 bool log)
548 {
549         struct nlattr *a;
550         int rem;
551         bool ttl = false;
552         __be16 tun_flags = 0;
553         int opts_type = 0;
554 
555         nla_for_each_nested(a, attr, rem) {
556                 int type = nla_type(a);
557                 int err;
558 
559                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
560                         OVS_NLERR(log, "Tunnel attr %d out of range max %d",
561                                   type, OVS_TUNNEL_KEY_ATTR_MAX);
562                         return -EINVAL;
563                 }
564 
565                 if (!check_attr_len(nla_len(a),
566                                     ovs_tunnel_key_lens[type].len)) {
567                         OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
568                                   type, nla_len(a), ovs_tunnel_key_lens[type].len);
569                         return -EINVAL;
570                 }
571 
572                 switch (type) {
573                 case OVS_TUNNEL_KEY_ATTR_ID:
574                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
575                                         nla_get_be64(a), is_mask);
576                         tun_flags |= TUNNEL_KEY;
577                         break;
578                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
579                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
580                                         nla_get_in_addr(a), is_mask);
581                         break;
582                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
583                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
584                                         nla_get_in_addr(a), is_mask);
585                         break;
586                 case OVS_TUNNEL_KEY_ATTR_TOS:
587                         SW_FLOW_KEY_PUT(match, tun_key.tos,
588                                         nla_get_u8(a), is_mask);
589                         break;
590                 case OVS_TUNNEL_KEY_ATTR_TTL:
591                         SW_FLOW_KEY_PUT(match, tun_key.ttl,
592                                         nla_get_u8(a), is_mask);
593                         ttl = true;
594                         break;
595                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
596                         tun_flags |= TUNNEL_DONT_FRAGMENT;
597                         break;
598                 case OVS_TUNNEL_KEY_ATTR_CSUM:
599                         tun_flags |= TUNNEL_CSUM;
600                         break;
601                 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
602                         SW_FLOW_KEY_PUT(match, tun_key.tp_src,
603                                         nla_get_be16(a), is_mask);
604                         break;
605                 case OVS_TUNNEL_KEY_ATTR_TP_DST:
606                         SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
607                                         nla_get_be16(a), is_mask);
608                         break;
609                 case OVS_TUNNEL_KEY_ATTR_OAM:
610                         tun_flags |= TUNNEL_OAM;
611                         break;
612                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
613                         if (opts_type) {
614                                 OVS_NLERR(log, "Multiple metadata blocks provided");
615                                 return -EINVAL;
616                         }
617 
618                         err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
619                         if (err)
620                                 return err;
621 
622                         tun_flags |= TUNNEL_GENEVE_OPT;
623                         opts_type = type;
624                         break;
625                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
626                         if (opts_type) {
627                                 OVS_NLERR(log, "Multiple metadata blocks provided");
628                                 return -EINVAL;
629                         }
630 
631                         err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
632                         if (err)
633                                 return err;
634 
635                         tun_flags |= TUNNEL_VXLAN_OPT;
636                         opts_type = type;
637                         break;
638                 default:
639                         OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
640                                   type);
641                         return -EINVAL;
642                 }
643         }
644 
645         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
646 
647         if (rem > 0) {
648                 OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
649                           rem);
650                 return -EINVAL;
651         }
652 
653         if (!is_mask) {
654                 if (!match->key->tun_key.u.ipv4.dst) {
655                         OVS_NLERR(log, "IPv4 tunnel dst address is zero");
656                         return -EINVAL;
657                 }
658 
659                 if (!ttl) {
660                         OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
661                         return -EINVAL;
662                 }
663         }
664 
665         return opts_type;
666 }
667 
668 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
669                                const void *tun_opts, int swkey_tun_opts_len)
670 {
671         const struct vxlan_metadata *opts = tun_opts;
672         struct nlattr *nla;
673 
674         nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
675         if (!nla)
676                 return -EMSGSIZE;
677 
678         if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
679                 return -EMSGSIZE;
680 
681         nla_nest_end(skb, nla);
682         return 0;
683 }
684 
685 static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
686                                 const struct ip_tunnel_key *output,
687                                 const void *tun_opts, int swkey_tun_opts_len)
688 {
689         if (output->tun_flags & TUNNEL_KEY &&
690             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
691                 return -EMSGSIZE;
692         if (output->u.ipv4.src &&
693             nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
694                             output->u.ipv4.src))
695                 return -EMSGSIZE;
696         if (output->u.ipv4.dst &&
697             nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
698                             output->u.ipv4.dst))
699                 return -EMSGSIZE;
700         if (output->tos &&
701             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
702                 return -EMSGSIZE;
703         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
704                 return -EMSGSIZE;
705         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
706             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
707                 return -EMSGSIZE;
708         if ((output->tun_flags & TUNNEL_CSUM) &&
709             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
710                 return -EMSGSIZE;
711         if (output->tp_src &&
712             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
713                 return -EMSGSIZE;
714         if (output->tp_dst &&
715             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
716                 return -EMSGSIZE;
717         if ((output->tun_flags & TUNNEL_OAM) &&
718             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
719                 return -EMSGSIZE;
720         if (swkey_tun_opts_len) {
721                 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
722                     nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
723                             swkey_tun_opts_len, tun_opts))
724                         return -EMSGSIZE;
725                 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
726                          vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
727                         return -EMSGSIZE;
728         }
729 
730         return 0;
731 }
732 
733 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
734                               const struct ip_tunnel_key *output,
735                               const void *tun_opts, int swkey_tun_opts_len)
736 {
737         struct nlattr *nla;
738         int err;
739 
740         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
741         if (!nla)
742                 return -EMSGSIZE;
743 
744         err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
745         if (err)
746                 return err;
747 
748         nla_nest_end(skb, nla);
749         return 0;
750 }
751 
752 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
753                             struct ip_tunnel_info *tun_info)
754 {
755         return __ipv4_tun_to_nlattr(skb, &tun_info->key,
756                                     ip_tunnel_info_opts(tun_info),
757                                     tun_info->options_len);
758 }
759 
760 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
761                                  u64 *attrs, const struct nlattr **a,
762                                  bool is_mask, bool log)
763 {
764         if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
765                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
766 
767                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
768                 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
769         }
770 
771         if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
772                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
773 
774                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
775                 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
776         }
777 
778         if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
779                 SW_FLOW_KEY_PUT(match, phy.priority,
780                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
781                 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
782         }
783 
784         if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
785                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
786 
787                 if (is_mask) {
788                         in_port = 0xffffffff; /* Always exact match in_port. */
789                 } else if (in_port >= DP_MAX_PORTS) {
790                         OVS_NLERR(log, "Port %d exceeds max allowable %d",
791                                   in_port, DP_MAX_PORTS);
792                         return -EINVAL;
793                 }
794 
795                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
796                 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
797         } else if (!is_mask) {
798                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
799         }
800 
801         if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
802                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
803 
804                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
805                 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
806         }
807         if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
808                 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
809                                          is_mask, log) < 0)
810                         return -EINVAL;
811                 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
812         }
813 
814         if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
815             ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
816                 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
817 
818                 if (ct_state & ~CT_SUPPORTED_MASK) {
819                         OVS_NLERR(log, "ct_state flags %08x unsupported",
820                                   ct_state);
821                         return -EINVAL;
822                 }
823 
824                 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
825                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
826         }
827         if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
828             ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
829                 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
830 
831                 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
832                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
833         }
834         if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
835             ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
836                 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
837 
838                 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
839                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
840         }
841         if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
842             ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
843                 const struct ovs_key_ct_labels *cl;
844 
845                 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
846                 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
847                                    sizeof(*cl), is_mask);
848                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
849         }
850         return 0;
851 }
852 
853 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
854                                 u64 attrs, const struct nlattr **a,
855                                 bool is_mask, bool log)
856 {
857         int err;
858 
859         err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
860         if (err)
861                 return err;
862 
863         if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
864                 const struct ovs_key_ethernet *eth_key;
865 
866                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
867                 SW_FLOW_KEY_MEMCPY(match, eth.src,
868                                 eth_key->eth_src, ETH_ALEN, is_mask);
869                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
870                                 eth_key->eth_dst, ETH_ALEN, is_mask);
871                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
872         }
873 
874         if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
875                 __be16 tci;
876 
877                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
878                 if (!(tci & htons(VLAN_TAG_PRESENT))) {
879                         if (is_mask)
880                                 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
881                         else
882                                 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
883 
884                         return -EINVAL;
885                 }
886 
887                 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
888                 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
889         }
890 
891         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
892                 __be16 eth_type;
893 
894                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
895                 if (is_mask) {
896                         /* Always exact match EtherType. */
897                         eth_type = htons(0xffff);
898                 } else if (!eth_proto_is_802_3(eth_type)) {
899                         OVS_NLERR(log, "EtherType %x is less than min %x",
900                                   ntohs(eth_type), ETH_P_802_3_MIN);
901                         return -EINVAL;
902                 }
903 
904                 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
905                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
906         } else if (!is_mask) {
907                 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
908         }
909 
910         if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
911                 const struct ovs_key_ipv4 *ipv4_key;
912 
913                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
914                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
915                         OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
916                                   ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
917                         return -EINVAL;
918                 }
919                 SW_FLOW_KEY_PUT(match, ip.proto,
920                                 ipv4_key->ipv4_proto, is_mask);
921                 SW_FLOW_KEY_PUT(match, ip.tos,
922                                 ipv4_key->ipv4_tos, is_mask);
923                 SW_FLOW_KEY_PUT(match, ip.ttl,
924                                 ipv4_key->ipv4_ttl, is_mask);
925                 SW_FLOW_KEY_PUT(match, ip.frag,
926                                 ipv4_key->ipv4_frag, is_mask);
927                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
928                                 ipv4_key->ipv4_src, is_mask);
929                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
930                                 ipv4_key->ipv4_dst, is_mask);
931                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
932         }
933 
934         if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
935                 const struct ovs_key_ipv6 *ipv6_key;
936 
937                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
938                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
939                         OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
940                                   ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
941                         return -EINVAL;
942                 }
943 
944                 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
945                         OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
946                                   ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
947                         return -EINVAL;
948                 }
949 
950                 SW_FLOW_KEY_PUT(match, ipv6.label,
951                                 ipv6_key->ipv6_label, is_mask);
952                 SW_FLOW_KEY_PUT(match, ip.proto,
953                                 ipv6_key->ipv6_proto, is_mask);
954                 SW_FLOW_KEY_PUT(match, ip.tos,
955                                 ipv6_key->ipv6_tclass, is_mask);
956                 SW_FLOW_KEY_PUT(match, ip.ttl,
957                                 ipv6_key->ipv6_hlimit, is_mask);
958                 SW_FLOW_KEY_PUT(match, ip.frag,
959                                 ipv6_key->ipv6_frag, is_mask);
960                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
961                                 ipv6_key->ipv6_src,
962                                 sizeof(match->key->ipv6.addr.src),
963                                 is_mask);
964                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
965                                 ipv6_key->ipv6_dst,
966                                 sizeof(match->key->ipv6.addr.dst),
967                                 is_mask);
968 
969                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
970         }
971 
972         if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
973                 const struct ovs_key_arp *arp_key;
974 
975                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
976                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
977                         OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
978                                   arp_key->arp_op);
979                         return -EINVAL;
980                 }
981 
982                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
983                                 arp_key->arp_sip, is_mask);
984                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
985                         arp_key->arp_tip, is_mask);
986                 SW_FLOW_KEY_PUT(match, ip.proto,
987                                 ntohs(arp_key->arp_op), is_mask);
988                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
989                                 arp_key->arp_sha, ETH_ALEN, is_mask);
990                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
991                                 arp_key->arp_tha, ETH_ALEN, is_mask);
992 
993                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
994         }
995 
996         if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
997                 const struct ovs_key_mpls *mpls_key;
998 
999                 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1000                 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1001                                 mpls_key->mpls_lse, is_mask);
1002 
1003                 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1004          }
1005 
1006         if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1007                 const struct ovs_key_tcp *tcp_key;
1008 
1009                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1010                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1011                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1012                 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1013         }
1014 
1015         if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1016                 SW_FLOW_KEY_PUT(match, tp.flags,
1017                                 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1018                                 is_mask);
1019                 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1020         }
1021 
1022         if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1023                 const struct ovs_key_udp *udp_key;
1024 
1025                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1026                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1027                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1028                 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1029         }
1030 
1031         if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1032                 const struct ovs_key_sctp *sctp_key;
1033 
1034                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1035                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1036                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1037                 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1038         }
1039 
1040         if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1041                 const struct ovs_key_icmp *icmp_key;
1042 
1043                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1044                 SW_FLOW_KEY_PUT(match, tp.src,
1045                                 htons(icmp_key->icmp_type), is_mask);
1046                 SW_FLOW_KEY_PUT(match, tp.dst,
1047                                 htons(icmp_key->icmp_code), is_mask);
1048                 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1049         }
1050 
1051         if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1052                 const struct ovs_key_icmpv6 *icmpv6_key;
1053 
1054                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1055                 SW_FLOW_KEY_PUT(match, tp.src,
1056                                 htons(icmpv6_key->icmpv6_type), is_mask);
1057                 SW_FLOW_KEY_PUT(match, tp.dst,
1058                                 htons(icmpv6_key->icmpv6_code), is_mask);
1059                 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1060         }
1061 
1062         if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1063                 const struct ovs_key_nd *nd_key;
1064 
1065                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1066                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1067                         nd_key->nd_target,
1068                         sizeof(match->key->ipv6.nd.target),
1069                         is_mask);
1070                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1071                         nd_key->nd_sll, ETH_ALEN, is_mask);
1072                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1073                                 nd_key->nd_tll, ETH_ALEN, is_mask);
1074                 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1075         }
1076 
1077         if (attrs != 0) {
1078                 OVS_NLERR(log, "Unknown key attributes %llx",
1079                           (unsigned long long)attrs);
1080                 return -EINVAL;
1081         }
1082 
1083         return 0;
1084 }
1085 
1086 static void nlattr_set(struct nlattr *attr, u8 val,
1087                        const struct ovs_len_tbl *tbl)
1088 {
1089         struct nlattr *nla;
1090         int rem;
1091 
1092         /* The nlattr stream should already have been validated */
1093         nla_for_each_nested(nla, attr, rem) {
1094                 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1095                         if (tbl[nla_type(nla)].next)
1096                                 tbl = tbl[nla_type(nla)].next;
1097                         nlattr_set(nla, val, tbl);
1098                 } else {
1099                         memset(nla_data(nla), val, nla_len(nla));
1100                 }
1101 
1102                 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1103                         *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1104         }
1105 }
1106 
1107 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1108 {
1109         nlattr_set(attr, val, ovs_key_lens);
1110 }
1111 
1112 /**
1113  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1114  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1115  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1116  * does not include any don't care bit.
1117  * @net: Used to determine per-namespace field support.
1118  * @match: receives the extracted flow match information.
1119  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1120  * sequence. The fields should of the packet that triggered the creation
1121  * of this flow.
1122  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1123  * attribute specifies the mask field of the wildcarded flow.
1124  * @log: Boolean to allow kernel error logging.  Normally true, but when
1125  * probing for feature compatibility this should be passed in as false to
1126  * suppress unnecessary error logging.
1127  */
1128 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1129                       const struct nlattr *nla_key,
1130                       const struct nlattr *nla_mask,
1131                       bool log)
1132 {
1133         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1134         const struct nlattr *encap;
1135         struct nlattr *newmask = NULL;
1136         u64 key_attrs = 0;
1137         u64 mask_attrs = 0;
1138         bool encap_valid = false;
1139         int err;
1140 
1141         err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1142         if (err)
1143                 return err;
1144 
1145         if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1146             (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1147             (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1148                 __be16 tci;
1149 
1150                 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1151                       (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1152                         OVS_NLERR(log, "Invalid Vlan frame.");
1153                         return -EINVAL;
1154                 }
1155 
1156                 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1157                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1158                 encap = a[OVS_KEY_ATTR_ENCAP];
1159                 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1160                 encap_valid = true;
1161 
1162                 if (tci & htons(VLAN_TAG_PRESENT)) {
1163                         err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1164                         if (err)
1165                                 return err;
1166                 } else if (!tci) {
1167                         /* Corner case for truncated 802.1Q header. */
1168                         if (nla_len(encap)) {
1169                                 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1170                                 return -EINVAL;
1171                         }
1172                 } else {
1173                         OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1174                         return  -EINVAL;
1175                 }
1176         }
1177 
1178         err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1179         if (err)
1180                 return err;
1181 
1182         if (match->mask) {
1183                 if (!nla_mask) {
1184                         /* Create an exact match mask. We need to set to 0xff
1185                          * all the 'match->mask' fields that have been touched
1186                          * in 'match->key'. We cannot simply memset
1187                          * 'match->mask', because padding bytes and fields not
1188                          * specified in 'match->key' should be left to 0.
1189                          * Instead, we use a stream of netlink attributes,
1190                          * copied from 'key' and set to 0xff.
1191                          * ovs_key_from_nlattrs() will take care of filling
1192                          * 'match->mask' appropriately.
1193                          */
1194                         newmask = kmemdup(nla_key,
1195                                           nla_total_size(nla_len(nla_key)),
1196                                           GFP_KERNEL);
1197                         if (!newmask)
1198                                 return -ENOMEM;
1199 
1200                         mask_set_nlattr(newmask, 0xff);
1201 
1202                         /* The userspace does not send tunnel attributes that
1203                          * are 0, but we should not wildcard them nonetheless.
1204                          */
1205                         if (match->key->tun_key.u.ipv4.dst)
1206                                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1207                                                          0xff, true);
1208 
1209                         nla_mask = newmask;
1210                 }
1211 
1212                 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1213                 if (err)
1214                         goto free_newmask;
1215 
1216                 /* Always match on tci. */
1217                 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1218 
1219                 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1220                         __be16 eth_type = 0;
1221                         __be16 tci = 0;
1222 
1223                         if (!encap_valid) {
1224                                 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1225                                 err = -EINVAL;
1226                                 goto free_newmask;
1227                         }
1228 
1229                         mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1230                         if (a[OVS_KEY_ATTR_ETHERTYPE])
1231                                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1232 
1233                         if (eth_type == htons(0xffff)) {
1234                                 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1235                                 encap = a[OVS_KEY_ATTR_ENCAP];
1236                                 err = parse_flow_mask_nlattrs(encap, a,
1237                                                               &mask_attrs, log);
1238                                 if (err)
1239                                         goto free_newmask;
1240                         } else {
1241                                 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1242                                           ntohs(eth_type));
1243                                 err = -EINVAL;
1244                                 goto free_newmask;
1245                         }
1246 
1247                         if (a[OVS_KEY_ATTR_VLAN])
1248                                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1249 
1250                         if (!(tci & htons(VLAN_TAG_PRESENT))) {
1251                                 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1252                                           ntohs(tci));
1253                                 err = -EINVAL;
1254                                 goto free_newmask;
1255                         }
1256                 }
1257 
1258                 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1259                                            log);
1260                 if (err)
1261                         goto free_newmask;
1262         }
1263 
1264         if (!match_validate(match, key_attrs, mask_attrs, log))
1265                 err = -EINVAL;
1266 
1267 free_newmask:
1268         kfree(newmask);
1269         return err;
1270 }
1271 
1272 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1273 {
1274         size_t len;
1275 
1276         if (!attr)
1277                 return 0;
1278 
1279         len = nla_len(attr);
1280         if (len < 1 || len > MAX_UFID_LENGTH) {
1281                 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1282                           nla_len(attr), MAX_UFID_LENGTH);
1283                 return 0;
1284         }
1285 
1286         return len;
1287 }
1288 
1289 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1290  * or false otherwise.
1291  */
1292 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1293                       bool log)
1294 {
1295         sfid->ufid_len = get_ufid_len(attr, log);
1296         if (sfid->ufid_len)
1297                 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1298 
1299         return sfid->ufid_len;
1300 }
1301 
1302 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1303                            const struct sw_flow_key *key, bool log)
1304 {
1305         struct sw_flow_key *new_key;
1306 
1307         if (ovs_nla_get_ufid(sfid, ufid, log))
1308                 return 0;
1309 
1310         /* If UFID was not provided, use unmasked key. */
1311         new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1312         if (!new_key)
1313                 return -ENOMEM;
1314         memcpy(new_key, key, sizeof(*key));
1315         sfid->unmasked_key = new_key;
1316 
1317         return 0;
1318 }
1319 
1320 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1321 {
1322         return attr ? nla_get_u32(attr) : 0;
1323 }
1324 
1325 /**
1326  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1327  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1328  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1329  * sequence.
1330  * @log: Boolean to allow kernel error logging.  Normally true, but when
1331  * probing for feature compatibility this should be passed in as false to
1332  * suppress unnecessary error logging.
1333  *
1334  * This parses a series of Netlink attributes that form a flow key, which must
1335  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1336  * get the metadata, that is, the parts of the flow key that cannot be
1337  * extracted from the packet itself.
1338  */
1339 
1340 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1341                               struct sw_flow_key *key,
1342                               bool log)
1343 {
1344         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1345         struct sw_flow_match match;
1346         u64 attrs = 0;
1347         int err;
1348 
1349         err = parse_flow_nlattrs(attr, a, &attrs, log);
1350         if (err)
1351                 return -EINVAL;
1352 
1353         memset(&match, 0, sizeof(match));
1354         match.key = key;
1355 
1356         memset(&key->ct, 0, sizeof(key->ct));
1357         key->phy.in_port = DP_MAX_PORTS;
1358 
1359         return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1360 }
1361 
1362 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1363                              const struct sw_flow_key *output, bool is_mask,
1364                              struct sk_buff *skb)
1365 {
1366         struct ovs_key_ethernet *eth_key;
1367         struct nlattr *nla, *encap;
1368 
1369         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1370                 goto nla_put_failure;
1371 
1372         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1373                 goto nla_put_failure;
1374 
1375         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1376                 goto nla_put_failure;
1377 
1378         if ((swkey->tun_key.u.ipv4.dst || is_mask)) {
1379                 const void *opts = NULL;
1380 
1381                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1382                         opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1383 
1384                 if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
1385                                        swkey->tun_opts_len))
1386                         goto nla_put_failure;
1387         }
1388 
1389         if (swkey->phy.in_port == DP_MAX_PORTS) {
1390                 if (is_mask && (output->phy.in_port == 0xffff))
1391                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1392                                 goto nla_put_failure;
1393         } else {
1394                 u16 upper_u16;
1395                 upper_u16 = !is_mask ? 0 : 0xffff;
1396 
1397                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1398                                 (upper_u16 << 16) | output->phy.in_port))
1399                         goto nla_put_failure;
1400         }
1401 
1402         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1403                 goto nla_put_failure;
1404 
1405         if (ovs_ct_put_key(output, skb))
1406                 goto nla_put_failure;
1407 
1408         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1409         if (!nla)
1410                 goto nla_put_failure;
1411 
1412         eth_key = nla_data(nla);
1413         ether_addr_copy(eth_key->eth_src, output->eth.src);
1414         ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1415 
1416         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1417                 __be16 eth_type;
1418                 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1419                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1420                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1421                         goto nla_put_failure;
1422                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1423                 if (!swkey->eth.tci)
1424                         goto unencap;
1425         } else
1426                 encap = NULL;
1427 
1428         if (swkey->eth.type == htons(ETH_P_802_2)) {
1429                 /*
1430                  * Ethertype 802.2 is represented in the netlink with omitted
1431                  * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1432                  * 0xffff in the mask attribute.  Ethertype can also
1433                  * be wildcarded.
1434                  */
1435                 if (is_mask && output->eth.type)
1436                         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1437                                                 output->eth.type))
1438                                 goto nla_put_failure;
1439                 goto unencap;
1440         }
1441 
1442         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1443                 goto nla_put_failure;
1444 
1445         if (swkey->eth.type == htons(ETH_P_IP)) {
1446                 struct ovs_key_ipv4 *ipv4_key;
1447 
1448                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1449                 if (!nla)
1450                         goto nla_put_failure;
1451                 ipv4_key = nla_data(nla);
1452                 ipv4_key->ipv4_src = output->ipv4.addr.src;
1453                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1454                 ipv4_key->ipv4_proto = output->ip.proto;
1455                 ipv4_key->ipv4_tos = output->ip.tos;
1456                 ipv4_key->ipv4_ttl = output->ip.ttl;
1457                 ipv4_key->ipv4_frag = output->ip.frag;
1458         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1459                 struct ovs_key_ipv6 *ipv6_key;
1460 
1461                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1462                 if (!nla)
1463                         goto nla_put_failure;
1464                 ipv6_key = nla_data(nla);
1465                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1466                                 sizeof(ipv6_key->ipv6_src));
1467                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1468                                 sizeof(ipv6_key->ipv6_dst));
1469                 ipv6_key->ipv6_label = output->ipv6.label;
1470                 ipv6_key->ipv6_proto = output->ip.proto;
1471                 ipv6_key->ipv6_tclass = output->ip.tos;
1472                 ipv6_key->ipv6_hlimit = output->ip.ttl;
1473                 ipv6_key->ipv6_frag = output->ip.frag;
1474         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1475                    swkey->eth.type == htons(ETH_P_RARP)) {
1476                 struct ovs_key_arp *arp_key;
1477 
1478                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1479                 if (!nla)
1480                         goto nla_put_failure;
1481                 arp_key = nla_data(nla);
1482                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1483                 arp_key->arp_sip = output->ipv4.addr.src;
1484                 arp_key->arp_tip = output->ipv4.addr.dst;
1485                 arp_key->arp_op = htons(output->ip.proto);
1486                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1487                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1488         } else if (eth_p_mpls(swkey->eth.type)) {
1489                 struct ovs_key_mpls *mpls_key;
1490 
1491                 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1492                 if (!nla)
1493                         goto nla_put_failure;
1494                 mpls_key = nla_data(nla);
1495                 mpls_key->mpls_lse = output->mpls.top_lse;
1496         }
1497 
1498         if ((swkey->eth.type == htons(ETH_P_IP) ||
1499              swkey->eth.type == htons(ETH_P_IPV6)) &&
1500              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1501 
1502                 if (swkey->ip.proto == IPPROTO_TCP) {
1503                         struct ovs_key_tcp *tcp_key;
1504 
1505                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1506                         if (!nla)
1507                                 goto nla_put_failure;
1508                         tcp_key = nla_data(nla);
1509                         tcp_key->tcp_src = output->tp.src;
1510                         tcp_key->tcp_dst = output->tp.dst;
1511                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1512                                          output->tp.flags))
1513                                 goto nla_put_failure;
1514                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1515                         struct ovs_key_udp *udp_key;
1516 
1517                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1518                         if (!nla)
1519                                 goto nla_put_failure;
1520                         udp_key = nla_data(nla);
1521                         udp_key->udp_src = output->tp.src;
1522                         udp_key->udp_dst = output->tp.dst;
1523                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1524                         struct ovs_key_sctp *sctp_key;
1525 
1526                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1527                         if (!nla)
1528                                 goto nla_put_failure;
1529                         sctp_key = nla_data(nla);
1530                         sctp_key->sctp_src = output->tp.src;
1531                         sctp_key->sctp_dst = output->tp.dst;
1532                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1533                            swkey->ip.proto == IPPROTO_ICMP) {
1534                         struct ovs_key_icmp *icmp_key;
1535 
1536                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1537                         if (!nla)
1538                                 goto nla_put_failure;
1539                         icmp_key = nla_data(nla);
1540                         icmp_key->icmp_type = ntohs(output->tp.src);
1541                         icmp_key->icmp_code = ntohs(output->tp.dst);
1542                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1543                            swkey->ip.proto == IPPROTO_ICMPV6) {
1544                         struct ovs_key_icmpv6 *icmpv6_key;
1545 
1546                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1547                                                 sizeof(*icmpv6_key));
1548                         if (!nla)
1549                                 goto nla_put_failure;
1550                         icmpv6_key = nla_data(nla);
1551                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1552                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1553 
1554                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1555                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1556                                 struct ovs_key_nd *nd_key;
1557 
1558                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1559                                 if (!nla)
1560                                         goto nla_put_failure;
1561                                 nd_key = nla_data(nla);
1562                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1563                                                         sizeof(nd_key->nd_target));
1564                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1565                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1566                         }
1567                 }
1568         }
1569 
1570 unencap:
1571         if (encap)
1572                 nla_nest_end(skb, encap);
1573 
1574         return 0;
1575 
1576 nla_put_failure:
1577         return -EMSGSIZE;
1578 }
1579 
1580 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1581                     const struct sw_flow_key *output, int attr, bool is_mask,
1582                     struct sk_buff *skb)
1583 {
1584         int err;
1585         struct nlattr *nla;
1586 
1587         nla = nla_nest_start(skb, attr);
1588         if (!nla)
1589                 return -EMSGSIZE;
1590         err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1591         if (err)
1592                 return err;
1593         nla_nest_end(skb, nla);
1594 
1595         return 0;
1596 }
1597 
1598 /* Called with ovs_mutex or RCU read lock. */
1599 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1600 {
1601         if (ovs_identifier_is_ufid(&flow->id))
1602                 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1603                                flow->id.ufid);
1604 
1605         return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1606                                OVS_FLOW_ATTR_KEY, false, skb);
1607 }
1608 
1609 /* Called with ovs_mutex or RCU read lock. */
1610 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1611 {
1612         return ovs_nla_put_key(&flow->key, &flow->key,
1613                                 OVS_FLOW_ATTR_KEY, false, skb);
1614 }
1615 
1616 /* Called with ovs_mutex or RCU read lock. */
1617 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1618 {
1619         return ovs_nla_put_key(&flow->key, &flow->mask->key,
1620                                 OVS_FLOW_ATTR_MASK, true, skb);
1621 }
1622 
1623 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
1624 
1625 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1626 {
1627         struct sw_flow_actions *sfa;
1628 
1629         if (size > MAX_ACTIONS_BUFSIZE) {
1630                 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1631                 return ERR_PTR(-EINVAL);
1632         }
1633 
1634         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1635         if (!sfa)
1636                 return ERR_PTR(-ENOMEM);
1637 
1638         sfa->actions_len = 0;
1639         return sfa;
1640 }
1641 
1642 static void ovs_nla_free_set_action(const struct nlattr *a)
1643 {
1644         const struct nlattr *ovs_key = nla_data(a);
1645         struct ovs_tunnel_info *ovs_tun;
1646 
1647         switch (nla_type(ovs_key)) {
1648         case OVS_KEY_ATTR_TUNNEL_INFO:
1649                 ovs_tun = nla_data(ovs_key);
1650                 dst_release((struct dst_entry *)ovs_tun->tun_dst);
1651                 break;
1652         }
1653 }
1654 
1655 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1656 {
1657         const struct nlattr *a;
1658         int rem;
1659 
1660         if (!sf_acts)
1661                 return;
1662 
1663         nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1664                 switch (nla_type(a)) {
1665                 case OVS_ACTION_ATTR_SET:
1666                         ovs_nla_free_set_action(a);
1667                         break;
1668                 case OVS_ACTION_ATTR_CT:
1669                         ovs_ct_free_action(a);
1670                         break;
1671                 }
1672         }
1673 
1674         kfree(sf_acts);
1675 }
1676 
1677 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1678 {
1679         ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1680 }
1681 
1682 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1683  * The caller must hold rcu_read_lock for this to be sensible. */
1684 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1685 {
1686         call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1687 }
1688 
1689 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1690                                        int attr_len, bool log)
1691 {
1692 
1693         struct sw_flow_actions *acts;
1694         int new_acts_size;
1695         int req_size = NLA_ALIGN(attr_len);
1696         int next_offset = offsetof(struct sw_flow_actions, actions) +
1697                                         (*sfa)->actions_len;
1698 
1699         if (req_size <= (ksize(*sfa) - next_offset))
1700                 goto out;
1701 
1702         new_acts_size = ksize(*sfa) * 2;
1703 
1704         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1705                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1706                         return ERR_PTR(-EMSGSIZE);
1707                 new_acts_size = MAX_ACTIONS_BUFSIZE;
1708         }
1709 
1710         acts = nla_alloc_flow_actions(new_acts_size, log);
1711         if (IS_ERR(acts))
1712                 return (void *)acts;
1713 
1714         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1715         acts->actions_len = (*sfa)->actions_len;
1716         acts->orig_len = (*sfa)->orig_len;
1717         kfree(*sfa);
1718         *sfa = acts;
1719 
1720 out:
1721         (*sfa)->actions_len += req_size;
1722         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1723 }
1724 
1725 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1726                                    int attrtype, void *data, int len, bool log)
1727 {
1728         struct nlattr *a;
1729 
1730         a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1731         if (IS_ERR(a))
1732                 return a;
1733 
1734         a->nla_type = attrtype;
1735         a->nla_len = nla_attr_size(len);
1736 
1737         if (data)
1738                 memcpy(nla_data(a), data, len);
1739         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1740 
1741         return a;
1742 }
1743 
1744 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1745                        int len, bool log)
1746 {
1747         struct nlattr *a;
1748 
1749         a = __add_action(sfa, attrtype, data, len, log);
1750 
1751         return PTR_ERR_OR_ZERO(a);
1752 }
1753 
1754 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1755                                           int attrtype, bool log)
1756 {
1757         int used = (*sfa)->actions_len;
1758         int err;
1759 
1760         err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1761         if (err)
1762                 return err;
1763 
1764         return used;
1765 }
1766 
1767 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1768                                          int st_offset)
1769 {
1770         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1771                                                                st_offset);
1772 
1773         a->nla_len = sfa->actions_len - st_offset;
1774 }
1775 
1776 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1777                                   const struct sw_flow_key *key,
1778                                   int depth, struct sw_flow_actions **sfa,
1779                                   __be16 eth_type, __be16 vlan_tci, bool log);
1780 
1781 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1782                                     const struct sw_flow_key *key, int depth,
1783                                     struct sw_flow_actions **sfa,
1784                                     __be16 eth_type, __be16 vlan_tci, bool log)
1785 {
1786         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1787         const struct nlattr *probability, *actions;
1788         const struct nlattr *a;
1789         int rem, start, err, st_acts;
1790 
1791         memset(attrs, 0, sizeof(attrs));
1792         nla_for_each_nested(a, attr, rem) {
1793                 int type = nla_type(a);
1794                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1795                         return -EINVAL;
1796                 attrs[type] = a;
1797         }
1798         if (rem)
1799                 return -EINVAL;
1800 
1801         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1802         if (!probability || nla_len(probability) != sizeof(u32))
1803                 return -EINVAL;
1804 
1805         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1806         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1807                 return -EINVAL;
1808 
1809         /* validation done, copy sample action. */
1810         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1811         if (start < 0)
1812                 return start;
1813         err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1814                                  nla_data(probability), sizeof(u32), log);
1815         if (err)
1816                 return err;
1817         st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1818         if (st_acts < 0)
1819                 return st_acts;
1820 
1821         err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1822                                      eth_type, vlan_tci, log);
1823         if (err)
1824                 return err;
1825 
1826         add_nested_action_end(*sfa, st_acts);
1827         add_nested_action_end(*sfa, start);
1828 
1829         return 0;
1830 }
1831 
1832 void ovs_match_init(struct sw_flow_match *match,
1833                     struct sw_flow_key *key,
1834                     struct sw_flow_mask *mask)
1835 {
1836         memset(match, 0, sizeof(*match));
1837         match->key = key;
1838         match->mask = mask;
1839 
1840         memset(key, 0, sizeof(*key));
1841 
1842         if (mask) {
1843                 memset(&mask->key, 0, sizeof(mask->key));
1844                 mask->range.start = mask->range.end = 0;
1845         }
1846 }
1847 
1848 static int validate_geneve_opts(struct sw_flow_key *key)
1849 {
1850         struct geneve_opt *option;
1851         int opts_len = key->tun_opts_len;
1852         bool crit_opt = false;
1853 
1854         option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1855         while (opts_len > 0) {
1856                 int len;
1857 
1858                 if (opts_len < sizeof(*option))
1859                         return -EINVAL;
1860 
1861                 len = sizeof(*option) + option->length * 4;
1862                 if (len > opts_len)
1863                         return -EINVAL;
1864 
1865                 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1866 
1867                 option = (struct geneve_opt *)((u8 *)option + len);
1868                 opts_len -= len;
1869         };
1870 
1871         key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1872 
1873         return 0;
1874 }
1875 
1876 static int validate_and_copy_set_tun(const struct nlattr *attr,
1877                                      struct sw_flow_actions **sfa, bool log)
1878 {
1879         struct sw_flow_match match;
1880         struct sw_flow_key key;
1881         struct metadata_dst *tun_dst;
1882         struct ip_tunnel_info *tun_info;
1883         struct ovs_tunnel_info *ovs_tun;
1884         struct nlattr *a;
1885         int err = 0, start, opts_type;
1886 
1887         ovs_match_init(&match, &key, NULL);
1888         opts_type = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
1889         if (opts_type < 0)
1890                 return opts_type;
1891 
1892         if (key.tun_opts_len) {
1893                 switch (opts_type) {
1894                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1895                         err = validate_geneve_opts(&key);
1896                         if (err < 0)
1897                                 return err;
1898                         break;
1899                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1900                         break;
1901                 }
1902         };
1903 
1904         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1905         if (start < 0)
1906                 return start;
1907 
1908         tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
1909         if (!tun_dst)
1910                 return -ENOMEM;
1911 
1912         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1913                          sizeof(*ovs_tun), log);
1914         if (IS_ERR(a)) {
1915                 dst_release((struct dst_entry *)tun_dst);
1916                 return PTR_ERR(a);
1917         }
1918 
1919         ovs_tun = nla_data(a);
1920         ovs_tun->tun_dst = tun_dst;
1921 
1922         tun_info = &tun_dst->u.tun_info;
1923         tun_info->mode = IP_TUNNEL_INFO_TX;
1924         tun_info->key = key.tun_key;
1925 
1926         /* We need to store the options in the action itself since
1927          * everything else will go away after flow setup. We can append
1928          * it to tun_info and then point there.
1929          */
1930         ip_tunnel_info_opts_set(tun_info,
1931                                 TUN_METADATA_OPTS(&key, key.tun_opts_len),
1932                                 key.tun_opts_len);
1933         add_nested_action_end(*sfa, start);
1934 
1935         return err;
1936 }
1937 
1938 /* Return false if there are any non-masked bits set.
1939  * Mask follows data immediately, before any netlink padding.
1940  */
1941 static bool validate_masked(u8 *data, int len)
1942 {
1943         u8 *mask = data + len;
1944 
1945         while (len--)
1946                 if (*data++ & ~*mask++)
1947                         return false;
1948 
1949         return true;
1950 }
1951 
1952 static int validate_set(const struct nlattr *a,
1953                         const struct sw_flow_key *flow_key,
1954                         struct sw_flow_actions **sfa,
1955                         bool *skip_copy, __be16 eth_type, bool masked, bool log)
1956 {
1957         const struct nlattr *ovs_key = nla_data(a);
1958         int key_type = nla_type(ovs_key);
1959         size_t key_len;
1960 
1961         /* There can be only one key in a action */
1962         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1963                 return -EINVAL;
1964 
1965         key_len = nla_len(ovs_key);
1966         if (masked)
1967                 key_len /= 2;
1968 
1969         if (key_type > OVS_KEY_ATTR_MAX ||
1970             !check_attr_len(key_len, ovs_key_lens[key_type].len))
1971                 return -EINVAL;
1972 
1973         if (masked && !validate_masked(nla_data(ovs_key), key_len))
1974                 return -EINVAL;
1975 
1976         switch (key_type) {
1977         const struct ovs_key_ipv4 *ipv4_key;
1978         const struct ovs_key_ipv6 *ipv6_key;
1979         int err;
1980 
1981         case OVS_KEY_ATTR_PRIORITY:
1982         case OVS_KEY_ATTR_SKB_MARK:
1983         case OVS_KEY_ATTR_CT_MARK:
1984         case OVS_KEY_ATTR_CT_LABELS:
1985         case OVS_KEY_ATTR_ETHERNET:
1986                 break;
1987 
1988         case OVS_KEY_ATTR_TUNNEL:
1989                 if (eth_p_mpls(eth_type))
1990                         return -EINVAL;
1991 
1992                 if (masked)
1993                         return -EINVAL; /* Masked tunnel set not supported. */
1994 
1995                 *skip_copy = true;
1996                 err = validate_and_copy_set_tun(a, sfa, log);
1997                 if (err)
1998                         return err;
1999                 break;
2000 
2001         case OVS_KEY_ATTR_IPV4:
2002                 if (eth_type != htons(ETH_P_IP))
2003                         return -EINVAL;
2004 
2005                 ipv4_key = nla_data(ovs_key);
2006 
2007                 if (masked) {
2008                         const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2009 
2010                         /* Non-writeable fields. */
2011                         if (mask->ipv4_proto || mask->ipv4_frag)
2012                                 return -EINVAL;
2013                 } else {
2014                         if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2015                                 return -EINVAL;
2016 
2017                         if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2018                                 return -EINVAL;
2019                 }
2020                 break;
2021 
2022         case OVS_KEY_ATTR_IPV6:
2023                 if (eth_type != htons(ETH_P_IPV6))
2024                         return -EINVAL;
2025 
2026                 ipv6_key = nla_data(ovs_key);
2027 
2028                 if (masked) {
2029                         const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2030 
2031                         /* Non-writeable fields. */
2032                         if (mask->ipv6_proto || mask->ipv6_frag)
2033                                 return -EINVAL;
2034 
2035                         /* Invalid bits in the flow label mask? */
2036                         if (ntohl(mask->ipv6_label) & 0xFFF00000)
2037                                 return -EINVAL;
2038                 } else {
2039                         if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2040                                 return -EINVAL;
2041 
2042                         if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2043                                 return -EINVAL;
2044                 }
2045                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2046                         return -EINVAL;
2047 
2048                 break;
2049 
2050         case OVS_KEY_ATTR_TCP:
2051                 if ((eth_type != htons(ETH_P_IP) &&
2052                      eth_type != htons(ETH_P_IPV6)) ||
2053                     flow_key->ip.proto != IPPROTO_TCP)
2054                         return -EINVAL;
2055 
2056                 break;
2057 
2058         case OVS_KEY_ATTR_UDP:
2059                 if ((eth_type != htons(ETH_P_IP) &&
2060                      eth_type != htons(ETH_P_IPV6)) ||
2061                     flow_key->ip.proto != IPPROTO_UDP)
2062                         return -EINVAL;
2063 
2064                 break;
2065 
2066         case OVS_KEY_ATTR_MPLS:
2067                 if (!eth_p_mpls(eth_type))
2068                         return -EINVAL;
2069                 break;
2070 
2071         case OVS_KEY_ATTR_SCTP:
2072                 if ((eth_type != htons(ETH_P_IP) &&
2073                      eth_type != htons(ETH_P_IPV6)) ||
2074                     flow_key->ip.proto != IPPROTO_SCTP)
2075                         return -EINVAL;
2076 
2077                 break;
2078 
2079         default:
2080                 return -EINVAL;
2081         }
2082 
2083         /* Convert non-masked non-tunnel set actions to masked set actions. */
2084         if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2085                 int start, len = key_len * 2;
2086                 struct nlattr *at;
2087 
2088                 *skip_copy = true;
2089 
2090                 start = add_nested_action_start(sfa,
2091                                                 OVS_ACTION_ATTR_SET_TO_MASKED,
2092                                                 log);
2093                 if (start < 0)
2094                         return start;
2095 
2096                 at = __add_action(sfa, key_type, NULL, len, log);
2097                 if (IS_ERR(at))
2098                         return PTR_ERR(at);
2099 
2100                 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2101                 memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2102                 /* Clear non-writeable bits from otherwise writeable fields. */
2103                 if (key_type == OVS_KEY_ATTR_IPV6) {
2104                         struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2105 
2106                         mask->ipv6_label &= htonl(0x000FFFFF);
2107                 }
2108                 add_nested_action_end(*sfa, start);
2109         }
2110 
2111         return 0;
2112 }
2113 
2114 static int validate_userspace(const struct nlattr *attr)
2115 {
2116         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2117                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2118                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2119                 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2120         };
2121         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2122         int error;
2123 
2124         error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2125                                  attr, userspace_policy);
2126         if (error)
2127                 return error;
2128 
2129         if (!a[OVS_USERSPACE_ATTR_PID] ||
2130             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2131                 return -EINVAL;
2132 
2133         return 0;
2134 }
2135 
2136 static int copy_action(const struct nlattr *from,
2137                        struct sw_flow_actions **sfa, bool log)
2138 {
2139         int totlen = NLA_ALIGN(from->nla_len);
2140         struct nlattr *to;
2141 
2142         to = reserve_sfa_size(sfa, from->nla_len, log);
2143         if (IS_ERR(to))
2144                 return PTR_ERR(to);
2145 
2146         memcpy(to, from, totlen);
2147         return 0;
2148 }
2149 
2150 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2151                                   const struct sw_flow_key *key,
2152                                   int depth, struct sw_flow_actions **sfa,
2153                                   __be16 eth_type, __be16 vlan_tci, bool log)
2154 {
2155         const struct nlattr *a;
2156         int rem, err;
2157 
2158         if (depth >= SAMPLE_ACTION_DEPTH)
2159                 return -EOVERFLOW;
2160 
2161         nla_for_each_nested(a, attr, rem) {
2162                 /* Expected argument lengths, (u32)-1 for variable length. */
2163                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2164                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2165                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2166                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2167                         [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2168                         [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2169                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2170                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
2171                         [OVS_ACTION_ATTR_SET] = (u32)-1,
2172                         [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2173                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2174                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2175                         [OVS_ACTION_ATTR_CT] = (u32)-1,
2176                 };
2177                 const struct ovs_action_push_vlan *vlan;
2178                 int type = nla_type(a);
2179                 bool skip_copy;
2180 
2181                 if (type > OVS_ACTION_ATTR_MAX ||
2182                     (action_lens[type] != nla_len(a) &&
2183                      action_lens[type] != (u32)-1))
2184                         return -EINVAL;
2185 
2186                 skip_copy = false;
2187                 switch (type) {
2188                 case OVS_ACTION_ATTR_UNSPEC:
2189                         return -EINVAL;
2190 
2191                 case OVS_ACTION_ATTR_USERSPACE:
2192                         err = validate_userspace(a);
2193                         if (err)
2194                                 return err;
2195                         break;
2196 
2197                 case OVS_ACTION_ATTR_OUTPUT:
2198                         if (nla_get_u32(a) >= DP_MAX_PORTS)
2199                                 return -EINVAL;
2200                         break;
2201 
2202                 case OVS_ACTION_ATTR_HASH: {
2203                         const struct ovs_action_hash *act_hash = nla_data(a);
2204 
2205                         switch (act_hash->hash_alg) {
2206                         case OVS_HASH_ALG_L4:
2207                                 break;
2208                         default:
2209                                 return  -EINVAL;
2210                         }
2211 
2212                         break;
2213                 }
2214 
2215                 case OVS_ACTION_ATTR_POP_VLAN:
2216                         vlan_tci = htons(0);
2217                         break;
2218 
2219                 case OVS_ACTION_ATTR_PUSH_VLAN:
2220                         vlan = nla_data(a);
2221                         if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2222                                 return -EINVAL;
2223                         if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2224                                 return -EINVAL;
2225                         vlan_tci = vlan->vlan_tci;
2226                         break;
2227 
2228                 case OVS_ACTION_ATTR_RECIRC:
2229                         break;
2230 
2231                 case OVS_ACTION_ATTR_PUSH_MPLS: {
2232                         const struct ovs_action_push_mpls *mpls = nla_data(a);
2233 
2234                         if (!eth_p_mpls(mpls->mpls_ethertype))
2235                                 return -EINVAL;
2236                         /* Prohibit push MPLS other than to a white list
2237                          * for packets that have a known tag order.
2238                          */
2239                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2240                             (eth_type != htons(ETH_P_IP) &&
2241                              eth_type != htons(ETH_P_IPV6) &&
2242                              eth_type != htons(ETH_P_ARP) &&
2243                              eth_type != htons(ETH_P_RARP) &&
2244                              !eth_p_mpls(eth_type)))
2245                                 return -EINVAL;
2246                         eth_type = mpls->mpls_ethertype;
2247                         break;
2248                 }
2249 
2250                 case OVS_ACTION_ATTR_POP_MPLS:
2251                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2252                             !eth_p_mpls(eth_type))
2253                                 return -EINVAL;
2254 
2255                         /* Disallow subsequent L2.5+ set and mpls_pop actions
2256                          * as there is no check here to ensure that the new
2257                          * eth_type is valid and thus set actions could
2258                          * write off the end of the packet or otherwise
2259                          * corrupt it.
2260                          *
2261                          * Support for these actions is planned using packet
2262                          * recirculation.
2263                          */
2264                         eth_type = htons(0);
2265                         break;
2266 
2267                 case OVS_ACTION_ATTR_SET:
2268                         err = validate_set(a, key, sfa,
2269                                            &skip_copy, eth_type, false, log);
2270                         if (err)
2271                                 return err;
2272                         break;
2273 
2274                 case OVS_ACTION_ATTR_SET_MASKED:
2275                         err = validate_set(a, key, sfa,
2276                                            &skip_copy, eth_type, true, log);
2277                         if (err)
2278                                 return err;
2279                         break;
2280 
2281                 case OVS_ACTION_ATTR_SAMPLE:
2282                         err = validate_and_copy_sample(net, a, key, depth, sfa,
2283                                                        eth_type, vlan_tci, log);
2284                         if (err)
2285                                 return err;
2286                         skip_copy = true;
2287                         break;
2288 
2289                 case OVS_ACTION_ATTR_CT:
2290                         err = ovs_ct_copy_action(net, a, key, sfa, log);
2291                         if (err)
2292                                 return err;
2293                         skip_copy = true;
2294                         break;
2295 
2296                 default:
2297                         OVS_NLERR(log, "Unknown Action type %d", type);
2298                         return -EINVAL;
2299                 }
2300                 if (!skip_copy) {
2301                         err = copy_action(a, sfa, log);
2302                         if (err)
2303                                 return err;
2304                 }
2305         }
2306 
2307         if (rem > 0)
2308                 return -EINVAL;
2309 
2310         return 0;
2311 }
2312 
2313 /* 'key' must be the masked key. */
2314 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2315                          const struct sw_flow_key *key,
2316                          struct sw_flow_actions **sfa, bool log)
2317 {
2318         int err;
2319 
2320         *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2321         if (IS_ERR(*sfa))
2322                 return PTR_ERR(*sfa);
2323 
2324         (*sfa)->orig_len = nla_len(attr);
2325         err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2326                                      key->eth.tci, log);
2327         if (err)
2328                 ovs_nla_free_flow_actions(*sfa);
2329 
2330         return err;
2331 }
2332 
2333 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2334 {
2335         const struct nlattr *a;
2336         struct nlattr *start;
2337         int err = 0, rem;
2338 
2339         start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2340         if (!start)
2341                 return -EMSGSIZE;
2342 
2343         nla_for_each_nested(a, attr, rem) {
2344                 int type = nla_type(a);
2345                 struct nlattr *st_sample;
2346 
2347                 switch (type) {
2348                 case OVS_SAMPLE_ATTR_PROBABILITY:
2349                         if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2350                                     sizeof(u32), nla_data(a)))
2351                                 return -EMSGSIZE;
2352                         break;
2353                 case OVS_SAMPLE_ATTR_ACTIONS:
2354                         st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2355                         if (!st_sample)
2356                                 return -EMSGSIZE;
2357                         err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2358                         if (err)
2359                                 return err;
2360                         nla_nest_end(skb, st_sample);
2361                         break;
2362                 }
2363         }
2364 
2365         nla_nest_end(skb, start);
2366         return err;
2367 }
2368 
2369 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2370 {
2371         const struct nlattr *ovs_key = nla_data(a);
2372         int key_type = nla_type(ovs_key);
2373         struct nlattr *start;
2374         int err;
2375 
2376         switch (key_type) {
2377         case OVS_KEY_ATTR_TUNNEL_INFO: {
2378                 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2379                 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2380 
2381                 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2382                 if (!start)
2383                         return -EMSGSIZE;
2384 
2385                 err =  ipv4_tun_to_nlattr(skb, &tun_info->key,
2386                                           ip_tunnel_info_opts(tun_info),
2387                                           tun_info->options_len);
2388                 if (err)
2389                         return err;
2390                 nla_nest_end(skb, start);
2391                 break;
2392         }
2393         default:
2394                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2395                         return -EMSGSIZE;
2396                 break;
2397         }
2398 
2399         return 0;
2400 }
2401 
2402 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2403                                                 struct sk_buff *skb)
2404 {
2405         const struct nlattr *ovs_key = nla_data(a);
2406         struct nlattr *nla;
2407         size_t key_len = nla_len(ovs_key) / 2;
2408 
2409         /* Revert the conversion we did from a non-masked set action to
2410          * masked set action.
2411          */
2412         nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2413         if (!nla)
2414                 return -EMSGSIZE;
2415 
2416         if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2417                 return -EMSGSIZE;
2418 
2419         nla_nest_end(skb, nla);
2420         return 0;
2421 }
2422 
2423 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2424 {
2425         const struct nlattr *a;
2426         int rem, err;
2427 
2428         nla_for_each_attr(a, attr, len, rem) {
2429                 int type = nla_type(a);
2430 
2431                 switch (type) {
2432                 case OVS_ACTION_ATTR_SET:
2433                         err = set_action_to_attr(a, skb);
2434                         if (err)
2435                                 return err;
2436                         break;
2437 
2438                 case OVS_ACTION_ATTR_SET_TO_MASKED:
2439                         err = masked_set_action_to_set_action_attr(a, skb);
2440                         if (err)
2441                                 return err;
2442                         break;
2443 
2444                 case OVS_ACTION_ATTR_SAMPLE:
2445                         err = sample_action_to_attr(a, skb);
2446                         if (err)
2447                                 return err;
2448                         break;
2449 
2450                 case OVS_ACTION_ATTR_CT:
2451                         err = ovs_ct_action_to_attr(nla_data(a), skb);
2452                         if (err)
2453                                 return err;
2454                         break;
2455 
2456                 default:
2457                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
2458                                 return -EMSGSIZE;
2459                         break;
2460                 }
2461         }
2462 
2463         return 0;
2464 }
2465 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp