~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/sched/sch_pie.c

Version: ~ [ linux-5.13-rc7 ] ~ [ linux-5.12.12 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.45 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.127 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.195 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.237 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.273 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.273 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* Copyright (C) 2013 Cisco Systems, Inc, 2013.
  2  *
  3  * This program is free software; you can redistribute it and/or
  4  * modify it under the terms of the GNU General Public License
  5  * as published by the Free Software Foundation; either version 2
  6  * of the License.
  7  *
  8  * This program is distributed in the hope that it will be useful,
  9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11  * GNU General Public License for more details.
 12  *
 13  * Author: Vijay Subramanian <vijaynsu@cisco.com>
 14  * Author: Mythili Prabhu <mysuryan@cisco.com>
 15  *
 16  * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
 17  * University of Oslo, Norway.
 18  *
 19  * References:
 20  * IETF draft submission: http://tools.ietf.org/html/draft-pan-aqm-pie-00
 21  * IEEE  Conference on High Performance Switching and Routing 2013 :
 22  * "PIE: A * Lightweight Control Scheme to Address the Bufferbloat Problem"
 23  */
 24 
 25 #include <linux/module.h>
 26 #include <linux/slab.h>
 27 #include <linux/types.h>
 28 #include <linux/kernel.h>
 29 #include <linux/errno.h>
 30 #include <linux/skbuff.h>
 31 #include <net/pkt_sched.h>
 32 #include <net/inet_ecn.h>
 33 
 34 #define QUEUE_THRESHOLD 10000
 35 #define DQCOUNT_INVALID -1
 36 #define MAX_PROB  0xffffffff
 37 #define PIE_SCALE 8
 38 
 39 /* parameters used */
 40 struct pie_params {
 41         psched_time_t target;   /* user specified target delay in pschedtime */
 42         u32 tupdate;            /* timer frequency (in jiffies) */
 43         u32 limit;              /* number of packets that can be enqueued */
 44         u32 alpha;              /* alpha and beta are between 0 and 32 */
 45         u32 beta;               /* and are used for shift relative to 1 */
 46         bool ecn;               /* true if ecn is enabled */
 47         bool bytemode;          /* to scale drop early prob based on pkt size */
 48 };
 49 
 50 /* variables used */
 51 struct pie_vars {
 52         u32 prob;               /* probability but scaled by u32 limit. */
 53         psched_time_t burst_time;
 54         psched_time_t qdelay;
 55         psched_time_t qdelay_old;
 56         u64 dq_count;           /* measured in bytes */
 57         psched_time_t dq_tstamp;        /* drain rate */
 58         u32 avg_dq_rate;        /* bytes per pschedtime tick,scaled */
 59         u32 qlen_old;           /* in bytes */
 60 };
 61 
 62 /* statistics gathering */
 63 struct pie_stats {
 64         u32 packets_in;         /* total number of packets enqueued */
 65         u32 dropped;            /* packets dropped due to pie_action */
 66         u32 overlimit;          /* dropped due to lack of space in queue */
 67         u32 maxq;               /* maximum queue size */
 68         u32 ecn_mark;           /* packets marked with ECN */
 69 };
 70 
 71 /* private data for the Qdisc */
 72 struct pie_sched_data {
 73         struct pie_params params;
 74         struct pie_vars vars;
 75         struct pie_stats stats;
 76         struct timer_list adapt_timer;
 77 };
 78 
 79 static void pie_params_init(struct pie_params *params)
 80 {
 81         params->alpha = 2;
 82         params->beta = 20;
 83         params->tupdate = usecs_to_jiffies(30 * USEC_PER_MSEC); /* 30 ms */
 84         params->limit = 1000;   /* default of 1000 packets */
 85         params->target = PSCHED_NS2TICKS(20 * NSEC_PER_MSEC);   /* 20 ms */
 86         params->ecn = false;
 87         params->bytemode = false;
 88 }
 89 
 90 static void pie_vars_init(struct pie_vars *vars)
 91 {
 92         vars->dq_count = DQCOUNT_INVALID;
 93         vars->avg_dq_rate = 0;
 94         /* default of 100 ms in pschedtime */
 95         vars->burst_time = PSCHED_NS2TICKS(100 * NSEC_PER_MSEC);
 96 }
 97 
 98 static bool drop_early(struct Qdisc *sch, u32 packet_size)
 99 {
100         struct pie_sched_data *q = qdisc_priv(sch);
101         u32 rnd;
102         u32 local_prob = q->vars.prob;
103         u32 mtu = psched_mtu(qdisc_dev(sch));
104 
105         /* If there is still burst allowance left skip random early drop */
106         if (q->vars.burst_time > 0)
107                 return false;
108 
109         /* If current delay is less than half of target, and
110          * if drop prob is low already, disable early_drop
111          */
112         if ((q->vars.qdelay < q->params.target / 2)
113             && (q->vars.prob < MAX_PROB / 5))
114                 return false;
115 
116         /* If we have fewer than 2 mtu-sized packets, disable drop_early,
117          * similar to min_th in RED
118          */
119         if (sch->qstats.backlog < 2 * mtu)
120                 return false;
121 
122         /* If bytemode is turned on, use packet size to compute new
123          * probablity. Smaller packets will have lower drop prob in this case
124          */
125         if (q->params.bytemode && packet_size <= mtu)
126                 local_prob = (local_prob / mtu) * packet_size;
127         else
128                 local_prob = q->vars.prob;
129 
130         rnd = prandom_u32();
131         if (rnd < local_prob)
132                 return true;
133 
134         return false;
135 }
136 
137 static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
138                              struct sk_buff **to_free)
139 {
140         struct pie_sched_data *q = qdisc_priv(sch);
141         bool enqueue = false;
142 
143         if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
144                 q->stats.overlimit++;
145                 goto out;
146         }
147 
148         if (!drop_early(sch, skb->len)) {
149                 enqueue = true;
150         } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
151                    INET_ECN_set_ce(skb)) {
152                 /* If packet is ecn capable, mark it if drop probability
153                  * is lower than 10%, else drop it.
154                  */
155                 q->stats.ecn_mark++;
156                 enqueue = true;
157         }
158 
159         /* we can enqueue the packet */
160         if (enqueue) {
161                 q->stats.packets_in++;
162                 if (qdisc_qlen(sch) > q->stats.maxq)
163                         q->stats.maxq = qdisc_qlen(sch);
164 
165                 return qdisc_enqueue_tail(skb, sch);
166         }
167 
168 out:
169         q->stats.dropped++;
170         return qdisc_drop(skb, sch, to_free);
171 }
172 
173 static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
174         [TCA_PIE_TARGET] = {.type = NLA_U32},
175         [TCA_PIE_LIMIT] = {.type = NLA_U32},
176         [TCA_PIE_TUPDATE] = {.type = NLA_U32},
177         [TCA_PIE_ALPHA] = {.type = NLA_U32},
178         [TCA_PIE_BETA] = {.type = NLA_U32},
179         [TCA_PIE_ECN] = {.type = NLA_U32},
180         [TCA_PIE_BYTEMODE] = {.type = NLA_U32},
181 };
182 
183 static int pie_change(struct Qdisc *sch, struct nlattr *opt)
184 {
185         struct pie_sched_data *q = qdisc_priv(sch);
186         struct nlattr *tb[TCA_PIE_MAX + 1];
187         unsigned int qlen, dropped = 0;
188         int err;
189 
190         if (!opt)
191                 return -EINVAL;
192 
193         err = nla_parse_nested(tb, TCA_PIE_MAX, opt, pie_policy);
194         if (err < 0)
195                 return err;
196 
197         sch_tree_lock(sch);
198 
199         /* convert from microseconds to pschedtime */
200         if (tb[TCA_PIE_TARGET]) {
201                 /* target is in us */
202                 u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
203 
204                 /* convert to pschedtime */
205                 q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
206         }
207 
208         /* tupdate is in jiffies */
209         if (tb[TCA_PIE_TUPDATE])
210                 q->params.tupdate = usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
211 
212         if (tb[TCA_PIE_LIMIT]) {
213                 u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
214 
215                 q->params.limit = limit;
216                 sch->limit = limit;
217         }
218 
219         if (tb[TCA_PIE_ALPHA])
220                 q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);
221 
222         if (tb[TCA_PIE_BETA])
223                 q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);
224 
225         if (tb[TCA_PIE_ECN])
226                 q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);
227 
228         if (tb[TCA_PIE_BYTEMODE])
229                 q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);
230 
231         /* Drop excess packets if new limit is lower */
232         qlen = sch->q.qlen;
233         while (sch->q.qlen > sch->limit) {
234                 struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
235 
236                 dropped += qdisc_pkt_len(skb);
237                 qdisc_qstats_backlog_dec(sch, skb);
238                 rtnl_qdisc_drop(skb, sch);
239         }
240         qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
241 
242         sch_tree_unlock(sch);
243         return 0;
244 }
245 
246 static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb)
247 {
248 
249         struct pie_sched_data *q = qdisc_priv(sch);
250         int qlen = sch->qstats.backlog; /* current queue size in bytes */
251 
252         /* If current queue is about 10 packets or more and dq_count is unset
253          * we have enough packets to calculate the drain rate. Save
254          * current time as dq_tstamp and start measurement cycle.
255          */
256         if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) {
257                 q->vars.dq_tstamp = psched_get_time();
258                 q->vars.dq_count = 0;
259         }
260 
261         /* Calculate the average drain rate from this value.  If queue length
262          * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset
263          * the dq_count to -1 as we don't have enough packets to calculate the
264          * drain rate anymore The following if block is entered only when we
265          * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
266          * and we calculate the drain rate for the threshold here.  dq_count is
267          * in bytes, time difference in psched_time, hence rate is in
268          * bytes/psched_time.
269          */
270         if (q->vars.dq_count != DQCOUNT_INVALID) {
271                 q->vars.dq_count += skb->len;
272 
273                 if (q->vars.dq_count >= QUEUE_THRESHOLD) {
274                         psched_time_t now = psched_get_time();
275                         u32 dtime = now - q->vars.dq_tstamp;
276                         u32 count = q->vars.dq_count << PIE_SCALE;
277 
278                         if (dtime == 0)
279                                 return;
280 
281                         count = count / dtime;
282 
283                         if (q->vars.avg_dq_rate == 0)
284                                 q->vars.avg_dq_rate = count;
285                         else
286                                 q->vars.avg_dq_rate =
287                                     (q->vars.avg_dq_rate -
288                                      (q->vars.avg_dq_rate >> 3)) + (count >> 3);
289 
290                         /* If the queue has receded below the threshold, we hold
291                          * on to the last drain rate calculated, else we reset
292                          * dq_count to 0 to re-enter the if block when the next
293                          * packet is dequeued
294                          */
295                         if (qlen < QUEUE_THRESHOLD)
296                                 q->vars.dq_count = DQCOUNT_INVALID;
297                         else {
298                                 q->vars.dq_count = 0;
299                                 q->vars.dq_tstamp = psched_get_time();
300                         }
301 
302                         if (q->vars.burst_time > 0) {
303                                 if (q->vars.burst_time > dtime)
304                                         q->vars.burst_time -= dtime;
305                                 else
306                                         q->vars.burst_time = 0;
307                         }
308                 }
309         }
310 }
311 
312 static void calculate_probability(struct Qdisc *sch)
313 {
314         struct pie_sched_data *q = qdisc_priv(sch);
315         u32 qlen = sch->qstats.backlog; /* queue size in bytes */
316         psched_time_t qdelay = 0;       /* in pschedtime */
317         psched_time_t qdelay_old = q->vars.qdelay;      /* in pschedtime */
318         s32 delta = 0;          /* determines the change in probability */
319         u32 oldprob;
320         u32 alpha, beta;
321         bool update_prob = true;
322 
323         q->vars.qdelay_old = q->vars.qdelay;
324 
325         if (q->vars.avg_dq_rate > 0)
326                 qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate;
327         else
328                 qdelay = 0;
329 
330         /* If qdelay is zero and qlen is not, it means qlen is very small, less
331          * than dequeue_rate, so we do not update probabilty in this round
332          */
333         if (qdelay == 0 && qlen != 0)
334                 update_prob = false;
335 
336         /* In the algorithm, alpha and beta are between 0 and 2 with typical
337          * value for alpha as 0.125. In this implementation, we use values 0-32
338          * passed from user space to represent this. Also, alpha and beta have
339          * unit of HZ and need to be scaled before they can used to update
340          * probability. alpha/beta are updated locally below by 1) scaling them
341          * appropriately 2) scaling down by 16 to come to 0-2 range.
342          * Please see paper for details.
343          *
344          * We scale alpha and beta differently depending on whether we are in
345          * light, medium or high dropping mode.
346          */
347         if (q->vars.prob < MAX_PROB / 100) {
348                 alpha =
349                     (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
350                 beta =
351                     (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
352         } else if (q->vars.prob < MAX_PROB / 10) {
353                 alpha =
354                     (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
355                 beta =
356                     (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
357         } else {
358                 alpha =
359                     (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
360                 beta =
361                     (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
362         }
363 
364         /* alpha and beta should be between 0 and 32, in multiples of 1/16 */
365         delta += alpha * ((qdelay - q->params.target));
366         delta += beta * ((qdelay - qdelay_old));
367 
368         oldprob = q->vars.prob;
369 
370         /* to ensure we increase probability in steps of no more than 2% */
371         if (delta > (s32) (MAX_PROB / (100 / 2)) &&
372             q->vars.prob >= MAX_PROB / 10)
373                 delta = (MAX_PROB / 100) * 2;
374 
375         /* Non-linear drop:
376          * Tune drop probability to increase quickly for high delays(>= 250ms)
377          * 250ms is derived through experiments and provides error protection
378          */
379 
380         if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
381                 delta += MAX_PROB / (100 / 2);
382 
383         q->vars.prob += delta;
384 
385         if (delta > 0) {
386                 /* prevent overflow */
387                 if (q->vars.prob < oldprob) {
388                         q->vars.prob = MAX_PROB;
389                         /* Prevent normalization error. If probability is at
390                          * maximum value already, we normalize it here, and
391                          * skip the check to do a non-linear drop in the next
392                          * section.
393                          */
394                         update_prob = false;
395                 }
396         } else {
397                 /* prevent underflow */
398                 if (q->vars.prob > oldprob)
399                         q->vars.prob = 0;
400         }
401 
402         /* Non-linear drop in probability: Reduce drop probability quickly if
403          * delay is 0 for 2 consecutive Tupdate periods.
404          */
405 
406         if ((qdelay == 0) && (qdelay_old == 0) && update_prob)
407                 q->vars.prob = (q->vars.prob * 98) / 100;
408 
409         q->vars.qdelay = qdelay;
410         q->vars.qlen_old = qlen;
411 
412         /* We restart the measurement cycle if the following conditions are met
413          * 1. If the delay has been low for 2 consecutive Tupdate periods
414          * 2. Calculated drop probability is zero
415          * 3. We have atleast one estimate for the avg_dq_rate ie.,
416          *    is a non-zero value
417          */
418         if ((q->vars.qdelay < q->params.target / 2) &&
419             (q->vars.qdelay_old < q->params.target / 2) &&
420             (q->vars.prob == 0) &&
421             (q->vars.avg_dq_rate > 0))
422                 pie_vars_init(&q->vars);
423 }
424 
425 static void pie_timer(unsigned long arg)
426 {
427         struct Qdisc *sch = (struct Qdisc *)arg;
428         struct pie_sched_data *q = qdisc_priv(sch);
429         spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
430 
431         spin_lock(root_lock);
432         calculate_probability(sch);
433 
434         /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
435         if (q->params.tupdate)
436                 mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
437         spin_unlock(root_lock);
438 
439 }
440 
441 static int pie_init(struct Qdisc *sch, struct nlattr *opt)
442 {
443         struct pie_sched_data *q = qdisc_priv(sch);
444 
445         pie_params_init(&q->params);
446         pie_vars_init(&q->vars);
447         sch->limit = q->params.limit;
448 
449         setup_timer(&q->adapt_timer, pie_timer, (unsigned long)sch);
450 
451         if (opt) {
452                 int err = pie_change(sch, opt);
453 
454                 if (err)
455                         return err;
456         }
457 
458         mod_timer(&q->adapt_timer, jiffies + HZ / 2);
459         return 0;
460 }
461 
462 static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
463 {
464         struct pie_sched_data *q = qdisc_priv(sch);
465         struct nlattr *opts;
466 
467         opts = nla_nest_start(skb, TCA_OPTIONS);
468         if (opts == NULL)
469                 goto nla_put_failure;
470 
471         /* convert target from pschedtime to us */
472         if (nla_put_u32(skb, TCA_PIE_TARGET,
473                         ((u32) PSCHED_TICKS2NS(q->params.target)) /
474                         NSEC_PER_USEC) ||
475             nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
476             nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(q->params.tupdate)) ||
477             nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
478             nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
479             nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
480             nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode))
481                 goto nla_put_failure;
482 
483         return nla_nest_end(skb, opts);
484 
485 nla_put_failure:
486         nla_nest_cancel(skb, opts);
487         return -1;
488 
489 }
490 
491 static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
492 {
493         struct pie_sched_data *q = qdisc_priv(sch);
494         struct tc_pie_xstats st = {
495                 .prob           = q->vars.prob,
496                 .delay          = ((u32) PSCHED_TICKS2NS(q->vars.qdelay)) /
497                                    NSEC_PER_USEC,
498                 /* unscale and return dq_rate in bytes per sec */
499                 .avg_dq_rate    = q->vars.avg_dq_rate *
500                                   (PSCHED_TICKS_PER_SEC) >> PIE_SCALE,
501                 .packets_in     = q->stats.packets_in,
502                 .overlimit      = q->stats.overlimit,
503                 .maxq           = q->stats.maxq,
504                 .dropped        = q->stats.dropped,
505                 .ecn_mark       = q->stats.ecn_mark,
506         };
507 
508         return gnet_stats_copy_app(d, &st, sizeof(st));
509 }
510 
511 static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
512 {
513         struct sk_buff *skb;
514         skb = qdisc_dequeue_head(sch);
515 
516         if (!skb)
517                 return NULL;
518 
519         pie_process_dequeue(sch, skb);
520         return skb;
521 }
522 
523 static void pie_reset(struct Qdisc *sch)
524 {
525         struct pie_sched_data *q = qdisc_priv(sch);
526         qdisc_reset_queue(sch);
527         pie_vars_init(&q->vars);
528 }
529 
530 static void pie_destroy(struct Qdisc *sch)
531 {
532         struct pie_sched_data *q = qdisc_priv(sch);
533         q->params.tupdate = 0;
534         del_timer_sync(&q->adapt_timer);
535 }
536 
537 static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
538         .id = "pie",
539         .priv_size      = sizeof(struct pie_sched_data),
540         .enqueue        = pie_qdisc_enqueue,
541         .dequeue        = pie_qdisc_dequeue,
542         .peek           = qdisc_peek_dequeued,
543         .init           = pie_init,
544         .destroy        = pie_destroy,
545         .reset          = pie_reset,
546         .change         = pie_change,
547         .dump           = pie_dump,
548         .dump_stats     = pie_dump_stats,
549         .owner          = THIS_MODULE,
550 };
551 
552 static int __init pie_module_init(void)
553 {
554         return register_qdisc(&pie_qdisc_ops);
555 }
556 
557 static void __exit pie_module_exit(void)
558 {
559         unregister_qdisc(&pie_qdisc_ops);
560 }
561 
562 module_init(pie_module_init);
563 module_exit(pie_module_exit);
564 
565 MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
566 MODULE_AUTHOR("Vijay Subramanian");
567 MODULE_AUTHOR("Mythili Prabhu");
568 MODULE_LICENSE("GPL");
569 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp